1
|
Golshirazi A, Mohammadzadeh M, Labbaf S. The Synergistic Potential of Hydrogel Microneedles and Nanomaterials: Breaking Barriers in Transdermal Therapy. Macromol Biosci 2025; 25:e2400228. [PMID: 39195571 DOI: 10.1002/mabi.202400228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/29/2024] [Indexed: 08/29/2024]
Abstract
The stratum corneum, which acts as a strong barrier against external agents, presents a significant challenge to transdermal drug delivery. In this regard, microneedle (MN) patches, designed as modern systems for drug delivery via permeation through the skin with the ability to pass through the stratum corneum, are known to be convenient, painless, and effective. In fact, MN have shown significant breakthroughs in transdermal drug delivery, and among the various types, hydrogel MN (HMNs) have demonstrated desirable inherent properties. Despite advancements, issues such as limited loading capacity, uncontrolled drug release rates, and non-uniform therapeutic approaches persist. Conversely, nanomaterials (NMs) have shown significant promise in medical applications, however, their efficacy and applicability are constrained by challenges including poor stability, low bioavailability, limited payload capacity, and rapid clearance by the immune system. Incorporation of NMs within HMNs offers new prospects to address the challenges associated with HMNs and NMs. This combination can provide a promising field of research for improved and effective delivery of therapeutic agents and mitigate certain adverse effects, addressing current clinical concerns. The current review highlights the use of NMs in HMNs for various therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Atefeh Golshirazi
- Department of materials engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mahsa Mohammadzadeh
- Department of materials engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Sheyda Labbaf
- Department of materials engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
2
|
Yu J, Huang X, Wu F, Feng S, Cheng R, Xu J, Cui T, Li J. 3D-Printed Hydrogel Scaffolds Loaded with Flavanone@ZIF-8 Nanoparticles for Promoting Bacteria-Infected Wound Healing. Gels 2024; 10:835. [PMID: 39727592 DOI: 10.3390/gels10120835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Bacterial-infected skin wounds caused by trauma remain a significant challenge in modern medicine. Clinically, there is a growing demand for wound dressings with exceptional antibacterial activity and robust regenerative properties. To address the need, this study proposes a novel multifunctional dressing designed to combine efficient gas exchange, effective microbial barriers, and precise drug delivery capabilities, thereby promoting cell proliferation and accelerating wound healing. This work reports the development of a 3D-printed hydrogel scaffold incorporating flavanone (FLA)-loaded ZIF-8 nanoparticles (FLA@ZIF-8 NPs) within a composite matrix of κ-carrageenan (KC) and konjac glucomannan (KGM). The scaffold forms a stable dual-network structure through the chelation of KC with potassium ions and intermolecular hydrogen bonding between KC and KGM. This dual-network structure not only enhances the mechanical stability of the scaffold but also improves its adaptability to complex wound environments. In mildly acidic wound conditions, FLA@ZIF-8 NPs release Zn2+ and flavanone in a controlled manner, providing sustained antibacterial effects and promoting wound healing. In vivo studies using a rat full-thickness infected wound model demonstrated that the FLA@ZIF-8/KC@KGM hydrogel scaffold significantly accelerated wound healing, showcasing its superior performance in the treatment of infected wounds.
