1
|
Wu W, Yan Y, Xie M, Liu Y, Deng L, Wang H. A critical review on metal organic frameworks (MOFs)-based sensors for foodborne pathogenic bacteria detection. Talanta 2025; 281:126918. [PMID: 39305763 DOI: 10.1016/j.talanta.2024.126918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
The pervasive threat of foodborne pathogenic bacteria necessitates advancements in rapid and reliable detection methods. Traditional approaches suffer from significant limitations including prolonged processing times, limited sensitivity and specificity. This review comprehensively examines the integration of metal organic frameworks (MOFs) with sensor technologies for the enhanced detection of foodborne pathogens. MOFs, with their unique properties such as high porosity, tunable pore sizes, and ease of functionalization, offer new avenues for sensor enhancement. This paper provides a comprehensive analysis of recent developments in MOFs-based sensors, particularly focusing on electrochemical, fluorescence, colorimetric, and surface-enhanced Raman spectroscopy sensors. We have provided a detailed introduction for the operational principles of these sensors, highlighting the role of MOFs play in enhancing their performance. Comparative analyses demonstrate MOFs' superior capabilities in enhancing signal response, reducing response time, and expanding detection limits. This review culminates in presenting MOFs as transformative materials in the detection of foodborne pathogens, paving the way for their broader application in ensuring food safety.
Collapse
Affiliation(s)
- Wenbo Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yueling Yan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Maomei Xie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yidan Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Liyi Deng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for TCM, Tianjin, 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of TCM, Tianjin, 301617, China.
| |
Collapse
|
2
|
Kuang J, Zhao L, Ruan S, Sun Y, Wu Z, Zhang H, Zhang M, Hu P. The integration platform for exosome capture and colorimetric detection: Site occupying effect-modulated MOF-aptamer interaction and aptamer-Au NPs-dopamine interaction. Anal Chim Acta 2024; 1329:343234. [PMID: 39396297 DOI: 10.1016/j.aca.2024.343234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
Exosomes are extracellular vesicles of 30-200 nm in diameter that inherit molecular markers from their parent cells, including proteins, lipids, nucleic acids, and glycoconjugates. The detection and protein profiling of exosome could provide noninvasive access to disease diagnosis and treatment. In recent years, it has been found that Zr-MOFs can capture exosomes by forming Zr-O-P bonds through the phospholipid bilayer of exosomes. In addition, gold nanoparticles with optical response are used for colorimetric biological analysis, such as proteins, peptides, DNA. In this work, we proposed an aptasensor for exosome capture and sensitive colorimetric detection. The Zr-MOF (PCN-224) is innovatively used to capture exosome by Zr-O-P bond, and sodium tripolyphosphate (STPP) is used to block the non-specific adsorption of DNA aptamers on the surface of PCN-224 by site occupying effect. The aptamer binds to exosome immunity, and the remaining aptamer binds to Au NPs, resulting in an increase in steric hindrance and electrostatic repulsion, which makes the dispersion of Au NPs better and avoids the aggregation of Au NPs induced by dopamine (DA). The ratio of absorbance A650/A520 represents the aggregate degree of Au NPs, which correlates with the concentration of exosomes, and achieves sensitive colorimetric detection of exosomes with a linear range of 1.0 × 105-1.0 × 107 particles/mL. Further studies reveal that our work has excellent selectivity and anti-interference, breast cancer patients and healthy individuals can be distinguished by analyzing the differences in the expression of CD63 protein on exosome. The proposed biosensor integrates the capture and detection of exosomes, the multiple colors of Au NPs changed significantly from red to gray, which was conducive to the naked-eye identification of exosome detection.
