1
|
Zhang Z, Tian Y, Gao W, Hu Y, Luo L, Lei L, Shen S, Han D. Detection of PD-L1 expression levels in malignant pleural mesothelioma with a targeted MRI nanoprobe in vivo. Front Chem 2024; 12:1508912. [PMID: 39691825 PMCID: PMC11650703 DOI: 10.3389/fchem.2024.1508912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/13/2024] [Indexed: 12/19/2024] Open
Abstract
Objectives Immune checkpoint inhibitors (ICIs) have demonstrated potential in inhibiting the growth of malignant pleural mesothelioma (MPM), and their efficacy is associated with the expression of programmed death-ligand 1(PD-L1). This study evaluated a PD-L1-targeted nanoprobe for detecting PD-L1 expression in a nude mouse model of malignant pleural mesothelioma (MPM). Methods A PD-L1-binding peptide (WL-12) was conjugated with superparamagnetic iron oxide nanoparticles (SPIONs) to create the nanoprobe WL-12@Fe₃O₄. The nanoprobe's stability, biotoxicity, targeting ability, and in vivo magnetic resonance (MR) imaging effects were assessed and compared to non-targeted Fe₃O₄ nanoparticles. ΔT2 values and PD-L1 expression were measured in H226 and MSTO-211H tumor tissues over 4 weeks to analyze correlations. Results The WL-12@Fe₃O₄ nanoprobe demonstrated uniform distribution and a spherical shape, with a larger size (43.82 nm) and lower surface potential (-9.34 ± 0.54 mV) compared to Fe₃O₄ (32.67 nm, -20.20 ± 0.88 mV, P < 0.05). The XPS and FT-IR analysis results indicate the successful coupling of WL-12 with Fe3O4. It was well dispersed in serum and saline and showed no cytotoxicity or organ damage in vivo. The probe selectively accumulated in PD-L1-expressing MPM cells, especially MSTO-211H, and exhibited significantly higher uptake in high PD-L1-expressing H460 cells (930.22 ± 11.75 ng/mL) compared to low PD-L1-expressing A549 cells (254.89 ± 17.33 ng/mL, P < 0.05). Tumor iron levels in the WL-12@Fe₃O₄ group were significantly elevated (141.02 ± 17.33 μg/g) compared to controls (36.43 ± 3.56 μg/g, P < 0.05), with no significant differences in other organs (P > 0.05). The T2 values of H226 and MSTO-211H tumors decreased after probe injection, with ΔT2 values significantly higher in the targeted group than the nontargeted group (P < 0.05). ΔT2 values increased over 4 weeks, correlating strongly with PD-L1 expression (P < 0.05). Conclusion The PD-L1-targeted nanoprobe with MRI is a promising tool for noninvasive, real-time assessment of PD-L1 expression in MPM.
Collapse
Affiliation(s)
- Zhenghua Zhang
- Medical Imaging Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yang Tian
- Medical Imaging Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenjun Gao
- Medical Imaging Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yubin Hu
- Medical Imaging Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liangping Luo
- Department of Radiology, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Lichang Lei
- Medical Imaging Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shasha Shen
- Medical Imaging Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dan Han
- Medical Imaging Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Manescu (Paltanea) V, Antoniac I, Paltanea G, Nemoianu IV, Mohan AG, Antoniac A, Rau JV, Laptoiu SA, Mihai P, Gavrila H, Al-Moushaly AR, Bodog AD. Magnetic Hyperthermia in Glioblastoma Multiforme Treatment. Int J Mol Sci 2024; 25:10065. [PMID: 39337552 PMCID: PMC11432100 DOI: 10.3390/ijms251810065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Glioblastoma multiforme (GBM) represents one of the most critical oncological diseases in neurological practice, being considered highly aggressive with a dismal prognosis. At a worldwide level, new therapeutic methods are continuously being researched. Magnetic hyperthermia (MHT) has been investigated for more than 30 years as a solution used as a single therapy or combined with others for glioma tumor assessment in preclinical and clinical studies. It is based on magnetic nanoparticles (MNPs) that are injected into the tumor, and, under the effect of an external alternating magnetic field, they produce heat with temperatures higher than 42 °C, which determines cancer cell death. It is well known that iron oxide nanoparticles have received FDA approval for anemia treatment and to be used as contrast substances in the medical imagining domain. Today, energetic, efficient MNPs are developed that are especially dedicated to MHT treatments. In this review, the subject's importance will be emphasized by specifying the number of patients with cancer worldwide, presenting the main features of GBM, and detailing the physical theory accompanying the MHT treatment. Then, synthesis routes for thermally efficient MNP manufacturing, strategies adopted in practice for increasing MHT heat performance, and significant in vitro and in vivo studies are presented. This review paper also includes combined cancer therapies, the main reasons for using these approaches with MHT, and important clinical studies on human subjects found in the literature. This review ends by describing the most critical challenges associated with MHT and future perspectives. It is concluded that MHT can be successfully and regularly applied as a treatment for GBM if specific improvements are made.
