1
|
Li S, Tian J, Li K, Xu K, Zhang J, Chen T, Li Y, Wang H, Wu Q, Xie J, Men Y, Liu W, Zhang X, Cao W, Huang Z. Intelligent Song Recognition via a Hollow-Microstructure-Based, Ultrasensitive Artificial Eardrum. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405501. [PMID: 39301887 DOI: 10.1002/advs.202405501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/30/2024] [Indexed: 09/22/2024]
Abstract
Artificial ears with intelligence, which can sensitively detect sound-a variant of pressure-and generate consciousness and logical decision-making abilities, hold great promise to transform life. However, despite the emerging flexible sensors for sound detection, most success is limited to very simple phonemes, such as a couple of letters or words, probably due to the lack of device sensitivity and capability. Herein, the construction of ultrasensitive artificial eardrums enabling intelligent song recognition is reported. This strategy employs novel geometric engineering of sensing units in the soft microstructure array (to significantly reduce effective modulus) along with complex song recognition exploration leveraging machine learning algorithms. Unprecedented pressure sensitivity (6.9 × 103 kPa-1) is demonstrated in a sensor with a hollow pyramid architecture with porous slants. The integrated device exhibits unparalleled (exceeding by 1-2 orders of magnitude compared with reported benchmark samples) sound detection sensitivity, and can accurately identify 100% (for training set) and 97.7% (for test set) of a database of the segments from 77 songs varying in language, style, and singer. Overall, the results highlight the outstanding performance of the hollow-microstructure-based sensor, indicating its potential applications in human-machine interaction and wearable acoustical technologies.
Collapse
Affiliation(s)
- Shaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiangtao Tian
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ke Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Kemeng Xu
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Jiaqi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Tingting Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hongbo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qiye Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jinchun Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yongjun Men
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Weiping Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Center for Composites, COMAC Shanghai Aircraft Manufacturing Co. Ltd., Shanghai, 201620, China
| | - Xiaodan Zhang
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Wenhan Cao
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhongjie Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
2
|
Yao R, Liu X, Yu H, Hou Z, Chang S, Yang L. Electronic skin based on natural biodegradable polymers for human motion monitoring. Int J Biol Macromol 2024; 278:134694. [PMID: 39142476 DOI: 10.1016/j.ijbiomac.2024.134694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/02/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
The wearability of the flexible electronic skin (e-skin) allows it to attach to the skin for human motion monitoring, which is essential for studying human motion and especially for assessing how well patients are recovering from rehabilitation therapy. However, the use of non-degradable synthetic materials in e-skin may raise skin safety concerns. Natural biodegradable polymers with advantages such as biodegradability, biocompatibility, sustainability, natural abundance, and low cost have the potential to be alternative materials for constructing flexible e-skin and applying them to human motion monitoring. This review summarizes the applications of natural biodegradable polymers in e-skin for human motion monitoring over the past three years, focusing on the discussion of cellulose, chitosan, silk fibroin, gelatin, and sodium alginate. Finally, we summarize the opportunities and challenges of e-skin based on natural biodegradable polymers. It is hoped that this review will provide insights for the future development of flexible e-skin in the field of human motion monitoring.
Collapse
Affiliation(s)
- Ruiqin Yao
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China; School of Intelligent Medicine, China Medical University, Shenyang 110122, P.R. China
| | - Xun Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, P.R. China
| | - Honghao Yu
- Department of Spine Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China.
| | - Shijie Chang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, P.R. China.