Collapse
Affiliation(s)
- Jian Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xin Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Fangying Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Shasha Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- NJTECH University Suzhou Future Membrane Technology Innovation Center, Suzhou 215519, China
| | - Rui Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jieyan Xu
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211199, China
| | - Tingting Cui
- NJTECH University Suzhou Future Membrane Technology Innovation Center, Suzhou 215519, China
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211199, China
| | - Jun Li
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211199, China
| |
Collapse
|
3
|
Liu C, Yin X, Xu H, Xu J, Gong M, Li Z, Xu Q, Cao D, Li D. Microneedle-Array-Mediated Transdermal Delivery of GCV-Functionalized Zeolitic Imidazolate Framework-8 Nanoparticles for KSHV Treatment. Int J Mol Sci 2024; 25:12946. [PMID: 39684656 DOI: 10.3390/ijms252312946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a variety of the human gamma-herpesvirus that often leads to the occurrence of malignant tumors. In addition, the occurrence of Kaposi's sarcoma is a major cause of death among AIDS patients. Ganciclovir (GCV) is the most widely used drug against KSHV infection in the clinic. GCV can restrict the in vivo synthesis of DNA polymerase in KSHV, thereby inhibiting the replication of the herpesvirus. However, GCV still suffers from poor specificity and transmembrane capabilities, leading to many toxic side effects. Therefore, developing a drug delivery system that increases GCV concentrations in target cells remains a significant clinical challenge. In this study, zeolite imidazole salt framework-8 (ZIF-8), a biocompatible porous material constructed by coordinating zinc ions and 2-methylimidazole, was used to load GCV. A nano-delivery system with a microneedle structure was also constructed using a polydimethylsiloxane (PDMS) microneedle mold to fabricate MN/GCV@ZIF-8 arrays. These arrays not only offered good skin-piercing capabilities but also significantly inhibited the cleavage and replication of the virus in vivo, exerting an anti-KSHV function. For these reasons, the arrays were able penetrate the skin's stratum corneum at the tumor site to deliver GCV and play an anti-KSHV role.
Collapse
Affiliation(s)
- Chengjing Liu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi 832003, China
| | - Xiuyuan Yin
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huiling Xu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi 832003, China
| | - Jianyu Xu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi 832003, China
| | - Mengru Gong
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi 832003, China
| | - Zhenzhong Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi 832003, China
| | - Qianhe Xu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dongdong Cao
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi 832003, China
| | - Dongmei Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi 832003, China
| |
Collapse
|
4
|
Kang Y, Zhang S, Wang G, Yan Z, Wu G, Tang L, Wang W. Nanocarrier-Based Transdermal Drug Delivery Systems for Dermatological Therapy. Pharmaceutics 2024; 16:1384. [PMID: 39598508 PMCID: PMC11597219 DOI: 10.3390/pharmaceutics16111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/12/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Dermatoses are among the most prevalent non-fatal conditions worldwide. Given this context, it is imperative to introduce safe and effective dermatological treatments to address the diverse needs and concerns of individuals. Transdermal delivery technology offers a promising alternative compared to traditional administration methods such as oral or injection routes. Therefore, this review focuses on the recent achievements of nanocarrier-based transdermal delivery technology for dermatological therapy, which summarizes diverse delivery strategies to enhance skin penetration using various nanocarriers including vesicular nanocarriers, lipid-based nanocarriers, emulsion-based nanocarriers, and polymeric nanocarrier according to the pathogenesis of common dermatoses. The fundamentals of transdermal delivery including skin physiology structure and routes of penetration are introduced. Moreover, mechanisms to enhance skin penetration due to the utilization of nanocarriers such as skin hydration, system deformability, disruption of the stratum corneum, surface charge, and tunable particle size are outlined as well.