Collapse
Affiliation(s)
- Jingjing Kuang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linghao Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shengli Ruan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yangkun Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zeyu Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongyang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Ping Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
3
|
Hefayathullah M, Singh S, Ganesan V, Maduraiveeran G. Metal-organic frameworks for biomedical applications: A review. Adv Colloid Interface Sci 2024; 331:103210. [PMID: 38865745 DOI: 10.1016/j.cis.2024.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Metal-organic frameworks (MOFs) are emergent materials in diverse prospective biomedical uses, owing to their inherent features such as adjustable pore dimension and volume, well-defined active sites, high surface area, and hybrid structures. The multifunctionality and unique chemical and biological characteristics of MOFs allow them as ideal platforms for sensing numerous emergent biomolecules with real-time monitoring towards the point-of-care applications. This review objects to deliver key insights on the topical developments of MOFs for biomedical applications. The rational design, preparation of stable MOF architectures, chemical and biological properties, biocompatibility, enzyme-mimicking materials, fabrication of biosensor platforms, and the exploration in diagnostic and therapeutic systems are compiled. The state-of-the-art, major challenges, and the imminent perspectives to improve the progressions convoluted outside the proof-of-concept, especially for biosensor platforms, imaging, and photodynamic therapy in biomedical research are also described. The present review may excite the interdisciplinary studies at the juncture of MOFs and biomedicine.
Collapse
Affiliation(s)
- Mohamed Hefayathullah
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India
| | - Smita Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Vellaichamy Ganesan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
4
|
Tan C, Yan X, Lu X, Wang J, Yi X. Dual-mode colorimetric and fluorescence detection of BRCA1 based on a CRISPR-Cas12a system. Analyst 2024. [PMID: 39171896 DOI: 10.1039/d4an01035c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Breast cancer, the most common malignant tumor in the world, seriously threatens human life and health. Early diagnosis of breast cancer may help enhance the survival rate. In this work, a colorimetric and fluorescent dual-mode biosensor based on the CRISPR-Cas12a system was constructed to detect the breast cancer biomarker BRCA1. The intact G4 DNA, with the assistance of K+ and hemin, catalyses the oxidation of o-phenylenediamine (OPD) with the assistance of hydrogen peroxide (H2O2), generating the oxidation product 2,3-diaminophenazine (DAP), which has distinct absorption and fluorescence peaks. The presence of the target BRCA1 activates the trans-cleavage activity of CRISPR-Cas12a, leading to the cleavage of G4 DNA and inhibiting the catalytic oxidation of OPD. Target BRCA1 was quantitatively determined by measuring both the absorbance and fluorescence intensity of DAP. The detection limits were calculated to be 0.615 nM for the colorimetric method and 0.289 nM for the fluorescence method. The dual-mode biosensor showed good selectivity and reliability for BRCA1 and can resist interference from complex substrates, and it has great potential in biomedical detection.
Collapse
Affiliation(s)
- Chengchen Tan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Xiaolong Yan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Xingchang Lu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Jianxiu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Xinyao Yi
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| |
Collapse
|
5
|
Zhang Z, Zhang Y, Jayan H, Gao S, Zhou R, Yosri N, Zou X, Guo Z. Recent and emerging trends of metal-organic frameworks (MOFs)-based sensors for detecting food contaminants: A critical and comprehensive review. Food Chem 2024; 448:139051. [PMID: 38522300 DOI: 10.1016/j.foodchem.2024.139051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Interest in the use of sensors based on metal-organic frameworks (MOFs) to detect food pollutants has been growing recently due to the desirable characteristics of MOFs, including uniform structures, large surface area, ultrahigh porosity and easy-to-functionalize surface. Fundamentally, this review offers an excellent solution using MOFs-based sensors (e.g., fluorescent, electrochemical, electrochemiluminescence, surface-enhanced Raman spectroscopy, and colorimetric sensors) to detect food contaminants such as pesticide residues, mycotoxins, antibiotics, food additives, and other hazardous candidates. More importantly, their application scenarios and advantages in food detection are also introduced in more detail. Therefore, this systematic review analyzes detection limits, linear ranges, the role of functionalities, and immobilized nanoparticles utilized in preparing MOFs-based sensors. Additionally, the main limitations of each sensing type, along with the enhancement mechanisms of MOFs in addressing efficient sensing are discussed. Finally, the limitations and potential trends of MOFs-based materials in food contaminant detection are also highlighted.