Collapse
Affiliation(s)
- Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, RO-050094 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
| | - Iosif Vasile Nemoianu
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
| | - Aurel George Mohan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
- Department of Neurosurgery, Clinical Emergency Hospital Oradea, 65 Gheorghe Doja Street, RO-410169 Oradea, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
- Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, I.M. Sechenov First Moscow State Medical University, Trubetskaya St. 8, Build.2, 119048 Moscow, Russia
| | - Stefan Alexandru Laptoiu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
| | - Petruta Mihai
- Faculty of Entrepreneurship, Business Engineering and Management, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
| | - Horia Gavrila
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
- Technical Sciences Academy of Romania, 26 Bulevardul Dacia, RO-030167 Bucharest, Romania
| | | | - Alin Danut Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
| |
Collapse
|
3
|
Casagualda C, López-Moral A, Alfonso-Triguero P, Lorenzo J, Alibés R, Busqué F, Ruiz-Molina D. Mussel-Inspired Multifunctional Polyethylene Glycol Nanoparticle Interfaces. Biomimetics (Basel) 2024; 9:531. [PMID: 39329553 PMCID: PMC11429798 DOI: 10.3390/biomimetics9090531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Nanoparticles (NPs) are receiving increasing interest in biomedical applications. However, due to their large surface area, in physiological environments, they tend to interact with plasma proteins, inducing their agglomeration and ultimately resulting in a substantial efficiency decrease in diagnostic and therapeutic applications. To overcome such problems, NPs are typically coated with a layer of hydrophilic and biocompatible polymers, such as PEG chains. However, few examples exist in which this property could be systematically fine-tuned and combined with added properties, such as emission. Herein, we report a novel mussel-inspired catechol-based strategy to obtain biocompatible and multifunctional coatings, using a previously developed polymerization methodology based on the formation of disulfide bridges under mild oxidative conditions. Two families of NPs were selected as the proof of concept: mesoporous silica NPs (MSNPs), due to their stability and known applications, and magnetite NPs (Fe3O4 NPs), due to their small size (<10 nm) and magnetic properties. The PEG coating confers biocompatibility on the NPs and can be further functionalized with bioactive molecules, such as glucose units, through the end carboxylic acid moieties. Once we demonstrated the feasibility of our approach to obtaining PEG-based coatings on different families of NPs, we also obtained multifunctional coatings by incorporating fluorescein functionalities. The resulting coatings not only confer biocompatibility and excellent cell internalization, but also allow for the imaging and tracking of NPs within cells.
Collapse
Affiliation(s)
- Carolina Casagualda
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Alba López-Moral
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Paula Alfonso-Triguero
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER), Bioingeniería, Biomateriales y Nanomedicina, 08193 Cerdanyola del Vallès, Spain
| | - Ramon Alibés
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Félix Busqué
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
4
|
Yan X, Wei F, Gou J, Ji M, Hamouda HI, Xue C, Zheng H. Cryogel with Modular and Clickable Building Blocks: Toward the Ultimate Ideal Macroporous Medium for Bacterial Separation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15959-15970. [PMID: 38954479 DOI: 10.1021/acs.jafc.4c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The lack of practical platforms for bacterial separation remains a hindrance to the detection of bacteria in complex samples. Herein, a composite cryogel was synthesized by using clickable building blocks and boronic acid for bacterial separation. Macroporous cryogels were synthesized by cryo-gelation polymerization using 2-hydroxyethyl methacrylate and allyl glycidyl ether. The interconnected macroporous architecture enabled high interfering substance tolerance. Nanohybrid nanoparticles were prepared via surface-initiated atom transfer radical polymerization and immobilized onto cryogel by click reaction. Alkyne-tagged boronic acid was conjugated to the composite for specific bacteria binding. The physical and chemical characteristics of the composite cryogel were analyzed systematically. Benefitting from the synergistic, multiple binding sites provided by the silica-assisted polymer, the composite cryogel exhibited excellent affinity toward S. aureus and Salmonella spp. with capacities of 91.6 × 107 CFU/g and 241.3 × 107 CFU/g in 0.01 M PBS (pH 8.0), respectively. Bacterial binding can be tuned by variations in pH and temperature and the addition of monosaccharides. The composite was employed to separate S. aureus and Salmonella spp. from spiked tap water, 40% cow milk, and sea cucumber enzymatic hydrolysate, which resulted in high bacteria separation and demonstrated remarkable potential in bacteria separation from food samples.