Collapse
Affiliation(s)
- Yunxiang Kang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
| | - Sunxin Zhang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guoqi Wang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ziwei Yan
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guyuan Wu
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lu Tang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
5
|
Ji M, Zhan F, Qiu X, Liu H, Liu X, Bu P, Zhou B, Serda M, Feng Q. Research Progress of Hydrogel Microneedles in Wound Management. ACS Biomater Sci Eng 2024; 10:4771-4790. [PMID: 38982708 PMCID: PMC11322915 DOI: 10.1021/acsbiomaterials.4c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Microneedles are a novel drug delivery system that offers advantages such as safety, painlessness, minimally invasive administration, simplicity of use, and controllable drug delivery. As a type of polymer microneedle with a three-dimensional network structure, hydrogel microneedles (HMNs) possess excellent biocompatibility and biodegradability and encapsulate various therapeutic drugs while maintaining drug activity, thus attracting significant attention. Recently, they have been widely employed to promote wound healing and have demonstrated favorable therapeutic effects. Although there are reviews about HMNs, few of them focus on wound management. Herein, we present a comprehensive overview of the design and preparation methods of HMNs, with a particular emphasis on their application status in wound healing, including acute wound healing, infected wound healing, diabetic wound healing, and scarless wound healing. Finally, we examine the advantages and limitations of HMNs in wound management and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Ming Ji
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Fangbiao Zhan
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Xingan Qiu
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hong Liu
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Xuezhe Liu
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Pengzhen Bu
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Bikun Zhou
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Maciej Serda
- Institute
of Chemistry, University of Silesia in Katowice, Katowice 40-006, Poland
| | - Qian Feng
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
6
|
Ji W, Li B, Li N, Xing C. Design Strategy of Microneedle Systems for Skin Wound Healing: Based on the Structure of Tips and Therapeutic Methodologies. ACS APPLIED BIO MATERIALS 2024; 7:4254-4269. [PMID: 38863157 DOI: 10.1021/acsabm.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The skin, being the largest organ of the human body, is susceptible to damage resulting in wounds that are vulnerable to pathogenic attacks and fail to provide effective protection for internal tissues. Therefore, it is crucial to expedite wound healing. In recent years, microneedles have garnered significant attention as an innovative drug delivery system owing to their noninvasive and painless administration, simplified application process, precise control over drug release, and versatile loading capabilities. Consequently, they hold immense potential for the treatment of skin wound. This review presents a comprehensive design strategy for the microneedle system in promoting skin wound healing. First, the process of skin wound healing and the characteristics of specific wounds are elucidated. The design strategies for microneedles are subsequently presented and classified based on their structural and therapeutic methodologies. Finally, a succinct recapitulation of the previously discussed points and a prospective analysis are provided.
Collapse
Affiliation(s)
- Wenchao Ji
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Boying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ning Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
7
|
Zhao X, Chen Z, Zhang S, Hu Z, Shan J, Wang M, Chen XL, Wang X. Application of metal-organic frameworks in infectious wound healing. J Nanobiotechnology 2024; 22:387. [PMID: 38951841 PMCID: PMC11218092 DOI: 10.1186/s12951-024-02637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Metal-organic frameworks (MOFs) are metal-organic skeleton compounds composed of self-assembled metal ions or clusters and organic ligands. MOF materials often have porous structures, high specific surface areas, uniform and adjustable pores, high surface activity and easy modification and have a wide range of prospects for application. MOFs have been widely used. In recent years, with the continuous expansion of MOF materials, they have also achieved remarkable results in the field of antimicrobial agents. In this review, the structural composition and synthetic modification of MOF materials are introduced in detail, and the antimicrobial mechanisms and applications of these materials in the healing of infected wounds are described. Moreover, the opportunities and challenges encountered in the development of MOF materials are presented, and we expect that additional MOF materials with high biosafety and efficient antimicrobial capacity will be developed in the future.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Zenghong Chen
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, P. R. China
| | - Shuo Zhang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Zhiyuan Hu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Jie Shan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Min Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China.
| | - Xianwen Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China.
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China.