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China.
| |
Collapse
|
3
|
Liu J, Lv S, Mu Y, Tong J, Liu L, He T, Zeng Q, Wei D. Applied research and recent advances in the development of flexible sensing hydrogels from cellulose: A review. Int J Biol Macromol 2024:136100. [PMID: 39448288 DOI: 10.1016/j.ijbiomac.2024.136100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Flexible wearable smart sensing materials have gained immense momentum, and biomass-based hydrogel sensors for renewable and biologically safe wearable sensors have attracted significant attention in order to meet the growing demand for sustainability and ecological friendliness. Cellulose has been widely used in the field of biomass-based hydrogel sensing materials, being the most abundant biomass material in nature. This review mainly focuses on the types of cellulose hydrogels, the preparation methods and their applications in smart flexible sensing materials. The structure-functional properties-application relationship of cellulose hydrogels and the applications of various cellulose hydrogels in flexible sensing are described in detail. Then it focuses on the methods and mechanisms of cellulose hydrogel flexible sensors preparation, and then summarizes the research of cellulose hydrogel sensors for different types of stimulus response mechanisms to pressure, pH, biomolecules, ions, temperature, humidity, and light. The applications of cellulose hydrogels as flexible sensing materials in biomedical sensing, smart wearable and environmental monitoring are further summarized. Finally, the future development trend of cellulose hydrogels is briefly introduced and the future development of cellulose hydrogel sensing materials is envisioned.
Collapse
Affiliation(s)
- Jinru Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shenghua Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yanlu Mu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiahao Tong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Leipeng Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tingxiang He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qiao Zeng
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Dequan Wei
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
4
|
Fu X, Cheng W, Wan G, Yang Z, Tee BCK. Toward an AI Era: Advances in Electronic Skins. Chem Rev 2024; 124:9899-9948. [PMID: 39198214 PMCID: PMC11397144 DOI: 10.1021/acs.chemrev.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Electronic skins (e-skins) have seen intense research and rapid development in the past two decades. To mimic the capabilities of human skin, a multitude of flexible/stretchable sensors that detect physiological and environmental signals have been designed and integrated into functional systems. Recently, researchers have increasingly deployed machine learning and other artificial intelligence (AI) technologies to mimic the human neural system for the processing and analysis of sensory data collected by e-skins. Integrating AI has the potential to enable advanced applications in robotics, healthcare, and human-machine interfaces but also presents challenges such as data diversity and AI model robustness. In this review, we first summarize the functions and features of e-skins, followed by feature extraction of sensory data and different AI models. Next, we discuss the utilization of AI in the design of e-skin sensors and address the key topic of AI implementation in data processing and analysis of e-skins to accomplish a range of different tasks. Subsequently, we explore hardware-layer in-skin intelligence before concluding with an analysis of the challenges and opportunities in the various aspects of AI-enabled e-skins.
Collapse
Affiliation(s)
- Xuemei Fu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Wen Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Guanxiang Wan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Zijie Yang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Benjamin C K Tee
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore 138634, Singapore
| |
Collapse
|
5
|
Han S, Li S, Fu X, Han S, Chen H, Zhang L, Wang J, Sun G. Research Progress of Flexible Piezoresistive Sensors Based on Polymer Porous Materials. ACS Sens 2024; 9:3848-3863. [PMID: 39046083 DOI: 10.1021/acssensors.4c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Flexible piezoresistive sensors are in high demand in areas such as wearable devices, electronic skin, and human-machine interfaces due to their advantageous features, including low power consumption, excellent bending stability, broad testing pressure range, and simple manufacturing technology. With the advancement of intelligent technology, higher requirements for the sensitivity, accuracy, response time, measurement range, and weather resistance of piezoresistive sensors are emerging. Due to the designability of polymer porous materials and conductive phases, and with more multivariate combinations, it is possible to achieve higher sensitivity and lower detection limits, which are more promising than traditional flexible sensor materials. Based on this, this work reviews recent advancements in research on flexible pressure sensors utilizing polymer porous materials. Furthermore, this review examines sensor performance optimization and development from the perspectives of three-dimensional porous flexible substrate regulation, sensing material selection and composite technology, and substrate and sensing material structure design.