Collapse
Affiliation(s)
- Xiaomeng Yan
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266500, PR China
| | - Fayi Wei
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266500, PR China
| | - Jinpeng Gou
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266500, PR China
| | - Mingbo Ji
- Yantai Research Institute, Harbin Engineering University, Yantai 264006, China
| | - Hamed I Hamouda
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266500, PR China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266500, PR China
- Qingdao Institute of Marine Bioresources for Nutrition and Health Innovation, Qingdao 266100, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Hongwei Zheng
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266500, PR China
- Qingdao Institute of Marine Bioresources for Nutrition and Health Innovation, Qingdao 266100, China
| |
Collapse
|
5
|
Wang Z, Liu G, Zhou J, Zhao X, Cai J. Flame spray pyrolyzed carbon-encapsulated Au/Fe 3O 4 nanoaggregates enabled efficient photothermal therapy and magnetic hyperthermia of esophageal cancer cells. Front Bioeng Biotechnol 2024; 12:1400765. [PMID: 38863493 PMCID: PMC11165064 DOI: 10.3389/fbioe.2024.1400765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 06/13/2024] Open
Abstract
Multifunctional magneto-plasmonic nanoparticles with magnetic hyperthermia and photothermal therapy could kill cancer cells efficiently. Herein, carbon-encapsulated Au/Fe3O4 (Au/Fe3O4@C) was fabricated using an enclosed flame spray pyrolysis. The nanostructures, including an Fe3O4 core (51.9-55.2 nm) with a decreasing carbon shell thickness and an Au core (4.68-8.75 nm) coated with 2-4 graphite layers, were tailored by tuning the C2H4 content in the reacting gas mixture. Saturation magnetization (33.7-48.2 emu/g) and optical absorption were determined. The carbon shell facilitated the dispersion of Au/Fe3O4 and restrained their laser-induced and magnetic field-induced coalescence and growth. Au/Fe3O4@C exhibited excellent magnetic resonance imaging capability (91.4 mM-1 s-1) and photothermal performance (65.4°C for 0.8 mg/mL Au/Fe3O4@C at a power density of 1.0 W/cm2 after 300 s near-IR laser irradiation (808 nm)). Moreover, the combined application of photothermal and magnetic-heating properties reduced the required intensity of both laser and magnetic field compared to the intensity of separate situations. Our work provides a unique, intriguing approach to preparing multicomponent core/shell nanoaggregates that are promising candidates for esophageal cancer cell therapy.
Collapse
Affiliation(s)
- Zida Wang
- Department of Emergency, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gongzhe Liu
- Department of Cardiothoracic Surgery, People’s Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiangping Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Cai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Li A, Yang J, He Y, Wen J, Jiang X. Advancing piezoelectric 2D nanomaterials for applications in drug delivery systems and therapeutic approaches. NANOSCALE HORIZONS 2024; 9:365-383. [PMID: 38230559 DOI: 10.1039/d3nh00578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Precision drug delivery and multimodal synergistic therapy are crucial in treating diverse ailments, such as cancer, tissue damage, and degenerative diseases. Electrodes that emit electric pulses have proven effective in enhancing molecule release and permeability in drug delivery systems. Moreover, the physiological electrical microenvironment plays a vital role in regulating biological functions and triggering action potentials in neural and muscular tissues. Due to their unique noncentrosymmetric structures, many 2D materials exhibit outstanding piezoelectric performance, generating positive and negative charges under mechanical forces. This ability facilitates precise drug targeting and ensures high stimulus responsiveness, thereby controlling cellular destinies. Additionally, the abundant active sites within piezoelectric 2D materials facilitate efficient catalysis through piezochemical coupling, offering multimodal synergistic therapeutic strategies. However, the full potential of piezoelectric 2D nanomaterials in drug delivery system design remains underexplored due to research gaps. In this context, the current applications of piezoelectric 2D materials in disease management are summarized in this review, and the development of drug delivery systems influenced by these materials is forecast.