| |
Collapse
|
8
|
Bigham A, Islami N, Khosravi A, Zarepour A, Iravani S, Zarrabi A. MOFs and MOF-Based Composites as Next-Generation Materials for Wound Healing and Dressings. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311903. [PMID: 38453672 DOI: 10.1002/smll.202311903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/09/2024] [Indexed: 03/09/2024]
Abstract
In recent years, there has been growing interest in developing innovative materials and therapeutic strategies to enhance wound healing outcomes, especially for chronic wounds and antimicrobial resistance. Metal-organic frameworks (MOFs) represent a promising class of materials for next-generation wound healing and dressings. Their high surface area, pore structures, stimuli-responsiveness, antibacterial properties, biocompatibility, and potential for combination therapies make them suitable for complex wound care challenges. MOF-based composites promote cell proliferation, angiogenesis, and matrix synthesis, acting as carriers for bioactive molecules and promoting tissue regeneration. They also have stimuli-responsivity, enabling photothermal therapies for skin cancer and infections. Herein, a critical analysis of the current state of research on MOFs and MOF-based composites for wound healing and dressings is provided, offering valuable insights into the potential applications, challenges, and future directions in this field. This literature review has targeted the multifunctionality nature of MOFs in wound-disease therapy and healing from different aspects and discussed the most recent advancements made in the field. In this context, the potential reader will find how the MOFs contributed to this field to yield more effective, functional, and innovative dressings and how they lead to the next generation of biomaterials for skin therapy and regeneration.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, Naples, 80125, Italy
| | - Negar Islami
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, 34959, Turkiye
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkiye
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan
| |
Collapse
|
9
|
Duan W, Xu K, Huang S, Gao Y, Guo Y, Shen Q, Wei Q, Zheng W, Hu Q, Shen JW. Nanomaterials-incorporated polymeric microneedles for wound healing applications. Int J Pharm 2024; 659:124247. [PMID: 38782153 DOI: 10.1016/j.ijpharm.2024.124247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
There is a growing and urgent need for developing novel biomaterials and therapeutic approaches for efficient wound healing. Microneedles (MNs), which can penetrate necrotic tissues and biofilm barriers at the wound and deliver active ingredients to the deeper layers in a minimally invasive and painless manner, have stimulated the interests of many researchers in the wound-healing filed. Among various materials, polymeric MNs have received widespread attention due to their abundant material sources, simple and inexpensive manufacturing methods, excellent biocompatibility and adjustable mechanical strength. Meanwhile, due to the unique properties of nanomaterials, the incorporation of nanomaterials can further extend the application range of polymeric MNs to facilitate on-demand drug release and activate specific therapeutic effects in combination with other therapies. In this review, we firstly introduce the current status and challenges of wound healing, and then outline the advantages and classification of MNs. Next, we focus on the manufacturing methods of polymeric MNs and the different raw materials used for their production. Furthermore, we give a summary of polymeric MNs incorporated with several common nanomaterials for chronic wounds healing. Finally, we discuss the several challenges and future prospects of transdermal drug delivery systems using nanomaterials-based polymeric MNs in wound treatment application.
Collapse
Affiliation(s)
- Wei Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Keying Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Sheng Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yue Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yong Guo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Qiying Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Qiaolin Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, PR China
| | - Wei Zheng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Quan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
10
|
Zhuang ZM, Wang Y, Feng ZX, Lin XY, Wang ZC, Zhong XC, Guo K, Zhong YF, Fang QQ, Wu XJ, Chen J, Tan WQ. Targeting Diverse Wounds and Scars: Recent Innovative Bio-design of Microneedle Patch for Comprehensive Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306565. [PMID: 38037685 DOI: 10.1002/smll.202306565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/16/2023] [Indexed: 12/02/2023]
Abstract
Wounds and the subsequent formation of scars constitute a unified and complex phased process. Effective treatment is crucial; however, the diverse therapeutic approaches for different wounds and scars, as well as varying treatment needs at different stages, present significant challenges in selecting appropriate interventions. Microneedle patch (MNP), as a novel minimally invasive transdermal drug delivery system, has the potential for integrated and programmed treatment of various diseases and has shown promising applications in different types of wounds and scars. In this comprehensive review, the latest applications and biotechnological innovations of MNPs in these fields are thoroughly explored, summarizing their powerful abilities to accelerate healing, inhibit scar formation, and manage related symptoms. Moreover, potential applications in various scenarios are discussed. Additionally, the side effects, manufacturing processes, and material selection to explore the clinical translational potential are investigated. This groundwork can provide a theoretical basis and serve as a catalyst for future innovations in the pursuit of favorable therapeutic options for skin tissue regeneration.