Collapse
Affiliation(s)
- Song Han
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Sheng Li
- China Academy of Machinery Wuhan Research Institute of Materials Protection Company, Ltd., Wuhan 430030, People's Republic of China
| | - Xin Fu
- Wuhan Second Ship Design & Research Institute, Wuhan 430064, People's Republic of China
| | - Shihui Han
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Huanyu Chen
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Liu Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Jun Wang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Gaohui Sun
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| |
Collapse
|
6
|
Zhu Y, Hu X, Yan X, Ni W, Wu M, Liu J. Nanoengineering Ultrathin Flexible Pressure Sensors with Superior Sensitivity and Wide Range via Nanocomposite Structures. ACS Sens 2024; 9:4176-4185. [PMID: 38967386 DOI: 10.1021/acssensors.4c01171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Flexible pressure sensors have attracted great interest due to their bendable, stretchable, and lightweight characteristics compared to rigid pressure sensors. However, the contradictions among sensitivity, detection limit, thickness, and detection range restrict the performance of flexible pressure sensors and the scope of their applications, especially for scenarios requiring conformal fitting, such as rough surfaces such as the human skin. This paper proposes a novel flexible pressure sensor by combining the nanoengineering strategy and nanocomposite structures. The nanoengineering strategy utilizes the bending deformation of nanofilm instead of the compression of the active layer to achieve super high sensitivity and low detection limit; meanwhile, the nanocomposite structures introduce distributed microbumps that delay the adhesion of nanofilm to enlarge the detection range. As a result, this device not only ensures an ultrathin thickness of 1.6 μm and a high sensitivity of 84.29 kPa-1 but also offers a large detection range of 20 kPa and an ultralow detection limit of 0.07 Pa. Owing to the ultrathin thickness as well as high performance, this device promotes applications in detecting fingertip pressure, flexible mechanical gripping, and so on, and demonstrates significant potential in wearable electronics, human-machine interaction, health monitoring, and tactile perception. This device offers a strategy to resolve the conflicts among thickness, sensitivity, detection limit, and detection range; therefore, it will advance the development of flexible pressure sensors and contribute to the community and other related research fields.
Collapse
Affiliation(s)
- Yike Zhu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xiaoguang Hu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xinran Yan
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Weiyao Ni
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Mengxi Wu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Junshan Liu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, Liaoning, China
| |
Collapse
|
7
|
Wang F, Hu A, Song Y, Zhang W, Zhu J, Liu M. Morse Code Recognition Based on a Flexible Tactile Sensor with Carbon Nanotube/Polyurethane Sponge Material by the Long Short-Term Memory Model. MICROMACHINES 2024; 15:864. [PMID: 39064375 PMCID: PMC11278602 DOI: 10.3390/mi15070864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Morse code recognition plays a very important role in the application of human-machine interaction. In this paper, based on the carbon nanotube (CNT) and polyurethane sponge (PUS) composite material, a flexible tactile CNT/PUS sensor with great piezoresistive characteristic is developed for detecting Morse code precisely. Thirty-six types of Morse code, including 26 letters (A-Z) and 10 numbers (0-9), are applied to the sensor. Each Morse code was repeated 60 times, and 2160 (36 × 60) groups of voltage time-sequential signals were collected to construct the dataset. Then, smoothing and normalization methods are used to preprocess and optimize the raw data. Based on that, the long short-term memory (LSTM) model with excellent feature extraction and self-adaptive ability is constructed to precisely recognize different types of Morse code detected by the sensor. The recognition accuracies of the 10-number Morse code, the 26-letter Morse code, and the whole 36-type Morse code are 99.17%, 95.37%, and 93.98%, respectively. Meanwhile, the Gated Recurrent Unit (GRU), Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), and Random Forest (RF) models are built to distinguish the 36-type Morse code (letters of A-Z and numbers of 0-9) based on the same dataset and achieve the accuracies of 91.37%, 88.88%, 87.04%, and 90.97%, respectively, which are all lower than the accuracy of 93.98% based on the LSTM model. All the experimental results show that the CNT/PUS sensor can detect the Morse code's tactile feature precisely, and the LSTM model has a very efficient property in recognizing Morse code detected by the CNT/PUS sensor.
Collapse
Affiliation(s)
- Feilu Wang
- School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei 230601, China; (F.W.); (A.H.); (W.Z.); (J.Z.); (M.L.)
