1
|
Fang T, Wei Q, Wu E, Pu H. Elevating electron transfer of recyclable SERS sensor using AuNPs/TiO 2/Ti 3C 2 heterostructures for detection of malachite green in sunfish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 325:125047. [PMID: 39226668 DOI: 10.1016/j.saa.2024.125047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/18/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Abstract
Malachite green (MG)-contaminated aquatic products pose a serious threat to animal and human health. Hence, a novel recyclable surface-enhanced Raman scattering (SERS) substrate based on AuNPs/TiO2/Ti3C2 heterostructures was developed for the detection and degradation of MG in aquatic products. Specifically, AuNPs/TiO2/Ti3C2 heterostructures were synthesized by in situ oxidation and electrostatic adsorption based on Ti3C2 nanosheets. The excellent photocatalytic and SERS performance of the AuNPs/TiO2/Ti3C2 was demonstrated by Density functional theory (DFT) calculations and experimental results, which was attributed to the enhancement of charge transfer (CT) after the formation of heterostructures. The results demonstrate that AuNPs/TiO2/Ti3C2 is highly sensitive and recyclable. The detection limit of the sensor for MG is 8.91 × 10-5 mg/L. The sensor can be recycled for five times under the condition of light, and shows satisfactory self-cleaning performance in the food matrix, providing a possible alternative solution for the recyclable detection of MG.
Collapse
Affiliation(s)
- Tianxing Fang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Erwen Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
2
|
Chen L, Guo S, Di S, Park E, Zhao H, Jung YM. SERS monitoring of methylene blue degradation by Au-Ag@Cu 2O-rGO nanocomposite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124354. [PMID: 38678842 DOI: 10.1016/j.saa.2024.124354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
A combination of multiple materials effectively improves and enhances the performance of the materials. Thus, a gold-silver@cuprous oxide (Au-Ag@Cu2O)-reduced graphene oxide (rGO) structure was designed and fabricated. We decorated the Au nanoparticles (NPs) on the Ag@Cu2O-rGO composite surface by a redox reaction to form a Au-Ag@Cu2O-rGO structure with two noble metals attached to a Cu2O semiconductor. A comparable Au-Ag@Cu2O structure was also fabricated. After decorating Au NPs into the Ag@Cu2O-rGO composite, the Au-Ag@Cu2O composite structure was loosened, and the surface and interior of the Cu2O shell were decorated with Au and Ag NPs. Moreover, the addition of Au NPs resulted in a proper surface plasmon resonance effect and a significant broadening of the absorption range. The loose structure increased the adsorption of the probe molecules, which increased the surface-enhanced Raman scattering (SERS) intensity. In addition, the fabricated Au-Ag@Cu2O-rGO exhibited excellent catalytic reduction of methylene blue (MB) with sodium borohydride (NaBH4). Therefore, the SERS-based monitoring of the MB degradation was obviously improved.
Collapse
Affiliation(s)
- Lei Chen
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Shuang Guo
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Shuhan Di
- College of Chemistry, Jilin Normal University, Siping, Jilin 136000, China
| | - Eungyeong Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hongkai Zhao
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China.
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
3
|
Sun M, Xie Y, Huang J, Liu C, Dong Y, Li S, Zeng C. Oxygen-deficient AgIO 3 for efficiently photodegrading organic contaminants under natural sunlight. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121393. [PMID: 38850920 DOI: 10.1016/j.jenvman.2024.121393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Defect engineering is regarded as an effective strategy to boost the photo-activity of photocatalysts for organic contaminants removal. In this work, abundant surface oxygen vacancies (Ov) are created on AgIO3 microsheets (AgIO3-OV) by a facile and controllable hydrogen chemical reduction approach. The introduction of surface Ov on AgIO3 broadens the photo-absorption region from ultraviolet to visible light, accelerates the photoinduced charges separation and migration, and also activates the formation of superoxide radicals (•O2-). The AgIO3-OV possesses an outstanding degradation rate constant of 0.035 min-1, for photocatalytic degrading methyl orange (MO) under illumination of natural sunlight with a light intensity is 50 mW/cm2, which is 7 and 3.5 times that of the pristine AgIO3 and C-AgIO3 (AgIO3 is calcined in air without generating Ov). In addition, the AgIO3-OV also exhibit considerable photoactivity for degrading other diverse organic contaminants, including azo dye (rhodamine B (RhB)), antibiotics (sulflsoxazole (SOX), norfloxacin (NOR), chlortetracycline hydrochloride (CTC), tetracycline hydrochloride (TC) and ofloxacin (OFX)), and even the mixture of organic contaminants (MO-RhB and CTC-OFX). After natural sunlight illumination for 50 min, 41.4% of total organic carbon (TOC) for MO-RhB mixed solution can be decreased over AgIO3-OV. In a broad range of solution pH from 3 to 11 or diverse water bodies of MO solution, AgIO3-OV exhibits attractive activity for decomposing MO. The MO photo-degradation process and mechanism over AgIO3-OV under natural sunlight irradiation has been systemically investigated and proposed. The toxicities of MO and its degradation intermediates over AgIO3-OV are compared using Toxicity Estimation Software (T.E.S.T.). Moreover, the non-toxicity of both AgIO3-OV catalyst and treated antibiotic solution (CTC-OFX mixture) are confirmed by E. coli DH5a cultivation test, supporting the feasibility of AgIO3-OV catalyst to treat organic contaminants in real water under natural sunlight illumination.