Collapse
Affiliation(s)
- Zhepeng Zhang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yang Zhang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing of Jiangsu Province, Jiangsu University, Zhenjiang 212013, China
| | - Heera Jayan
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shipeng Gao
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ruiyun Zhou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nermeen Yosri
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing of Jiangsu Province, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Wang H, Zou H, Wang F. Construction of Multiply Guaranteed DNA Sensors for Biological Sensing and Bioimaging Applications. Chembiochem 2024; 25:e202400266. [PMID: 38801028 DOI: 10.1002/cbic.202400266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Nucleic acids exhibit exceptional functionalities for both molecular recognition and catalysis, along with the capability of predictable assembly through strand displacement reactions. The inherent programmability and addressability of DNA probes enable their precise, on-demand assembly and accurate execution of hybridization, significantly enhancing target detection capabilities. Decades of research in DNA nanotechnology have led to advances in the structural design of functional DNA probes, resulting in increasingly sensitive and robust DNA sensors. Moreover, increasing attention has been devoted to enhancing the accuracy and sensitivity of DNA-based biosensors by integrating multiple sensing procedures. In this review, we summarize various strategies aimed at enhancing the accuracy of DNA sensors. These strategies involve multiple guarantee procedures, utilizing dual signal output mechanisms, and implementing sequential regulation methods. Our goal is to provide new insights into the development of more accurate DNA sensors, ultimately facilitating their widespread application in clinical diagnostics and assessment.
Collapse
Affiliation(s)
- Hong Wang
- Biological Products Laboratory, Chongqing Institute for Food and Drug Control, Chongqing, 430072, P. R. China
| | - Hanyan Zou
- Biological Products Laboratory, Chongqing Institute for Food and Drug Control, Chongqing, 430072, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
7
|
Zhang Y, Xu H, Jia Y, Yang X, Gao M. Snowflake Cu 2S@ZIF-67: A novel heterostructure substrate for enhanced adsorption and sensitive detection in BPA. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134524. [PMID: 38714058 DOI: 10.1016/j.jhazmat.2024.134524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Developing semiconductor substrates with superior stability and sensitivity is challenging in surface-enhanced Raman scattering (SERS) research. Here, a snowflake Cu2S@ZIF-67 heterostructure was fabricated using a straightforward method, exhibiting a notable enhancement factor of 9.0 × 109 and a limit of detection (LOD) of 10-14 M for methylene blue (MB). In addition, the Cu2S@ZIF-67 heterostructure substrate demonstrates outstanding homogeneity (relative standard deviation (RSD) = 9.2%) and stability (120 days). Employing Cu2S generates highly sensitive hotspots via an electromagnetic (EM) mechanism, and the growth of ZIF-67 on its surface augments the adsorption capacity and charge transfer capability (chemical mechanism, CM), thereby enhancing the SERS detection sensitivity. Furthermore, the Cu2S@ZIF-67 heterostructure, which was used as a SERS substrate, facilitated the detection of bisphenol A (BPA) with an LOD of 10-11 M. The Cu2S@ZIF-67 heterostructure substrate has excellent selectivity and anti-interference, which is very suitable for BPA detection in complex environment applications. The accuracy of the Cu2S@ZIF-67 heterostructure as a SERS substrate for detecting BPA in real water samples (water bottles, tap water, and pure milk) was confirmed by comparison with high-performance liquid chromatography (HPLC). These results demonstrate that through the rational design of heterostructures can achieve the quantitative and accurate detection of hazardous substances in food and the environment can be achieved.
Collapse
Affiliation(s)
- Yuchen Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China
| | - Hongquan Xu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China
| | - Yuehan Jia
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China
| | - Xiaotian Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China
| | - Ming Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China.
| |
Collapse
|
8
|
Li H, Yang J, Han R, Wang Y, Han X, Wang S, Pan M. Magnetic-fluorescent immunosensing platform applying AuNPs heterogeneous MIL-53(Al) composite for efficient detection of zearalenone. Food Chem 2024; 433:137369. [PMID: 37683484 DOI: 10.1016/j.foodchem.2023.137369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Rapid, sensitive, specific and stable detection of mycotoxin in food remains an extremely crucial issue. Herein, a magnetic-fluorescent immunosensing platform for the detection of zearalenone (ZEN) was proposed. The platform utilized Au nanoparticles (AuNPs) heterogeneous fluorescent metal-organic framework (MIL-53(Al)@AuNPs) labeled with ZEN-bovine serum albumin (ZEN-BSA) as signal probe and ZEN mono-antibodies coupled with magnetic NPs (MNPs-mAbs) as capture probe. Specifically, the heterogenization of AuNPs on the MIL-53(Al) surface improved its biocompatibility, and facilitated the loading of ZEN-BSA conjugates. The MNPs-mAbs could rapidly capture the target ZEN, simplify the immunoassay process and further improve the detection efficiency. The established competitive magnetic-fluorescent immunosensing platform had a wider linear response to ZEN in the range of 0.001-100 ng/mL with a lower limit of detection (LOD) at 0.0035 ng/mL, and could finish the whole detection process within 20 min, showing great potential for rapid and sensitive detection of food contaminants.