- Key Laboratory of Building Information Acquisition and Measurement Control Technology, Anhui Jianzhu University, Hefei 230601, China
| | - Anyang Hu
- School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei 230601, China; (F.W.); (A.H.); (W.Z.); (J.Z.); (M.L.)
| | - Yang Song
- School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei 230601, China; (F.W.); (A.H.); (W.Z.); (J.Z.); (M.L.)
- Key Laboratory of Building Information Acquisition and Measurement Control Technology, Anhui Jianzhu University, Hefei 230601, China
| | - Wangyong Zhang
- School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei 230601, China; (F.W.); (A.H.); (W.Z.); (J.Z.); (M.L.)
| | - Jinggen Zhu
- School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei 230601, China; (F.W.); (A.H.); (W.Z.); (J.Z.); (M.L.)
| | - Mengru Liu
- School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei 230601, China; (F.W.); (A.H.); (W.Z.); (J.Z.); (M.L.)
| |
Collapse
|
8
|
Li W, Liu X, Wang Y, Peng L, Jin X, Jiang Z, Guo Z, Chen J, Wang W. Research on high sensitivity piezoresistive sensor based on structural design. DISCOVER NANO 2024; 19:88. [PMID: 38753219 PMCID: PMC11098999 DOI: 10.1186/s11671-024-03971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/08/2024] [Indexed: 05/19/2024]
Abstract
With the popularity of smart terminals, wearable electronic devices have shown great market prospects, especially high-sensitivity pressure sensors, which can monitor micro-stimuli and high-precision dynamic external stimuli, and will have an important impact on future functional development. Compressible flexible sensors have attracted wide attention due to their simple sensing mechanism and the advantages of light weight and convenience. Sensors with high sensitivity are very sensitive to pressure and can detect resistance/current changes under pressure, which has been widely studied. On this basis, this review focuses on analyzing the performance impact of device structure design strategies on high sensitivity pressure sensors. The design of structures can be divided into interface microstructures and three-dimensional framework structures. The preparation methods of various structures are introduced in detail, and the current research status and future development challenges are summarized.
Collapse
Affiliation(s)
- Wei Li
- Lutai School of Textile and Apparel, Shandong University of Technology, Zibo, 255000, People's Republic of China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang Province, People's Republic of China
| | - Xing Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Yifan Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Lu Peng
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Xin Jin
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China.
| | - Zhaohui Jiang
- Lutai School of Textile and Apparel, Shandong University of Technology, Zibo, 255000, People's Republic of China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang Province, People's Republic of China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Textile Academy, Beijing, People's Republic of China
| | - Zengge Guo
- Lutai School of Textile and Apparel, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Jie Chen
- PLA Naval Medical Center, Shang Hai, People's Republic of China
| | - Wenyu Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China.
| |
Collapse
|
9
|
Dai Y, He Q, Huang Y, Duan X, Lin Z. Solution-Processable and Printable Two-Dimensional Transition Metal Dichalcogenide Inks. Chem Rev 2024; 124:5795-5845. [PMID: 38639932 DOI: 10.1021/acs.chemrev.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) with layered crystal structures have been attracting enormous research interest for their atomic thickness, mechanical flexibility, and excellent electronic/optoelectronic properties for applications in diverse technological areas. Solution-processable 2D TMD inks are promising for large-scale production of functional thin films at an affordable cost, using high-throughput solution-based processing techniques such as printing and roll-to-roll fabrications. This paper provides a comprehensive review of the chemical synthesis of solution-processable and printable 2D TMD ink materials and the subsequent assembly into thin films for diverse applications. We start with the chemical principles and protocols of various synthesis methods for 2D TMD nanosheet crystals in the solution phase. The solution-based techniques for depositing ink materials into solid-state thin films are discussed. Then, we review the applications of these solution-processable thin films in diverse technological areas including electronics, optoelectronics, and others. To conclude, a summary of the key scientific/technical challenges and future research opportunities of solution-processable TMD inks is provided.
