1
|
Sun F, Zang J, Hou Z, Tian X, Zhu R, Zheng Y, Wang Y, Dong L. Design and synthesis of autogenous growth NiFe bimetallic phosphide catalysts on a nickel iron foam-like substrate for efficient overall water splitting. J Colloid Interface Sci 2025; 684:355-366. [PMID: 39798431 DOI: 10.1016/j.jcis.2025.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The design of low-cost, highly active, and stable electrocatalysts is pivotal for advancing water electrolysis technologies. In this study, carbonyl iron powder (CIP) was anchored within the pores of nickel foam (NF) by electroplating nickel, creating nickel iron foam-like (NFF-L) substrates. Subsequently, nickel-iron hydroxide (NiFe-OH) was synthesized on the NFF-L substrate employing an autogenous growth strategy, followed by a phosphating treatment that produced a nanoflower-like NiFe bimetallic phosphide heterostructure catalyst (Fe2P-Ni2P@NFF-L). This novel method of substrate filling enhanced space utilization, while the presence of micropores and mesopores on the nanosheet surfaces facilitated electrolyte infiltration and ion diffusion, thereby significantly increasing the specific surface area. The formation of a two-phase heterointerface accelerated electron transmission and transfer, enhancing water dissociation and the adsorption of hydrogen adatoms (Had). In addition, under anodic oxidation conditions, the dynamic surface reconstruction facilitated a synergistic interaction between the highly active β-NiOOH and α-FeOOH phases, which significantly contributed to the catalyst's exceptional intrinsic activity for the oxygen evolution reaction (OER).
Collapse
Affiliation(s)
- Fanjia Sun
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Jianbing Zang
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhiwei Hou
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Xueqing Tian
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Rui Zhu
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Youbin Zheng
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Yanhui Wang
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| | - Liang Dong
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
| |
Collapse
|
2
|
Li M, Yu Z, Sun Z, Liu Y, Sha S, Li J, Ge R, Dai L, Liu B, Fu Q, Li W. An efficient hydrogen evolution catalyst constructed using Pt-modified Ni 3S 2/MoS 2 with optimized kinetics across the full pH range. NANOSCALE 2025; 17:3189-3202. [PMID: 39718342 DOI: 10.1039/d4nr03811h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Electrocatalyst materials play a crucial role in determining the efficiency of the hydrogen evolution reaction (HER), directly influencing the overall effectiveness of energy conversion technologies. Ni3S2/MoS2 heterostructures hold substantial promise as bifunctional catalysts, owing to their synergistic electronic characteristics and plentiful active sites. However, their catalytic efficacy is impeded by the relatively elevated chemisorption energy of hydrogen-containing intermediates, which constrains their functionality in different pH environments. In order to mitigate this limitation, trace amounts of Pt are introduced into the heterostructure, intending to enhance electronic transport and refining chemisorption energies, thereby facilitating significant enhancements in both HER and oxygen evolution reaction (OER) activities over a wide pH range. It is revealed that the Pt-modified catalyst achieves exceptional HER performance, requiring merely 64 mV and 83 mV overpotentials to attain a current density of 100 mA cm-2 in acidic and alkaline media, respectively. Furthermore, theoretical simulations corroborate that Pt modification optimizes local electronic configurations and augments electronic transfer, contributing to its superior catalytic performance. This investigation underscores the pivotal role of Pt modification in propelling the practical application of Ni3S2/MoS2 heterostructures as highly efficient and pH-universal bifunctional catalysts.