Collapse
Affiliation(s)
- Miaofei Sun
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Yunchang Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Jiayang Huang
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Chengyin Liu
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Yujing Dong
- School of Science and Technology, Xinyang College, Xinyang, 464000, China.
| | - Shijie Li
- National Engineering Research Center for Marine Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Chao Zeng
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
4
|
Chen H, Han C, Zhang L, Wu Y. Porous rod-shaped Fe 2O 3/Ag/BP: a novel substrate for highly sensitive SERS detection of persistent organic pollutants. NANOTECHNOLOGY 2024; 35:195710. [PMID: 38330462 DOI: 10.1088/1361-6528/ad27ab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
A surface enhanced Raman scattering (SERS) substrate of porous rod-shaped ferric oxide (Fe2O3) combined with silver nanoparticles (Ag NPs) and black phosphorus (Fe2O3/Ag/BP) was fabricated to detect the persistent organic pollutants (POPs) at low concentration. The organic pollutant Rhodamine 6G (R6G) was used as the probe molecule to study the performances of Fe2O3/Ag/BP, and 4-chlorobiphenyl (PCB-3) was the target of detection. The limit of detection (LOD) of R6G based on this novel SERS substrate Fe2O3/Ag/BP was as low as 1.0 × 10-15M, which was five orders of magnitude lower than that of Fe2O3/Ag (10-10M). The enhancement factor (EF) of Fe2O3/Ag/BP was 6.44 × 108, which was 3.1 times higher than that of porous rod-shaped Fe2O3/Ag (2.08 × 108). The Raman signal of R6G based on Fe2O3/Ag/BP had a good homogeneity, and the relative standard deviation (RSD) of Raman signal intensities of R6G at 1643 cm-1was only 5.97%. Furthermore, the Fe2O3/Ag/BP substrate exhibited a recyclability through the photocatalytic degradation of R6G. The LOD of PCB-3 based on Fe2O3/Ag/BP was 10-9M. Besides, Fe2O3/Ag/BP had a high SERS activity even it was kept in a centrifuge tube without requiring complicated treatment. These results highlight the potential application of Fe2O3/Ag/BP for ultra-trace detection of POPs in the environment.
Collapse
Affiliation(s)
- Hang Chen
- School of Physics and Electronic Engineering, Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
- Jiangsu Xiyi Advanced Materials Research Institute of Industrial Technology, Xuzhou 221400, People's Republic of China
| | - Caiqin Han
- School of Physics and Electronic Engineering, Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Le Zhang
- School of Physics and Electronic Engineering, Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
- Jiangsu Xiyi Advanced Materials Research Institute of Industrial Technology, Xuzhou 221400, People's Republic of China
| | - Ying Wu
- School of Physics and Electronic Engineering, Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| |
Collapse
|
5
|
Wei S, Zhao X, Zhao K, Wang M, Xu L, Zhang Y, Huang X, Chen Y. Flexible, foldable and transparent SERS film with high sensitivity and signal homogeneity via silver ion exchange and in-situ reduction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123624. [PMID: 37948934 DOI: 10.1016/j.saa.2023.123624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
The adhesion between metal plasma and substrate was the key of surface-enhanced Raman scattering (SERS) technology. The preparation of ideal SERS substrate with multiple advantages such as high sensitivity and good signal reproducibility was still the focus of research. A flexible foldable and transparent fluorinated polyimide/silver NPs (FPI@Ag) SERS film was fabricated by the ion exchange and in-situ reduction method in this work. The effects of KOH hydrolysis time, AgNO3 ion exchange time and concentration, the type and concentration of reducing agents on the SERS performance of the FPI@Ag film were systematically discussed. As a result, the hydrolysis time of KOH affected the thickness of the metallic silver layer, the concentration of AgNO3 affected the size and spacing of Ag NPs, and the Raman signal of was remarkably enhanced when borane dimethylamine complex (DMAB) was used as reducing agent. When the detection limit of 4-Aminothiophenol was as low as 1 × 10-11 mol·L-1, the obvious Raman characteristic peak still appeared. The enhancement factor (EF) was up to 9.4 × 107. The linear quantification range was achieved in the range from 10-3-10-11 mol·L-1, R2 = 0.9987. In addition, we also performed multi-cycle bending and torsion test on the FPI@Ag film, and obtained stable Raman signals. The prepared FPI@Ag film can be attached to the surface of uneven samples, which can be used for on-site Raman detection and analysis.