Collapse
Affiliation(s)
- Yongping Dai
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 99907, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Fu Y, Wang S, Wang D, Tian Y, Ban X, Wang X, Zhao Z, Wan Z, Wei R. Flexible Multimodal Magnetoresistive Sensors Based on Alginate/Poly(vinyl alcohol) Foam with Stimulus Discriminability for Soft Electronics Using Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38598680 DOI: 10.1021/acsami.4c01929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Flexible foam-based sensors have attracted substantial interest due to their high specific surface area, light weight, superior deformability, and ease of manufacture. However, it is still a challenge to integrate multimodal stimuli-responsiveness, high sensitivity, reliable stability, and good biocompatibility into a single foam sensor. To achieve this, a magnetoresistive foam sensor was fabricated by an in situ freezing-polymerization strategy based on the interpenetrating networks of sodium alginate, poly(vinyl alcohol) in conjunction with glycerol, and physical reinforcement of core-shell bidisperse magnetic particles. The assembled sensor exhibited preferable magnetic/strain-sensing capability (GF ≈ 0.41 T-1 for magnetic field, 4.305 for tension, -0.735 for bending, and -1.345 for pressing), quick response time, and reliable durability up to 6000 cycles under external stimuli. Importantly, a machine learning algorithm was developed to identify the encryption information, enabling high recognition accuracies of 99.22% and 99.34%. Moreover, they could be employed as health systems to detect human physiological motion and integrated as smart sensor arrays to perceive external pressure/magnetic field distributions. This work provides a simple and ecofriendly strategy to fabricate biocompatible foam-based multimodal sensors with potential applications in next-generation soft electronics.
Collapse
Affiliation(s)
- Yu Fu
- Henan Key Laboratory of Superhard Abrasives and Grinding Equipment, Henan University of Technology, Zhengzhou 450001, P. R. China
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shuangkun Wang
- Henan Key Laboratory of Superhard Abrasives and Grinding Equipment, Henan University of Technology, Zhengzhou 450001, P. R. China
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Dong Wang
- Henan Key Laboratory of Superhard Abrasives and Grinding Equipment, Henan University of Technology, Zhengzhou 450001, P. R. China
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Ye Tian
- Henan Key Laboratory of Superhard Abrasives and Grinding Equipment, Henan University of Technology, Zhengzhou 450001, P. R. China
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Xinxing Ban
- Henan Key Laboratory of Superhard Abrasives and Grinding Equipment, Henan University of Technology, Zhengzhou 450001, P. R. China
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Xing Wang
- Henan Key Laboratory of Superhard Abrasives and Grinding Equipment, Henan University of Technology, Zhengzhou 450001, P. R. China
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Zhihua Zhao
- Henan Key Laboratory of Superhard Abrasives and Grinding Equipment, Henan University of Technology, Zhengzhou 450001, P. R. China
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Zhenshuai Wan
- Henan Key Laboratory of Superhard Abrasives and Grinding Equipment, Henan University of Technology, Zhengzhou 450001, P. R. China
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Ronghan Wei
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
11
|
Fu Y, Zhao S, Zhang B, Tian Y, Wang D, Ban X, Ma Y, Jiang L, Wan Z, Wei Z. Multifunctional cross-sensitive magnetic alginate-chitosan-polyethylene oxide nanofiber sensor for human-machine interaction. Int J Biol Macromol 2024; 264:130482. [PMID: 38431006 DOI: 10.1016/j.ijbiomac.2024.130482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Flexible nanofiber membranes are compelling materials for the development of functional multi-mode sensors; however, their essential features such as high cross-sensitivity, reliable stability and signal discrimination capability have rarely been realized simultaneously in one sensor. Here, a novel multi-mode sensor with a nanofiber membrane structure based on multiple interpenetrating networks of bidisperse magnetic particles, sodium alginate (SA), chitosan (CHI) in conjunction with polyethylene oxide hydrogels was prepared in a controllable electrospinning technology. Specifically, the morphology distributions of nanofibers could be regulated by the crosslinking degree of the interpenetrating networks and the spinning process parameters. The incorporation of SA and CHI endowed the sensor with desirable flexibility, ideal biocompatibility and skin-friendly property. Besides, the assembled sensors not only displayed preferable magnetic sensitivity of 0.34 T-1 and reliable stability, but also exhibited favorable cross-sensitivity, quick response time, and long-term durability for over 5000 cycles under various mechanical stimuli. Importantly, the multi-mode stimuli could be discriminated via producing opposite electrical signals. Furthermore, based on the signal distinguishability of the sensor, a wearable Morse code translation system assisted by the machine learning algorithm was demonstrated, enabling a high recognizing accuracy (>99.1 %) for input letters and numbers information. Due to the excellent multifunctional sensing characteristics, we believe that the sensor will have a high potential in wearable soft electronics and human-machine interactions.