Collapse
Affiliation(s)
- Huilin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Ran Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Yueyao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Xintong Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China.
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China.
| |
Collapse
|
9
|
Saleh RO, Almajidi YQ, Mansouri S, Hammoud A, Rodrigues P, Mezan SO, Maabreh HG, Deorari M, Shakir MN, Alasheqi MQ. Dual-mode colorimetric and fluorescence biosensors for the detection of foodborne bacteria. Clin Chim Acta 2024; 553:117741. [PMID: 38158002 DOI: 10.1016/j.cca.2023.117741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Due to the growing demand for detection technologies, there has been significant interest in the development of integrated dual-modal sensing technologies, which involve combining two signal transduction channels into a single technique, particularly in the context of food safety. The integration of two detection signals not only improves diagnostic performance by reducing assumptions, but also enhances diagnostic functions with increased application flexibility, improved accuracy, and a wider detection linear range. The top two output signals for emerging dual-modal probes are fluorescent and colorimetric, due to their exceptional advantages for real-time sensitive sensing and point-of-care applications. With the rapid progress of nanotechnology and material chemistry, the integrated colorimetric/fluorimetric dual-mode systems show immense potential in sensing foodborne pathogenic bacteria. In this comprehensive review, we present a detailed summary of various colorimetric and fluorimetric dual-modal sensing methods, with a focus on their application in detecting foodborne bacteria. We thoroughly examine the sensing methodologies and the underlying principles of the signal transduction systems, and also discuss the challenges and future prospects for advancing research in this field.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia.
| | - Ahmad Hammoud
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, Moscow, Russia; Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus, Kuwait.
| | - Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, KSA, Saudi Arabia
| | - Salim Oudah Mezan
- Optical Department, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq; Republic of Iraq, Ministry of Education, Open Educational College, Studies Muthanna Centre, Iraq
| | - Hatem Ghaleb Maabreh
- RUDN University (Peoples' Friendship University of Russia named after Patrice Lumumba), department of dermatovenerology, foreign languages, Moscow, Russia
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | |
Collapse
|
10
|
Kong Y, Li Z, Zhang L, Song J, Liu Q, Zhu Y, Li N, Song L, Li X. A novel Nb 2C MXene based aptasensor for rapid and sensitive multi-mode detection of AFB 1. Biosens Bioelectron 2023; 242:115725. [PMID: 37837938 DOI: 10.1016/j.bios.2023.115725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/23/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
Rapid and accurate on-site detection of aflatoxin B1 (AFB1) is of great significance for ensuring food safety. This work developed a dual mode aptasensor and a dual channel artificial neural network (ANN) intelligent sensor detection platform for simple and convenient quantitative detection of AFB1 in food. This sensor was prepared by encoding manganese ion (Mn2+) mediated surface concave niobium carbide MXene nanomaterials (Nb2C-MNs) using fluorescent group labeled aptamers (ssDNA-FAM). Mn2+-mediated Nb2C-MNs exhibited better peroxidase-like and fluorescence quenching properties. Moreover, ssDNA-FAM as a fluorescent probe for the sensor also significantly enhanced the enzyme activity of Nb2C-MNs. When AFB1 existed, ssDNA-FAM preferentially bonded to AFB1, resulting in fluorescence signal recovery and colorimetric signal weakening. Consequently, the multimodal biosensor could achieve fluorescence/colorimetric detection without the need for material and reagent replacement. In on-site detection, both ratio fluorescence and colorimetric signals could be collected using smartphones and analyzed and modeled on the developed ANN platform, achieving visual intelligent sensing. This multimodal biosensor had a detection line as low as 0.0950 ng/mL under optimal conditions, and also had the advantages of simple operation, fast and sensitive, and high specificity, which can meet the real-time on-site detection needs of AFB1 in remote areas.