Collapse
Affiliation(s)
- Ze-Ming Zhuang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Zi-Xuan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Xiao-Ying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Zheng-Cai Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Xin-Cao Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Kai Guo
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Yu-Fan Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Qing-Qing Fang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Xiao-Jin Wu
- Department of Ultrasound in Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, P. R. China
| | - Jian Chen
- Department of Ultrasound in Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, P. R. China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| |
Collapse
|
11
|
Zhang S, Zhou H, Chen X, Zhu S, Chen D, Luo D, Chen S, Liu W. Microneedle Delivery Platform Integrated with Codelivery Nanoliposomes for Effective and Safe Androgenetic Alopecia Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15701-15717. [PMID: 38507687 DOI: 10.1021/acsami.3c16608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Although topical application of minoxidil is a widely used, FDA-approved therapy for androgenetic alopecia (AGA) treatment, it suffers from low bioavailability, the requirement for frequent long-term use, and side effects. With a similar structure as minoxidil, kopexil and kopyrrol are less toxic and have been commercialized, but show an inferior hair regeneration effect compared to minoxidil. Herein, we developed a hyaluronic acid (HA)-based dissolvable microneedles (MNs) delivery platform integrated with kopexil and kopyrrol coencapsulated nanoliposomes (KK-NLPs) to effectively and safely treat AGA. Facilitated by nanoliposomes and MNs, the encapsulated KK-NLPs performed efficient skin penetration and enhanced cellular internalization into human dermal papilla cells. Furthermore, within the target cells, the codelivered kopexil and kopyrrol show synergistic effects by orchestrating an upregulation in the expression of Ki67, β-catenin, vascular endothelial growth factor (VEGF), and CD31. These molecular responses collectively foster cell proliferation, migration, and antioxidative effects, thereby facilitating the expedited progression of hair follicles (HFs) into the anagen phase and promoting peripheral angiogenesis. Notably, the KK-NLPs-integrated MNs treatment group exhibits noteworthy enhanced hair regeneration in vivo, with identical or superior therapeutic effects at a much lower dosage than that of minoxidil. These results suggest the great potential of this kopexil and kopyrrol codelivery nanoliposomes-integrated MNs platform for AGA treatment in a safe and efficient way.
Collapse
Affiliation(s)
- Shuting Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuan Chen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shasha Zhu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dan Chen
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430075, China
| | - Dan Luo
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430075, China
| | - Siyuan Chen
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing 211816, China
| | - Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430075, China
| |
Collapse
|
12
|
Guo L, Kong W, Che Y, Liu C, Zhang S, Liu H, Tang Y, Yang X, Zhang J, Xu C. Research progress on antibacterial applications of metal-organic frameworks and their biomacromolecule composites. Int J Biol Macromol 2024; 261:129799. [PMID: 38296133 DOI: 10.1016/j.ijbiomac.2024.129799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
With the extensive use of antibiotics, resulting in increasingly serious problems of bacterial resistance, antimicrobial therapy has become a global concern. Metal-organic frameworks (MOFs) are low-density porous coordination materials composed of metal ions and organic ligands, which can form composite materials with biomacromolecules such as proteins and polysaccharides. In recent years, MOFs and their derivatives have been widely used in the antibacterial field as efficient antibacterial agents. This review offers a detailed summary of the antibacterial applications of MOFs and their composites, and the different synthesis methods and antibacterial mechanisms of MOFs and MOF-based composites are briefly introduced. Finally, the challenges and prospects of MOFs-based antibacterial materials in the rapidly developing medical field were briefly discussed. We hope this review will provide new strategies for the medical application of MOFs-based antibacterial materials.