Collapse
Affiliation(s)
- Yu Fu
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Shijie Zhao
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Boqiang Zhang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Ye Tian
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Dong Wang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Xinxing Ban
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yuelong Ma
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Lin Jiang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Zhenshuai Wan
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Zunghang Wei
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
12
|
Zeng G, Aladejana JT, Li K, Xue Q, Zhou Y, Luo J, Dong Y, Li X, Li J. A tough bio-adhesive inspired by pearl layer and arthropod cuticle structure with desirable water resistance, flame-retardancy, and antibacterial property. Int J Biol Macromol 2023; 253:127669. [PMID: 37884252 DOI: 10.1016/j.ijbiomac.2023.127669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/12/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Petroleum-derived formaldehyde resin adhesives are serious hazards to human health and depend on limited resources. Abundant, cheap and renewable biomass materials are expected to replace them. However, the contradictory mechanisms of high mechanical strength and fracture toughness affect the use of bioadhesives. Herein, a biomimetic soybean meal (SM) adhesive inspired by the structure of insect cuticles and shell pearl layer was proposed. Specifically, chitosan (CS@DA) modified 3,4-dihydroxybenzoic acid (DA, rich in catechol moiety) was anchored on molybdenum disulfide nanosheets (MoS2) to construct a biomimetic structure with copper hydroxide and SM substrate (SM-MoS2/CS@DA-Cu). Schiff base, ionic, and hydrogen bonding strengthened the cohesion of the adhesive. The ordered alternating stacking "brick-mortar" structure stimulated the lamellar sliding and crack deflection of MoS2, synergistically reinforcing the toughness. Compared to SM adhesive (0.57 MPa and 0.148 J), the wet shear strength and adhesion work of the SM-MoS2/CS@DA-Cu were 1.68 MPa and 0.867 J, with 194.7 % and 485.8 % increases, respectively. The multiple antimicrobial effects of CS@DA, Schiff base, and Cu2+ increased the applicability period of the adhesive to 40 days. The adhesive also displayed favorable water resistance and flame retardancy. Therefore, this peculiar and efficient biomimetic structural design inspired the development of multi-functional composites.
Collapse
Affiliation(s)
- Guodong Zeng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - John Tosin Aladejana
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Kuang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Qiuxia Xue
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Ying Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Jing Luo
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Youming Dong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Xiaona Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China.
| | - Jianzhang Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, China.