Collapse
Affiliation(s)
- Maoyuan Li
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Zhongrui Yu
- Shanghai Electric Hency Solar Technology Co., Ltd, Shanghai Electric Power Generation Group, Shanghai, 201199, China
| | - Zulin Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Yuchen Liu
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Simiao Sha
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Jiancheng Li
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Riyue Ge
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Liming Dai
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Bin Liu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Qingqiao Fu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Wenxian Li
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
3
|
Wang S, Li H, Li S, Ni Y. Fe,Ce Co-Doped Ni 3S 2/NiS Polymorphism Nanosheets With Improved Electrocatalytic Activity and Stability for Water Oxidation. CHEMSUSCHEM 2025; 18:e202400896. [PMID: 39043625 DOI: 10.1002/cssc.202400896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/07/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024]
Abstract
Balancing the relationship between electrocatalytic activity and stability of sulfide catalysts during oxygen evolution reaction (OER) has been attracting extensive research interest. Here, a simple electrodeposition-vulcanization two-step route was designed to successfully construct nickel foam supported sheet-like Fe,Ce-codoped Ni3S2/NiS polymorphism catalyst (labeled as Fe,Ce-Ni3S2/NiS/NF). Electrochemical measurements showed that the as-obtained Fe,Ce-Ni3S2/NiS/NF electrode presented excellent OER electrocatalytic performances. In 1 M KOH solution, merely 173 and 234 mV of overpotentials were required to deliver the current densities of 10 and 100 mA cm-2, respectively. Further investigations revealed that the Fe,Ce co-doping regulated the electron density around Ni, which promoted the conversion of Ni towards the higher valence state and simultaneously, avoided the stability decrease of the catalyst caused by excessive oxidation corrosion. Moreover, the defects generated during vulcanization also contributed to promoting water oxidation. The present work provides a facile and feasible approach to balance the relationship between the stability and the activity of sulfide catalysts for OER.
Collapse
Affiliation(s)
- Shaoxia Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Huihui Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Shifeng Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Yonghong Ni
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| |
Collapse
|
4
|
Zheng F, Gaikwad MA, Fang Z, Jang S, Kim JH. Deep reconstruction of crystalline-amorphous heterojunction electrocatalysts for efficient and stable water and methanol electrolysis. NANOSCALE 2024; 17:495-507. [PMID: 39565356 DOI: 10.1039/d4nr02985b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
During electrocatalytic water splitting, surface reconstruction often occurs to generate truly active species for catalytic reactions, but the stability and mass activity of the catalysts is a huge challenge. A method that combines cation doping with morphology control strategies and constructs an amorphous-crystalline heterostructure is proposed to achieve deep reconstruction of the catalyst during the electrochemical activation process, thereby significantly improving catalytic activity and stability. Amorphous iron borate (FeBO) is deposited on cobalt-doped nickel sulfide (Co-Ni3S2) crystals to form ultrathin nanosheet heterostructures (FeBO/Co-Ni3S2) as bifunctional electrocatalysts for the OER and methanol oxidation reaction (MOR). During the OER process, FeBO/Co-Ni3S2 is deeply reconstructed to form a NiFeOOH/Co-Ni3S2 composite structure with ultrathin nanosheets with abundant amorphous-crystalline interfaces to ensure structural stability. Furthermore, Co-Ni3S2 electrocatalysts were synthesized via nickel foam (NF) self-derivation, which resulted in strong adhesion between the catalyst and substrate and formed a hierarchical structure consisting of interconnected nanosheets with excellent mass transfer and abundant active sites to increase the activity and stability of the electrocatalyst. The dual-electrode electrolyzer requires cell voltages of 1.58 and 1.44 V to achieve water and methanol overall electrolysis at a current density of 10 mA cm-2 and keep working over 100 and 25 h, respectively. This strategy provides a new way to promote reconstruction to construct excellent bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Fang Zheng
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, Yongbong-Dong, Buk-Gu, Gwangju 61186, South Korea.
| | - Mayur A Gaikwad
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, Yongbong-Dong, Buk-Gu, Gwangju 61186, South Korea.
| | - Zhenhua Fang
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, Yongbong-Dong, Buk-Gu, Gwangju 61186, South Korea.
| | - Suyoung Jang
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, Yongbong-Dong, Buk-Gu, Gwangju 61186, South Korea.
| | - Jin Hyeok Kim
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, Yongbong-Dong, Buk-Gu, Gwangju 61186, South Korea.
