1
|
Awad A, Valekar AH, Oh KR, Prihatno F, Jung J, Nimbalkar AS, Upare PP, Hoon Kim J, Kyu Hwang Y. Simultaneous Coproduction of Xylonic Acid and Xylitol: Leveraging In Situ Hydrogen Generation and Utilization from Xylose. CHEMSUSCHEM 2024:e202401651. [PMID: 39729297 DOI: 10.1002/cssc.202401651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/02/2024] [Indexed: 12/28/2024]
Abstract
Pentose oxidation and reduction, processes yielding value-added sugar-derived acids and alcohols, typically involve separate procedures necessitating distinct reaction conditions. In this study, a novel one-pot reaction for the concurrent production of xylonic acid and xylitol from xylose is proposed. This reaction was executed at ambient temperature in the presence of a base, eliminating the need for external gases, by leveraging Pt-supported catalysts. Initial experiments using commercially available metal-supported carbon catalysts validated the superior activity of Pt. However, a notable decline in recycling performance was observed in Pt/C, which is attributed to the sintering of Pt nanoparticles. In contrast, the synthesized Pt-supported ZrO2 catalysts exhibited enhanced recycling performance because of the strong metal-support interaction between Pt and the ZrO2 support. Furthermore, mechanistic insights and density functional theory calculations show that product desorption involves a significantly higher energy barrier compared to substrate adsorption and hydrogenation, highlighting an efficient transfer hydrogenation mechanism leading to equivalent yields of both xylonic acid and xylitol. This study introduces a promising approach for the simultaneous production of sugar-derived acids and alcohols, with implications for sustainable catalysis and process optimization.
Collapse
Affiliation(s)
- Ali Awad
- Green Carbon Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Anil H Valekar
- Green Carbon Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Kyung-Ryul Oh
- Green Carbon Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Fajar Prihatno
- Department of Chemistry, University of Ulsan, Ulsan, 44776, Republic of Korea
| | - Jaehoon Jung
- Department of Chemistry, University of Ulsan, Ulsan, 44776, Republic of Korea
| | - Ajaysing S Nimbalkar
- Green Carbon Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Pravin P Upare
- Activon Ltd., Ochang-eup, Cheongwon-gu, Cheongju, Chungcheongbuk-do, 28104, Republic of Korea
| | - Ji Hoon Kim
- Chemical Process Solution Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Young Kyu Hwang
- Green Carbon Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, Republic of Korea
| |
Collapse
|
2
|
Xia F, Yang J, Chen J, Liu X, Ma Z, Gu J. Coordination-Driven Templated Synthesis of Hierarchically Porous Zeolitic Imidazolate Frameworks for Cascade Enzyme Cycle Amplification Coupled Immunoassay. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39042822 DOI: 10.1021/acsami.4c06788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Although hierarchically porous zeolitic imidazolate frameworks (HPZIFs) not only inherit the intrinsic architectural and chemical stabilities of their microporous counterparts but also afford open space for the efficient mass diffusion of the macromolecules involved, their rational design and construction are still challenging. Herein, HPZIFs with tailorable pore sizes ranging from 18 to 54 nm were successfully fabricated by using a newly developed soft-template-directed strategy. Our success rooted in the fact that the screened PS81-PVP44-PEO113 triblock copolymer could effectively coordinate with the metal precursor for the directed crystallization of ZIFs along surfactant assemblies. The advantages of continuous large pores and open structures in such HPZIFs were fully taken into account to serve as a bioreactor for the efficient immunoassay. The expanded large pores provided not only a significantly vast surface area to enhance the density of capture antibodies but also enough space for accommodating multiple conjugated biomolecules in one pore channel. In combination with a cascade enzyme cycle amplification strategy, a model biomarker of prostate-specific antigen (PSA) at the femtomolar level was checked with a limit of detection of 92 fM using the developed immunosensor. Specific screening on patients with prostate cancer or even benign prostatic hyperplasia was exemplified through accurately quantifying small changes of PSA concentration in clinical serum samples, prefiguring the great potential of the developed HPZIF-8 immunosensor platform for the early monitoring and diagnostics of diseases.