| |
Collapse
|
13
|
Mahato R, Masiul Islam S, Maurya RK, Kumar S, Purohit G, Singh S. Flexible piezo-resistive strain sensors using all-polydimethylsiloxane based hybrid nanocomposites for wearable electronics. Phys Chem Chem Phys 2023; 26:95-104. [PMID: 38054271 DOI: 10.1039/d3cp04158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
We report flexible piezo-resistive strain sensors composed of silver nanoparticle (Ag NP), graphene nanoplatelet (GNP), and multi walled carbon nanotube (MWCNT)-based ternary conductive hybrid nanocomposites as an active sensing layer fabricated using a simple solution processing method on flexible polydimethylsiloxane (PDMS) substrates. The electrical characteristics have been studied in PDMS-based flexible devices having three different kinds of structures, namely Ag NPs/MWCNT/PDMS, GNP/PDMS and Ag NPs/GNP/PDMS. The microscopic analysis of the hybrid nanocomposites is undertaken using field emission scanning electron microscopy. The diameter of the CNTs is found to be in the range of 20-40 nm, whereas the length is determined to be 100-800 nm. The average diameter and length of the GNPs are observed to be 30-50 nm and 100-500 nm, respectively. The crystallite size of the silver nanoparticles in the Ag NPs/MWCNT/PDMS and Ag NPs/GNP/PDMS-based nanocomposites is determined to be 22.8 nm and 29.1 nm, respectively. The prepared sample of Ag NPs shows four distinct peaks in the X-ray diffraction pattern, which correspond to the (111), (200), (220), and (311) face-centered cubic (FCC) crystalline planes. Raman spectroscopy is undertaken to study the fundamental physical properties and chemical analysis of the nanocomposites. Ag NPs/GNP/PDMS-based sensors exhibit superior performance in terms of sensitivity, response and recovery time during breathing/unbreathing analysis. The large surface area of the Ag NPs and GNPs promotes uniform distribution of Ag NPs to fill into the porous GNP surface, thereby facilitating high contact area along with better electron transport in the Ag NPs/GNP/PDMS hybrid nanocomposite-based sensors. The gauge factor (GF), response and recovery time of the Ag NPs/GNP/PDMS hybrid nanocomposite-based sensors are determined to be 221, 130 ms and 119 ms, respectively. The ternary conductive nanocomposite-based sensors are free from the drawbacks of binary nanocomposite-based sensors where the high percolation threshold and poor mechanical behaviour lead to the degradation of the device performance.
Collapse
Affiliation(s)
- Rajib Mahato
- Semiconductor Sensors and Microsystems Group, CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031, India.
| | - Sk Masiul Islam
- Semiconductor Sensors and Microsystems Group, CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CEERI Campus, Pilani 333031, India
| | - Ranjan Kumar Maurya
- Semiconductor Sensors and Microsystems Group, CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CEERI Campus, Pilani 333031, India
| | - Sanjeev Kumar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CEERI Campus, Pilani 333031, India
- Semiconductor Process Technology Group, CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031, India
| | - Gaurav Purohit
- Advanced Information Technologies Group, CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031, India
| | - Sumitra Singh
- Semiconductor Sensors and Microsystems Group, CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CEERI Campus, Pilani 333031, India
| |
Collapse
|
14
|
Sharifpour H, Hekmat F, Shahrokhian S. Unraveling the Ion Uptake Capacitive Deionization of Sea- and Highly Saline-Water by Sulfur and Nitrogen Co-Doped Porous Carbon Modified with Molybdenum Sulfide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42568-42584. [PMID: 37665661 DOI: 10.1021/acsami.3c07809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In parallel to the depletion of potable water reservoirs, novel technologies have been developed for seawater softening, as it is the most abundant source for generating deionized water. Although salt removal at subosmotic pressures and ambient temperatures by applying low-operating potentials with high energy efficiency made capacitive deionization (CDI) an advantageous water-softening process, its practical application is limited by insufficient ion removal capacity and low concentration influent. The performance of a CDI system is in progress with engineering the electrode active materials, also facilitating the advance design in highly saline- and seawater study. Herein, an innovative strategy was developed to provide high-performance CDI systems based on efficient and electrochemical ion-uptake active materials with a simple initial preparation. Nitrogen-doped porous carbons (N-pCs) received benefits from a high specific surface area and good surface wettability. The N-pCs were modified with molybdenum oxide/sulfide intercalative array and developed as CDI electrode active materials for desalination of both low/medium saline- and seawater. The MoS2/S,N-pC electrode materials exhibited perfect optimized salt adsorption capacity (SACs) of 47.9 mg g-1 when compared to N-pC (37.9 mg g-1) and MoO3/N-pC (39.6 mg g-1) counterparts at 1.4 V in a 750 ppm NaCl solution. In addition, the assembled CDI cells exhibited reasonable cycle stability and retained 96.7% of their initial SAC in continuous CDI cycles for 128,000 s. The fabricated CDI cell rendered an excellent salt removal efficiency (SRE, %) of 13.34% from the real seawater sample at 1.2 V. In detail, the SRE % of the NaCl, KCl, MgCl2, and CaCl2 soluble salts with respect to seawater sample exhibited a remarkable SRE % of 30.8%, 36%, 32.6%, and 19.3%, respectively. These SRE % values (>13.34%) provide convincing evidence on the reasonable ion uptake capability of the fabricated CDI cells for removing Na+, K+, Mg2+, and Ca2+ ions compared to other soluble component. The advanced cell design parallel to the promising outcomes provided herein makes these CDI systems immensely propitious for efficient water softening.