| |
Collapse
|
5
|
Liang J, Zhao Z, Su Z, Qu W, Guo R, Li X, Shang Y. Multiphase interface coupling of Ni-based sulfide composites for high-current-density oxygen evolution electrocatalysis in alkaline freshwater/simulated seawater/seawater. Dalton Trans 2024; 53:15040-15047. [PMID: 39196634 DOI: 10.1039/d4dt01673d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Constructing highly efficient electrocatalysts is vital to enhance oxygen evolution reaction (OER) performance at industrially relevant current densities. Herein, three-phase coupled Ni3S2/r-NiS/h-NiS composites are grown in situ on Ni foam (NNSN/NF) via a one-step solvothermal approach. The as-prepared composites need overpotentials of only 377 mV, 451 mV and 476 mV at 1000 mA cm-2 for the OER in alkaline freshwater, simulated seawater and seawater, respectively. In addition, the optimized catalyst exhibited long-term durability at 300 mA cm-2. Our work clarifies designing and preparing cost-effective Ni-based sulfide electrocatalysts for the OER in alkaline freshwater/simulated seawater/seawater under industrially relevant current densities.
Collapse
Affiliation(s)
- Jing Liang
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Zhifeng Zhao
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China.
| | - Zhanhua Su
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China.
| | - Weili Qu
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Rui Guo
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Xiaofeng Li
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Yongchen Shang
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
6
|
Meena A, Ahmed ATA, Singh AN, Sree VG, Im H, Cho S. Highly Efficient CoFeP Nanoparticle Catalysts for Superior Oxygen Evolution Reaction Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1384. [PMID: 39269045 PMCID: PMC11396991 DOI: 10.3390/nano14171384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Developing effective and long-lasting electrocatalysts for oxygen evolution reaction (OER) is critical for increasing sustainable hydrogen production. This paper describes the production and characterization of CoFeP nanoparticles (CFP NPs) as high-performance electrocatalysts for OER. The CFP NPs were produced using a simple hydrothermal technique followed by phosphorization, yielding an amorphous/crystalline composite structure with improved electrochemical characteristics. Our results reveal that CFP NPs have a surprisingly low overpotential of 284 mV at a current density of 100 mA cm-2, greatly exceeding the precursor CoFe oxide/hydroxide (CFO NPs) and the commercial RuO2 catalyst. Furthermore, CFP NPs demonstrate exceptional stability, retaining a constant performance after 70 h of continuous operation. Post-OER characterization analysis revealed transformations in the catalyst, including the formation of cobalt-iron oxides/oxyhydroxides. Despite these changes, CFP NPs showed superior long-term stability compared to native metal oxides/oxyhydroxides, likely due to enhanced surface roughness and increased active sites. This study proposes a viable strategy for designing low-cost, non-precious metal-based OER catalysts, which will help advance sustainable energy technology.
Collapse
Affiliation(s)
- Abhishek Meena
- Division of System Semiconductor, College of AI Convergence, Dongguk University, Seoul 04620, Republic of Korea
| | - Abu Talha Aqueel Ahmed
- Division of System Semiconductor, College of AI Convergence, Dongguk University, Seoul 04620, Republic of Korea
| | - Aditya Narayan Singh
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | | | - Hyunsik Im
- Division of System Semiconductor, College of AI Convergence, Dongguk University, Seoul 04620, Republic of Korea
| | - Sangeun Cho
- Division of System Semiconductor, College of AI Convergence, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
7
|
Mei J, Deng Y, Cheng X, Wu Q. Facile and scalable synthesis of Ni 3S 2/Fe 3O 4 nanoblocks as an efficient and stable electrocatalyst for oxygen evolution reaction. J Colloid Interface Sci 2024; 660:440-448. [PMID: 38244509 DOI: 10.1016/j.jcis.2024.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
This study employed a one-step hydrothermal process to synthesize Ni3S2/Fe3O4 nanoblocks in situ on nickel foam (NF). The resulting Ni3S2/Fe3O4/NF catalyst demonstrates exceptional electrocatalytic activity for the oxygen evolution reaction (OER) and robust long-term stability. It achieves a low overpotential of only 220 mV for a current density of 10 mA cm-2 with a Tafel slope of 54.1 mV dec-1 and remains stable in 1.0 M KOH for 66 h. The binder-free self-supported three-dimensional nanoblocks enhance the reaction region and long-term stability. Electronic interactions between Fe3O4 and Ni3S2, coupled with heterogeneous interfaces, optimize the electronic structure, fostering the formation of highly reactive species. Density-functional theory (DFT) calculations confirm that Ni3S2/Fe3O4, with a heterogeneous interfacial structure, modulates the chemisorption of reaction intermediates on the catalyst surface, optimizing the Gibbs free energies (ΔG) of oxygen-containing intermediates. The synergistic effect between the two active materials within the heterogeneous structure enhances OER catalytic performance. This finding offers a valuable approach to designing efficient and stable OER electrocatalysts.
