1
|
Wang C, Dong W, Zhang P, Ma Y, Han Z, Zou Y, Wang W, Li H, Hollmann F, Liu J. Formate-Mediated Electroenzymatic Synthesis via Biological Cofactor NADH. Angew Chem Int Ed Engl 2024; 63:e202408756. [PMID: 39034766 DOI: 10.1002/anie.202408756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/14/2024] [Accepted: 07/21/2024] [Indexed: 07/23/2024]
Abstract
Synthetic biohybrid systems by coupling artificial system with nature's machinery may offer a disruptive solution to address the global energy crisis. We developed a versatile electroenzymatic pathway for the continuous synthesis of valuable chemicals, facilitated by formate-driven NADH regeneration. Utilizing a bismuth electrocatalyst, we achieved stable CO2 reduction to formate with approximately 90 % Faraday efficiency at a current density of 150 mA cm-2. The generated formate acts as a mediator to regenerate NADH, which is then coupled with immobilized redox enzymes-alcohol dehydrogenase (ADH), L-lactate dehydrogenase (LDH), and L-glutamate dehydrogenase (GDH)-to produce targeted chemicals at significant rates and exceptionally high turnover numbers (1.8×106 to 3.1×106). These achievements not only underscore the efficiency of the system but also its practical applicability in industrial settings. By leveraging in situ generated formate, this innovative approach demonstrates the potential of integrating electrocatalysis with enzymatic reactions for sustainable and efficient chemical production on a practical scale.
Collapse
Affiliation(s)
- Chuanjun Wang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Wenjin Dong
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Pengye Zhang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yaya Ma
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Zhiwei Han
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yutai Zou
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Wenshuo Wang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Hao Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Delft, The, Netherlands
| | - Jian Liu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
2
|
Zhan P, Zhuang J, Yang S, Li X, Chen X, Wen T, Lu L, Qin P, Han B. Efficient Electrosynthesis of Urea over Single-Atom Alloy with Electronic Metal Support Interaction. Angew Chem Int Ed Engl 2024; 63:e202409019. [PMID: 38785222 DOI: 10.1002/anie.202409019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Urea electrosynthesis from carbon dioxide (CO2) and nitrate (NO3 -) is an alternative approach to traditional energy-intensive urea synthesis technology. Herein, we report a CuAu single-atom alloy (SAA) with electronic metal support interaction (EMSI), achieving a high urea yield rate of 813.6 μg h-1 mgcat -1 at -0.94 V versus reversible hydrogen electrode (vs. RHE) and a Faradaic efficiency (FE) of 45.2 % at -0.74 V vs. RHE. In situ experiments and theoretical calculations demonstrated that single-atom Cu sites modulate the adsorption behavior of intermediate species. Bimetallic sites synergistically accelerate C-N bond formation through spontaneous coupling of *CO and *NO to form *ONCO as key intermediates. More importantly, electronic metal support interaction between CuAu SAA and CeO2 carrier further modulates electron structure and interfacial microenvironment, endowing electrocatalysts with superior activity and durability. This work constructs SAA electrocatalysts with EMSI effect to tailor C-N coupling at the atomic level, which can provide guidance for the development of C-N coupling systems.
Collapse
Affiliation(s)
- Peng Zhan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinjie Zhuang
- Paris Curie Engineer School, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuai Yang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuechun Li
- College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuehan Chen
- Paris Curie Engineer School, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tian Wen
- Paris Curie Engineer School, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lu Lu
- Paris Curie Engineer School, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research, Education Center for Excellence in Molecular Sciences, Center of Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100029, China
| |
Collapse
|
3
|
Boddula R, Lee YY, Masimukku S, Chang-Chien GP, Pothu R, Srivastava RK, Sarangi PK, Selvaraj M, Basumatary S, Al-Qahtani N. Sustainable hydrogen production: Solar-powered biomass conversion explored through (Photo)electrochemical advancements. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 2024; 186:1149-1168. [DOI: 10.1016/j.psep.2024.04.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Zhang Z, Tao F, Ji H. Valorization of Boehmeria nivea stalk towards multipurpose fractionation: furfural, pulp, and phenolic monomers. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:99. [PMID: 37308943 PMCID: PMC10262554 DOI: 10.1186/s13068-023-02351-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND As one of the most abundant bioresource in nature, the value-added utilization of lignocellulosic biomass is limited due to its inherent stubbornness. Pretreatment is a necessary step to break down the recalcitrance of cell walls and achieve an efficient separation of three main components (cellulose, hemicelluloses, and lignin). RESULTS In this study, hemicelluloses and lignin in Boehmeria nivea stalks were selectively extracted with a recyclable acid hydrotrope, an aqueous solution of P-toluenesulfonic acid (p-TsOH). 79.86% of hemicelluloses and 90.24% of lignin were removed under a mild pretreatment condition, C80T80t20, (acid concentration of 80 wt%, pretreatment temperature and time of 80 °C and 20 min, respectively). After ultrasonic treatment for 10 s, the residual cellulose-rich solid was directly converted into pulp. Subsequently, the latter was utilized to produce paper via mixing with softwood pulp. The prepared handsheets with a pulp addition of 15 wt% displayed higher tear strength (8.31 mN m2/g) and tensile strength (8.03 Nm/g) than that of pure softwood pulp. What's more, the hydrolysates of hemicelluloses and the extracted lignin were transformed to furfural and phenolic monomers with yields of 54.67% and 65.3%, respectively. CONCLUSIONS The lignocellulosic biomass, Boehmeria nivea stalks, were valorized to pulp, furfural, and phenolic monomers, successfully. And a potential solution of comprehensive utilization of Boehmeria nivea stalks was provided in this paper.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Furong Tao
- Faculty of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Hairui Ji
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|