Collapse
Affiliation(s)
- Hanieh Sharifpour
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Farzaneh Hekmat
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Saeed Shahrokhian
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran
| |
Collapse
|
15
|
Tao LQ, Gao C, Wang G, Sun H, Guo LY, Ren TL. High sensitivity graphene based health sensor with self-warning function. COMPOSITES SCIENCE AND TECHNOLOGY 2023; 241:110123. [PMID: 38620137 PMCID: PMC10300061 DOI: 10.1016/j.compscitech.2023.110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/01/2023] [Accepted: 06/16/2023] [Indexed: 04/17/2024]
Abstract
In order to reduce the damage to people's health from diseases that attack the respiratory system such as COVID-19, asthma, and pneumonia, it is desired that patients' breathing can be monitored and alerted in real-time. The emergence of wearable health detection sensing devices has provided a relatively good response to this problem. However, there are still problems such as complex structure and poor performance. This paper introduces a laser-induced graphene (LIG) device that is attached to PDMS. The LIG is produced by laser irradiation of Nomex and subsequently transferred and attached to the PDMS. After being tested, it has demonstrated high sensitivity, stable tensile performance, good acoustic performance, excellent thermal stability, and other favorable properties. Notably, its gauge factor (GF) value can reach 721.67, which is quite impressive. Additionally, it is capable of emitting an alarm sound with an SPL close to 60 dB when receiving signals within the range of 5-20 kHz. The device realizes mechanical sensing and acoustic functions in one chip, and has a high application value in applications that need to combine sensing and early warning.
Collapse
Affiliation(s)
- Lu-Qi Tao
- Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chenwei Gao
- National Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Guanya Wang
- National Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Hao Sun
- National Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Liang-Yan Guo
- National Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Tian-Ling Ren
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
Nan X, Xu Z, Cao X, Hao J, Wang X, Duan Q, Wu G, Hu L, Zhao Y, Yang Z, Gao L. A Review of Epidermal Flexible Pressure Sensing Arrays. BIOSENSORS 2023; 13:656. [PMID: 37367021 DOI: 10.3390/bios13060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
In recent years, flexible pressure sensing arrays applied in medical monitoring, human-machine interaction, and the Internet of Things have received a lot of attention for their excellent performance. Epidermal sensing arrays can enable the sensing of physiological information, pressure, and other information such as haptics, providing new avenues for the development of wearable devices. This paper reviews the recent research progress on epidermal flexible pressure sensing arrays. Firstly, the fantastic performance materials currently used to prepare flexible pressure sensing arrays are outlined in terms of substrate layer, electrode layer, and sensitive layer. In addition, the general fabrication processes of the materials are summarized, including three-dimensional (3D) printing, screen printing, and laser engraving. Subsequently, the electrode layer structures and sensitive layer microstructures used to further improve the performance design of sensing arrays are discussed based on the limitations of the materials. Furthermore, we present recent advances in the application of fantastic-performance epidermal flexible pressure sensing arrays and their integration with back-end circuits. Finally, the potential challenges and development prospects of flexible pressure sensing arrays are discussed in a comprehensive manner.
Collapse
Affiliation(s)
- Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhikuan Xu
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xinxin Cao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinjin Hao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xin Wang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Qikai Duan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Guirong Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Liangwei Hu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Yunlong Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China
| | - Zekun Yang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|