Collapse
Affiliation(s)
- Jing Mei
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China; Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Yuqing Deng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China; Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Xiaohong Cheng
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Qi Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
8
|
Wang X, Yu X, He P, Qin F, Yao Y, Ren L. Application of Amorphous-Crystalline Coupling Materials in Electrocatalysis. Chemphyschem 2024; 25:e202300761. [PMID: 38323329 DOI: 10.1002/cphc.202300761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
Interface engineering has proven to be a highly efficient strategy for modulating the physicochemical properties of electrocatalysts and further enhancing their electrochemical performance in related energy applications. In this context, the newly proposed crystalline-amorphous (c-a) heterostructures with unusual atomic arrangements at interfaces show strong competitiveness. Nonetheless, few efforts have been made to reveal and summarize the structure-activity relationship at the two-phase interface and the corresponding electrocatalytic mechanism. This concept is devoted to comprehensively discussing the fundamental characteristics of crystalline-amorphous electrocatalysts and their application in the field of energy conversion with typical examples. In addition, the development prospects and opportunities of crystalline-amorphous heterostructure are summarized to provide potential development directions for other types of clean energy development.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189
| | - Xu Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189
| | - Pinyi He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189
| | - Fu Qin
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189
| | - Yongkang Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189
| | - Lili Ren
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189
| |
Collapse
|
9
|
Wang L, Liu Y, Liu X, Chen W. 3D nanostructured Ce-doped CoFe-LDH/NF self-supported catalyst for high-performance OER. Dalton Trans 2023; 52:12038-12048. [PMID: 37581301 DOI: 10.1039/d3dt01814h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Powder electrocatalysts for oxygen evolution reactions usually need adhesives for electrocatalytic performance tests, leading to the increase of resistance, reduction of catalyst loading, and easy stripping of the catalyst under long-time or high current operation. In this study, Ce-doped CoFe layered double hydroxides were uniformly grown on nickel foam by a one-step hydrothermal route. A nanostructured self-supported electrode Ce-CoFe-LDH/NF without adhesive was obtained directly, which has a regular nanoneedle morphology with a length of ∼1.2 μm and tip width of ∼20 nm. Adopting Ce3+ ions with a large radius to partially displace Fe3+ ions with a small radius produced lattice distortion and more defects in the host layer of CoFe-LDH, whereby possessing the great potential to enhance catalytic behaviors. Once used as an electrocatalyst for the oxygen evolution reaction, Ce-CoFe-LDH/NF shows an outstanding electrocatalytic performance, including an optimized overpotential of 225 mV at 10 mA cm-2, a decreased Tafel slope of 34.34 mV dec-1, and a low charge transfer impedance of 2.4 Ω in 1 M KOH electrolyte. Moreover, the overpotential of the working electrode increased by only 0.04 V after 24 hours and was maintained at a current density of 50 mA cm-2. These results demonstrate a low-cost strategy compared to using noble metal OER electrocatalysts. Thus, this study highlights a ready universal approach to fabricate high-performance supported catalysts for energy-related applications.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Education Ministry Functional for Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| | - Yi Liu
- Key Laboratory of Education Ministry Functional for Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| | - Xiaoheng Liu
- Key Laboratory of Education Ministry for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wei Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, 318000, Zhejiang Province, China.
| |
Collapse
|