Guo L, He L, Zhuang Q, Li B, Wang C, Lv Y, Chu J, Song YF. Recent Advances in Confining Polyoxometalates and the Applications.
SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023;
19:e2207315. [PMID:
36929209 DOI:
10.1002/smll.202207315]
[Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/24/2023] [Indexed: 06/15/2023]
Abstract
Polyoxometalates (POMs) are widely used in catalysis, energy storage, biomedicine, and other research fields due to their unique acidity, photothermal, and redox features. However, the leaching and agglomeration problems of POMs greatly limit their practical applications. Confining POMs in a host material is an efficient tool to address the above-mentioned issues. POM@host materials have received extensive attention in recent years. They not only inherent characteristics of POMs and host, but also play a significant synergistic effect from each component. This review focuses on the recent advances in the development and applications of POM@host materials. Different types of host materials are elaborated in detail, including tubular, layered, and porous materials. Variations in the structures and properties of POMs and hosts before and after confinement are highlighted as well. In addition, an overview of applications for the representative POM@host materials in electrochemical, catalytic, and biological fields is provided. Finally, the challenges and future perspectives of POM@host composites are discussed.
Collapse