Collapse
Affiliation(s)
- Anshuo Li
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.
- State Key Laboratory of Metastable Materials Science and Technology, Nanobiotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China
| | - Jiawei Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Nanobiotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China
| | - Jin Wen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
7
|
Avugadda S, Soni N, Rodrigues EM, Persano S, Pellegrino T. Protease-Mediated T1 Contrast Enhancement of Multilayered Magneto-Gadolinium Nanostructures for Imaging and Magnetic Hyperthermia. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6743-6755. [PMID: 38295315 PMCID: PMC10875642 DOI: 10.1021/acsami.3c13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024]
Abstract
In this work, we constructed a multifunctional composite nanostructure for combined magnetic hyperthermia therapy and magnetic resonance imaging based on T1 and T2 signals. First, iron oxide nanocubes with a benchmark heating efficiency for magnetic hyperthermia were assembled within an amphiphilic polymer to form magnetic nanobeads. Next, poly(acrylic acid)-coated inorganic sodium gadolinium fluoride nanoparticles were electrostatically loaded onto the magnetic nanobead surface via a layer-by-layer approach by employing a positively charged enzymatic-cleavable biopolymer. The positive-negative multilayering process was validated through the changes occurring in surface ζ-potential values and structural characterization by transmission electron microscopy (TEM) imaging. These nanostructures exhibit an efficient heating profile, in terms of the specific absorption rates under clinically accepted magnetic field conditions. The addition of protease enzyme mediates the degradation of the surface layers of the nanostructures with the detachment of gadolinium nanoparticles from the magnetic beads and exposure to the aqueous environment. Such a process is associated with changes in the T1 relaxation time and contrast and a parallel decrease in the T2 signal. These structures are also nontoxic when tested on glioblastoma tumor cells up to a maximum gadolinium dose of 125 μg mL-1, which also corresponds to a iron dose of 52 μg mL-1. Nontoxic nanostructures with such enzyme-triggered release mechanisms and T1 signal enhancement are desirable for tracking tumor microenvironment release with remote T1-guidance and magnetic hyperthermia therapy actuation to be done at the diseased site upon verification of magnetic resonance imaging (MRI)-guided release.
Collapse
Affiliation(s)
| | | | - Emille M. Rodrigues
- Nanomaterials for Biomedical
Applications, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Stefano Persano
- Nanomaterials for Biomedical
Applications, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Teresa Pellegrino
- Nanomaterials for Biomedical
Applications, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
8
|
Fromain A, Perez JE, Van de Walle A, Lalatonne Y, Wilhelm C. Photothermia at the nanoscale induces ferroptosis via nanoparticle degradation. Nat Commun 2023; 14:4637. [PMID: 37532698 PMCID: PMC10397343 DOI: 10.1038/s41467-023-40258-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
The Fe(II)-induced ferroptotic cell death pathway is an asset in cancer therapy, yet it calls into question the biocompatibility of magnetic nanoparticles. In the latter, Fe(II) is sequestered within the crystal structure and is released only upon nanoparticle degradation, a transition that is not well understood. Here, we dissect the chemical environment necessary for nanoparticle degradation and subsequent Fe(II) release. Importantly, temperature acts as an accelerator of the process and can be triggered remotely by laser-mediated photothermal conversion, as evidenced by the loss of the nanoparticles' magnetic fingerprint. Remarkably, the local hot-spot temperature generated at the nanoscale can be measured in operando, in the vicinity of each nanoparticle, by comparing the photothermal-induced nanoparticle degradation patterns with those of global heating. Further, remote photothermal irradiation accelerates degradation inside cancer cells in a tumor spheroid model, with efficiency correlating with the endocytosis progression state of the nanoparticles. High-throughput imaging quantification of Fe2+ release, ROS generation, lipid peroxidation and cell death at the spheroid level confirm the synergistic thermo-ferroptotic therapy due to the photothermal degradation at the nanoparticle level.