Collapse
Affiliation(s)
- Siyu Wei
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
| | - Xinyu Zhao
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
| | - Ke Zhao
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
| | - Meng Wang
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
| | - LinZhe Xu
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
| | - Yuanyuan Zhang
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
| | - Xiujing Huang
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
| | - Yingbo Chen
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China.
| |
Collapse
|
6
|
Jin S, Zhang D, Yang B, Guo S, Chen L, Jung YM. Noble metal-free SERS: mechanisms and applications. Analyst 2023; 149:11-28. [PMID: 38051259 DOI: 10.1039/d3an01669b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a very important tool in vibrational spectroscopy. The coupling of nanomaterials induces local surface plasmon resonance (LSPR), which contributes greatly to SERS. Due to its remarkable sensitivity in trace detection, SERS has gained prominence in the fields of catalysis, biosensors, drug tracking, and optoelectronic devices. SERS activity is believed to be closely related to the LSPR and charge transfer (CT) of the material. Noble metal nanostructures have been commonly used as SERS-active substrates due to their strong local electric fields and relatively mature preparation, application, and enhancement mechanisms. In recent years, SERS research based on semiconductor materials has attracted significant attention because semiconductor materials have advantages such as repeatable preparation, simple pretreatment, stable SERS spectra and superior biocompatibility, stability, and reproducibility. Semiconductor-based SERS has the potential to enrich SERS theory and applications. Thus, the development of semiconductor materials will introduce a new epoch for SERS-based research. In this review, we outline the two main kinds of semiconductor SERS-active substrates: inorganic and organic semiconductor SERS-active substrates. We also provide an overview of the SERS mechanism for different kinds of materials and SERS-based applications.
Collapse
Affiliation(s)
- Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea.
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, USA
| | - Daxin Zhang
- College of Science, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Bo Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, P.R. China.
| | - Shuang Guo
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Lei Chen
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea.
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
7
|
Xu L, Chen M, Cui Q, Wang C, Zhang M, Zheng L, Li S, Zhang H, Liang G. Ultra-clean ternary Au/Ag/AgCl nanoclusters favoring cryogenic temperature-boosted broadband SERS ultrasensitive detection. OPTICS EXPRESS 2023; 31:26474-26495. [PMID: 37710508 DOI: 10.1364/oe.495426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/13/2023] [Indexed: 09/16/2023]
Abstract
Exploring multifunctional surface-enhanced Raman scattering (SERS) substrates with high sensitivity, broadband response property and reliable practicability should be required for ultrasensitive molecular detection in complex environments, which is heavily dependent on the photo-induced charge transfer (PICT) efficiency realized on the desirable nano-architectures. Herein, we introduce ultra-clean ternary Au/Ag/AgCl nanoclusters (NCs) with broadband resonance crossing the visible light to near-infrared region created by one step laser irradiation of mixed metal ion solution. Interestingly, the surface defects and interaction among these unique cluster-like ternary nanostructures would be further enhanced by thermal annealing treatment at 300°C, providing higher broadband SERS activities than the reference ternary nanoparticles under 457, 532, 633, 785, and 1064 nm wavelengths excitation. More importantly, the further promoted SERS activities of the resultant Au/Ag/AgCl NCs with achievable ∼5-fold enhancement than the initial one can be conventionally realized by simplistically declining the temperature from normal 20°C to cryogenic condition at about -196°C, due to the lower temperature-suppressed non-radiative recombination of lattice thermal phonons and photogenerated electrons. The cryogenic temperature-boosted SERS of the resultant Au/Ag/AgCl NCs enables the limit of detection (LOD) of folic acid (FA) biomolecules to be achieved as low as 10-12 M, which is obviously better than that of 10-9 M at room temperature condition. Overall, the smart Au/Ag/AgCl NCs-based broadband SERS sensor provides a new avenue for ultrasensitive biomolecular monitoring at cryogenic condition.
Collapse
|