Collapse
Affiliation(s)
- Yiqian Kong
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Zongyi Li
- School of Management, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Lili Zhang
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Juncheng Song
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Qi Liu
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Yinghua Zhu
- School of Information and Electrical Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Na Li
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Lili Song
- Shandong Jinsheng Grain, Oil and Food Co., Ltd, Linyi, Shandong 276629, PR China
| | - Xiangyang Li
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China.
| |
Collapse
|
11
|
Lu J, Wang L. Multiple electromagnet synergistic control enabled fast and automatic biosensing of Salmonella in a sealed microfluidic chip. Biosens Bioelectron 2023; 237:115459. [PMID: 37392491 DOI: 10.1016/j.bios.2023.115459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
Point-of-care testing of pathogens is vital for prevention of food poisoning. Herein, a colorimetric biosensor was elaborately developed to rapidly and automatically detect Salmonella in a sealed microfluidic chip with one central chamber for housing immunomagnetic nanoparticles (IMNPs), bacterial sample and immune manganese dioxide nanoclusters (IMONCs), four functional chambers for housing absorbent pad, deionized water and H2O2-TMB substrate, and four symmetric peripheral chambers for achieving fluidic control. Four electromagnets were placed under peripheral chambers and synergistically controlled to manipulate their respective iron cylinders at the top of these chambers for deforming these chambers, resulting in precise fluidic control with designated flowrate, volume, direction and time. First, the electromagnets were automatically controlled to mix IMNPs, target bacteria and IMONCs, resulting in the formation of IMNP-bacteria-IMONC conjugates. Then, these conjugates were magnetically separated by a central electromagnet and the supernatant was directionally transferred to the absorbent pad. After these conjugates were washed by deionized water, the H2O2-TMB substrate was directionally transferred to resuspend the conjugates and catalyzed by the IMONCs with peroxidase-mimic activity. Finally, the catalysate was directionally transferred back to its initial chamber, and its color was analyzed by the smartphone APP to determinate bacterial concentration. This biosensor could detect Salmonella quantitatively and automatically in 30 min with a low detection limit of 101 CFU/mL. More importantly, the whole bacterial detection procedure from bacterial separation to result analysis was achieved on a sealed microfluidic chip through multiple electromagnet synergistic control, and this biosensor has great potential for point-of-care testing of pathogens without cross contaminations.
Collapse
Affiliation(s)
- Jialin Lu
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Lei Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
12
|
Wang L, Pan Y, Wang Z, Wang Y, Wei X. Ultrasensitive Fluorescence Platform Based on AgNPs In Situ-Incorporated Zr-MOFs for the Detection of Organophosphorus Pesticides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44109-44118. [PMID: 37676637 DOI: 10.1021/acsami.3c09354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Organophosphorus pesticides (OPPs) are extensively used in agricultural production, and the contamination caused by their residues has raised significant concerns regarding potential threats to human health. Herein, a novel fluorescence nanoprobe based on an enzyme-mediated silver nanoparticle-modified metal organic framework (AgNPs@PCN-224) was successfully prepared for the rapid detection of OPPs. Initially, AgNPs@PCN-224 were synthesized by reducing silver nitrate (AgNO3) using sodium borohydride (NaBH4) embedded into luminescent PCN-224. This triggered the inner filter effect, leading to fluorescence quenching. Meanwhile, under the catalysis of acetylcholinesterase (AChE) and choline oxidase (CHO), acetylcholine (ATCh) was decomposed to hydrogen peroxide (H2O2), which could destroy AgNPs to form Ag+ released from PCN-224 for fluorescence recovery. Instead, fenitrothion, an OPP, inhibited AChE activity, allowing the quenched fluorescence to be reactivated. Under the current optimum conditions, the fluorescence intensity had a good correlation (Y = -728.5370X + 2178.4248, R2 = 0.9869) over a dynamic range of fenitrothion concentrations from 0.1 to 500 ng/mL, with an LOD of 0.037 ng/mL. In addition, the anti-interference ability and robustness of the proposed sensor was verified for the monitoring of fenitrothion in tea with recoveries of 87.67-103.72% and the relative standard deviations (RSD) < 5.43%, indicating that the system has excellent prospects for OPP determination in practical applications. Furthermore, this work provides a universal platform for screening other enzyme inhibitors to detect OPPs.