Collapse
Affiliation(s)
- Lei Guo
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Wei Kong
- Radiation Medicine, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Yilin Che
- Radiation Medicine, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Chang Liu
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Shichen Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
| | - Heshi Liu
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yixin Tang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Xi Yang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Jizhou Zhang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Caina Xu
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
13
|
Loh JM, Lim YJL, Tay JT, Cheng HM, Tey HL, Liang K. Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications. Bioact Mater 2024; 32:222-241. [PMID: 37869723 PMCID: PMC10589728 DOI: 10.1016/j.bioactmat.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023] Open
Abstract
Microneedles (MNs) is an emerging technology that employs needles ranging from 10 to 1000 μm in height, as a minimally invasive technique for various procedures such as therapeutics, disease monitoring and diagnostics. The commonly used method of fabrication, micromolding, has the advantage of scalability, however, micromolding is unable to achieve rapid customizability in dimensions, geometries and architectures, which are the pivotal factors determining the functionality and efficacy of the MNs. 3D printing offers a promising alternative by enabling MN fabrication with high dimensional accuracy required for precise applications, leading to improved performance. Furthermore, enabled by its customizability and one-step process, there is propitious potential for growth for 3D-printed MNs especially in the field of personalized and on-demand medical devices. This review provides an overview of considerations for the key parameters in designing MNs, an introduction on the various 3D-printing techniques for fabricating this new generation of MNs, as well as highlighting the advancements in biomedical applications facilitated by 3D-printed MNs. Lastly, we offer some insights into the future prospects of 3D-printed MNs, specifically its progress towards translation and entry into market.
Collapse
Affiliation(s)
- Jia Min Loh
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yun Jie Larissa Lim
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jin Ting Tay
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Hong Liang Tey
- National Skin Centre (NSC), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore
- Skin Research Institute of Singapore, Singapore
| | - Kun Liang
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
- Skin Research Institute of Singapore, Singapore
| |
Collapse
|
14
|
Zhou Q, Li X, Gao N, Ling G, Zhang P. A multimodal therapy for infected diabetic wounds based on glucose-responsive nanocomposite-integrated microneedles. J Mater Chem B 2024; 12:1007-1021. [PMID: 38226905 DOI: 10.1039/d3tb02609d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Diabetic wounds in a state of high glucose are refractory to treatment and healing, especially if they are infected with bacteria. Herein, a novel nanocomposite (CIP/GOx@ZIF-8) was synthesized by loading ciprofloxacin hydrochloride (CIP) and glucose oxidase (GOx) into zeolitic imidazole framework-8 (ZIF-8) that exhibited good glucose sensitivity and catalytic activity. The high glucose in diabetic wounds could be decomposed into hydrogen peroxide (H2O2) and gluconic acid via the catalysis of GOx, which further destroyed CIP/GOx@ZIF-8 to release Zn2+ and cargos. The combination of glucose starvation, Zn2+, H2O2 and CIP could elevate the antibacterial effect and reduce bacterial resistance. Subsequently, the nanocomposite was fabricated into dissolving microneedles (CIP/GOx@ZIF-8 MNs) using polyvinylpyrrolidone (PVP). The microneedles exhibited good mechanical strength, puncture performance, dissolving performance, glucose responsiveness, antibacterial performance and biocompatibility. For in vivo wound healing, CIP/GOx@ZIF-8 MNs with good biosafety facilitated neovascularization and collagen deposition as well as reduced inflammation, and the wounds were almost healed after treatment. This multimodal therapeutic strategy is created to provide a unique treatment for infected diabetic wounds.
Collapse
Affiliation(s)
- Qixin Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Xiaodan Li
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Nan Gao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
15
|
Tang X, Li L, You G, Li X, Kang J. Metallic elements combine with herbal compounds upload in microneedles to promote wound healing: a review. Front Bioeng Biotechnol 2023; 11:1283771. [PMID: 38026844 PMCID: PMC10655017 DOI: 10.3389/fbioe.2023.1283771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Wound healing is a dynamic and complex restorative process, and traditional dressings reduce their therapeutic effectiveness due to the accumulation of drugs in the cuticle. As a novel drug delivery system, microneedles (MNs) can overcome the defect and deliver drugs to the deeper layers of the skin. As the core of the microneedle system, loaded drugs exert a significant influence on the therapeutic efficacy of MNs. Metallic elements and herbal compounds have been widely used in wound treatment for their ability to accelerate the healing process. Metallic elements primarily serve as antimicrobial agents and facilitate the enhancement of cell proliferation. Whereas various herbal compounds act on different targets in the inflammatory, proliferative, and remodeling phases of wound healing. The interaction between the two drugs forms nanoparticles (NPs) and metal-organic frameworks (MOFs), reducing the toxicity of the metallic elements and increasing the therapeutic effect. This article summarizes recent trends in the development of MNs made of metallic elements and herbal compounds for wound healing, describes their advantages in wound treatment, and provides a reference for the development of future MNs.