Collapse
Affiliation(s)
- Alexandre Fromain
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Jose Efrain Perez
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Aurore Van de Walle
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Yoann Lalatonne
- Université Sorbonne Paris Nord, Université Paris Cité, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F‑ 93017, Bobigny, France
- Département de Biophysique et de Médecine Nucléaire, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, F‑ 93009, Bobigny, France
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France.
| |
Collapse
|
9
|
Pusta A, Tertis M, Crăciunescu I, Turcu R, Mirel S, Cristea C. Recent Advances in the Development of Drug Delivery Applications of Magnetic Nanomaterials. Pharmaceutics 2023; 15:1872. [PMID: 37514058 PMCID: PMC10383769 DOI: 10.3390/pharmaceutics15071872] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
With the predicted rise in the incidence of cancer, there is an ever-growing need for new cancer treatment strategies. Recently, magnetic nanoparticles have stood out as promising nanostructures for imaging and drug delivery systems as they possess unique properties. Moreover, magnetic nanomaterials functionalized with other compounds can lead to multicomponent nanoparticles with innovative structures and synergetic performance. The incorporation of chemotherapeutic drugs or RNA in magnetic drug delivery systems represents a promising alternative that can increase efficiency and reduce the side effects of anticancer therapy. This review presents a critical overview of the recent literature concerning the advancements in the field of magnetic nanoparticles used in drug delivery, with a focus on their classification, characteristics, synthesis and functionalization methods, limitations, and examples of magnetic drug delivery systems incorporating chemotherapeutics or RNA.
Collapse
Affiliation(s)
- Alexandra Pusta
- Department of Analytical Chemistry and Instrumental Analysis, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry and Instrumental Analysis, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Izabell Crăciunescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Rodica Turcu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Simona Mirel
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry and Instrumental Analysis, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Le TA, Hadadian Y, Yoon J. A prediction model for magnetic particle imaging-based magnetic hyperthermia applied to a brain tumor model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 235:107546. [PMID: 37068450 DOI: 10.1016/j.cmpb.2023.107546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Brain tumor is a global health concern at the moment. Thus far, the only treatments available are radiotherapy and chemotherapy, which have several drawbacks such as low survival rates and low treatment efficacy due to obstruction of the blood-brain barrier. Magnetic hyperthermia (MH) using magnetic nanoparticles (MNPs) is a promising non-invasive approach that has the potential for tumor treatment in deep tissues. Due to the limitations of the current drug-targeting systems, only a small proportion of the injected MNPs can be delivered to the desired area and the rest are distributed throughout the body. Thus, the application of conventional MH can lead to damage to healthy tissues. METHODS Magnetic particle imaging (MPI)-guided treatment platform for MH is an emerging approach that can be used for spatial localization of MH to arbitrarily selected regions by using the MPI magnetic field gradient. Although the feasibility of this method has been demonstrated experimentally, a multidimensional prediction model, which is of crucial importance for treatment planning, has not yet been developed. Hence, in this study, the time dependent magnetization equation derived by Martsenyuk, Raikher, and Shliomis (which is a macroscopic equation of motion derived from the Fokker-Planck equation for particles with Brownian relaxation mechanism) and the bio-heat equations have been used to develop and investigate a three-dimensional model that predicts specific loss power (SLP), its spatio-thermal resolution (temperature distribution), and the fraction of damage in brain tumors. RESULTS Based on the simulation results, the spatio-thermal resolution in focused heating depends, in a complex manner, on several parameters ranging from MNPs properties to magnetic fields characteristics, and coils configuration. However, to achieve a high performance in focused heating, the direction and the relative amplitude of the AC magnetic heating field with respect to the magnetic field gradient are among the most important parameters that need to be optimized. The temperature distribution and fraction of the damage in a simple brain model bearing a tumor were also obtained. CONCLUSIONS The complexity in the relationship between the MNPs properties and fields parameter imposes a trade-off between the heating efficiency of MNPs and the accuracy (resolution) of the focused heating. Therefore, the system configuration and field parameters should be chosen carefully for each specific treatment scenario. In future, the results of the model are expected to lead to the development of an MPI-guided MH treatment platform for brain tumor therapy. However, for more accurate quantitative results in such a platform, a magnetization dynamics model that takes into account coupled Néel-Brownian relaxation mechanism in the MNPs should be developed.
Collapse
Affiliation(s)
- Tuan-Anh Le
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea; Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Yaser Hadadian
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea.
| |
Collapse
|