Collapse
Affiliation(s)
- Fan Xia
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingwen Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ximeng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhefan Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Nimbalkar AS, Oh KR, Han SJ, Yun GN, Cha SH, Upare PP, Awad A, Hwang DW, Hwang YK. Nickel-Tin Nanoalloy Supported ZnO Catalysts from Mixed-Metal Zeolitic Imidazolate Frameworks for Selective Conversion of Glycerol to 1,2-Propanediol. CHEMSUSCHEM 2024; 17:e202301315. [PMID: 37932870 DOI: 10.1002/cssc.202301315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
The successful synthesis of finely tuned Ni1.5 Sn nanoalloy phases containing ZnO catalyst with a small particle size (6.7 nm) from a mixed-metal zeolitic imidazolate framework (MM-ZIF) is investigated. The catalyst was evaluated for the efficient production of 1,2-propanediol (1,2-PDO) from crude glycerol and comprehensively characterized using several analytical techniques. Among the catalysts, 3Ni1Sn/ZnO (Ni/Sn=3/1) showed the best catalytic performance and produced the highest yield (94.2 %) of 1,2-PDO at ~100 % conversion of glycerol; it also showed low apparent activation energy (15.4 kJ/mol) and excellent stability. The results demonstrated that the synergy between Ni-Sn alloy, finely dispersed Ni metallic sites, and the Lewis acidity of SnOx species-loaded ZnO played a pivotal role in the high activity and selectivity of the catalyst. The confirmation of acetol intermediate and theoretical calculations verify the Ni1.5 Sn phases provide the least energetic pathway for the formation of 1,2-PDO selectively. The reusability of solvent for successive ZIF synthesis, along with the excellent recyclability of the ZIF-derived catalyst, enables an overall sustainable process. We believe that the present synthetic protocol that uses MM-ZIF for the conversion of various biomass-derived platform chemicals into valuable products can be applied to various nanoalloy preparations.
Collapse
Affiliation(s)
- Ajaysing S Nimbalkar
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, South Korea
| | - Kyung-Ryul Oh
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, United States
| | - Seung Ju Han
- C1 Gas and Carbon Convergent Research Center, Korea Research Institute for Chemical Technology, Dajeon, 34114, South Korea
| | - Gwang-Nam Yun
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, South Korea
| | - Seung Hyeok Cha
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | | | - Ali Awad
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, South Korea
| | - Dong Won Hwang
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, South Korea
| | - Young Kyu Hwang
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, South Korea
| |
Collapse
|
4
|
Lee H, Park E, Lee E, Lim I, Yang TH, Park GG. Ultrasound-Driven enhancement of Pt/C catalyst stability in oxygen reduction reaction. ULTRASONICS SONOCHEMISTRY 2024; 102:106730. [PMID: 38113585 PMCID: PMC10772287 DOI: 10.1016/j.ultsonch.2023.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Polymer electrolyte membrane fuel cells (PEMFCs) have reached the commercialization phase, representing a promising approach to curbing carbon emissions. However, greater durability of PEMFCs is of paramount importance to ensure their long-term viability and effectiveness, and catalyst development has become a focal point of research. Pt nanoparticles supported on carbon materials (Pt/C) are the primary catalysts used in PEMFCs. Accomplishing both a high dispersion of uniform metal particles on the carbon support and robust adhesion between the metal particles and the carbon support is imperative for superior stability, and will thereby, advance the practical applications of PEMFCs in sustainable energy solutions. Ultrasound-assisted polyol synthesis (UPS) has emerged as a suitable method for synthesizing catalysts with a well-defined metal-support structure, characterized by the high dispersion and uniformity of metal nanoparticles. In this study, we focused on the effect of ultrasound on the synthesis of Pt/C via UPS and the resulting enhanced stability of Pt/C catalysts. Therefore, we compared Pt/C synthesized using a conventional polyol synthesis (Pt/C_P) and Pt/C synthesized via UPS (Pt/C_U) under similar synthesis conditions. The two catalysts had a similar Pt content and the average particle size of the Pt nanoparticles was similar; however, the uniformity and dispersion of Pt nanoparticles in Pt/C_U were better than those of Pt/C_P. Moreover, ex/in-situ analyses performed in a high-temperature environment, in which nanoparticles tend to agglomerate, have revealed that Pt/C_U exhibited a notable improvement in the adhesion of Pt particles to the carbon support compared with that of Pt/C_P. The enhanced adhesion is crucial for maintaining the stability of the catalyst, ultimately contributing to a better durability in practical applications. Ultrasound was applied to the carbon support without the Pt precursor under the same UPS conditions used to synthesize Pt/C_U to identify the reason for the increased adhesion between the Pt particles and the carbon support in Pt/C_U, and we discovered that oxygen functional groups (C-O, C = O, and O-C = O) for anchoring site of Pt particles were generated in the carbon support. Pt/C_U displayed an increase in stability in an electrochemical accelerated stress test (AST) in an acidic electrolyte. The physical and chemical effects of ultrasound on the synthesis of Pt/C via UPS were identified, and we concluded that UPS is suitable for synthesizing carbon supported electrocatalysts with high stability.
Collapse
Affiliation(s)
- Hyunjoon Lee
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea
| | - Eunbi Park
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea; Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, South Korea
| | - Eunjik Lee
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea; Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, South Korea; Department of Energy Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Iksung Lim
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea; Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, South Korea
| | - Tae-Hyun Yang
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea
| | - Gu-Gon Park
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea; Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, South Korea; Department of Energy Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|