Collapse
Affiliation(s)
- Xiao Tang
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Li
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Gehang You
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinyi Li
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jian Kang
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Yin L, Tang Q, Ke Q, Zhang X, Su J, Zhong H, Fang L. Sequential Anti-Infection and Proangiogenesis of DMOG@ZIF-8/Gelatin-PCL Electrospinning Dressing for Chronic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48903-48912. [PMID: 37877332 DOI: 10.1021/acsami.3c09584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Bacterial infection and insufficient neovascularization are two major obstacles to the healing of chronic wounds. Here, we present an antibacterial and proangiogenic dressing by encapsulating dimethyloxalylglycine (DMOG) in zeolitic imidazolate framework-8 (ZIF-8) and electrospinning it with gelatin-polycaprolactone (Gel-PCL). As Gel-PCL nanofibers degrade, ZIF-8 nanoparticles decompose, sequentially releasing bactericidal zinc ions and angiogenic DMOG molecules. This cascade process matches the wound-healing stages, ensuring suitable bioavailability and an effective duration of the active components while minimizing their side effects. In vitro, zinc ions released from the dressing (2.5% DMOG@ZIF-8) can eliminate over 90% of Escherichia coli and Staphylococcus aureus without compromising fibroblast cell proliferation and adhesion. In vivo, the dressing can heal skin wounds in Staphylococcus aureus-infected diabetic rats within 2 weeks, facilitated by the DMOG molecules discharged from ZIF-8 (loading rate 21.3%). Immunohistochemical analysis confirmed the regulated expression of factors by zinc ions and DMOG molecules. This work provides new insights into the design of multifunctional dressings for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Lei Yin
- School of Materials Science and Engineering, South China University of Technology, Wushan 381, Tianhe District, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou Higher Education Mega Center, South China University of Technology, Panyu District, Guangzhou 510006, China
| | - Qiwen Tang
- School of Materials Science and Engineering, South China University of Technology, Wushan 381, Tianhe District, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou Higher Education Mega Center, South China University of Technology, Panyu District, Guangzhou 510006, China
| | - Qi Ke
- School of Materials Science and Engineering, South China University of Technology, Wushan 381, Tianhe District, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou Higher Education Mega Center, South China University of Technology, Panyu District, Guangzhou 510006, China
| | - Xinyi Zhang
- School of Materials Science and Engineering, South China University of Technology, Wushan 381, Tianhe District, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou Higher Education Mega Center, South China University of Technology, Panyu District, Guangzhou 510006, China
| | - Jianyu Su
- China-Singapore International Joint Research Institute, China-Singapore Smart Park, Huangpu District, Guangzhou 510555, China
| | - Hua Zhong
- Department of Orthopaedics, The Fifth Affiliated Hospital, Southern Medical University, Congcheng 566, Conghua District, Guangzhou 510900, China
| | - Liming Fang
- School of Materials Science and Engineering, South China University of Technology, Wushan 381, Tianhe District, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou Higher Education Mega Center, South China University of Technology, Panyu District, Guangzhou 510006, China
- China-Singapore International Joint Research Institute, China-Singapore Smart Park, Huangpu District, Guangzhou 510555, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Wushan 381, Tianhe District, Guangzhou 510641, China
| |
Collapse
|