Collapse
Affiliation(s)
- Li Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yi Pan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Zhengwu Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yuanfeng Wang
- Institute of Food Engineering, College of Life Science, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China
| | - Xinlin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| |
Collapse
|
13
|
Cui Y, Zhao J, Li H. Chromogenic Mechanisms of Colorimetric Sensors Based on Gold Nanoparticles. BIOSENSORS 2023; 13:801. [PMID: 37622887 PMCID: PMC10452725 DOI: 10.3390/bios13080801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
The colorimetric signal readout method is widely used in visualized analyses for its advantages, including visualization of test results, simple and fast operations, low detection cost and fast response time. Gold nanoparticles (Au NPs), which not only exhibit enzyme-like activity but also have the advantages of tunable localized surface plasmon resonance (LSPR), high stability, good biocompatibility and easily modified properties, provide excellent platforms for the construction of colorimetric sensors. They are widely used in environmental monitoring, biomedicine, the food industry and other fields. This review focuses on the chromogenic mechanisms of colorimetric sensors based on Au NPs adopting two different sensing strategies and summarizes significant advances in Au NP-based colorimetric sensing with enzyme-like activity and tunable LSPR characteristics. In addition, the sensing strategies based on the LSPR properties of Au NPs are classified into four modulation methods: aggregation, surface modification, deposition and etching, and the current status of visual detection of various analytes is discussed. Finally, the review further discusses the limitations of current Au NP-based detection strategies and the promising prospects of Au NPs as colorimetric sensors, guiding the design of novel colorimetric sensors.
Collapse
Affiliation(s)
- Yanyun Cui
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (H.L.)
| | | | | |
Collapse
|
14
|
Pan M, Li H, Yang J, Wang Y, Wang Y, Han X, Wang S. Review: Synthesis of metal organic framework-based composites for application as immunosensors in food safety. Anal Chim Acta 2023; 1266:341331. [PMID: 37244661 DOI: 10.1016/j.aca.2023.341331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/29/2023]
Abstract
Ensuring food safety continues to be one of the major global challenges. For effective food safety monitoring, fast, sensitive, portable, and efficient food safety detection strategies must be devised. Metal organic frameworks (MOFs) are porous crystalline materials that have attracted attention for use in high-performance sensors for food safety detection owing to their advantages such as high porosity, large specific surface area, adjustable structure, and easy surface functional modification. Immunoassay strategies based on antigen-antibody specific binding are one of the important means for accurate and rapid detection of trace contaminants in food. Emerging MOFs and their composites with excellent properties are being synthesized, providing new ideas for immunoassays. This article summarizes the synthesis strategies of MOFs and MOF-based composites and their applications in the immunoassays of food contaminants. The challenges and prospects of the preparation and immunoassay applications of MOF-based composites are also presented. The findings of this study will contribute to the development and application of novel MOF-based composites with excellent properties and provide insights into advanced and efficient strategies for developing immunoassays.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Huilin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yixin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yueyao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Xintong Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
15
|
Lang Y, Zhang B, Cai D, Tu W, Zhang J, Shentu X, Ye Z, Yu X. Determination Methods of the Risk Factors in Food Based on Nanozymes: A Review. BIOSENSORS 2022; 13:69. [PMID: 36671904 PMCID: PMC9856088 DOI: 10.3390/bios13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Food safety issues caused by foodborne pathogens, chemical pollutants, and heavy metals have aroused widespread concern because they are closely related to human health. Nanozyme-based biosensors have excellent characteristics such as high sensitivity, selectivity, and cost-effectiveness and have been used to detect the risk factors in foods. In this work, the common detection methods for pathogenic microorganisms, toxins, heavy metals, pesticide residues, veterinary drugs, and illegal additives are firstly reviewed. Then, the principles and applications of immunosensors based on various nanozymes are reviewed and explained. Applying nanozymes to the detection of pathogenic bacteria holds great potential for real-time evaluation and detection protocols for food risk factors.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| | | | | |
Collapse
|