1
|
He Q, Liu X, Xiao G, He X, Gong W, Tang L, Chen Q, Zhang Q, Yao Y. Highly Conductive and Stable Composite Polymer Electrolyte with Boron Nitride Nanotubes for All-Solid-State Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403660. [PMID: 39004850 DOI: 10.1002/smll.202403660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/29/2024] [Indexed: 07/16/2024]
Abstract
All-solid-state lithium metal batteries (ASSLMBs) have emerged as the most promising next-generation energy storage devices. However, the unsatisfactory ionic conductivity of solid electrolytes at room temperature has impeded the advancement of solid-state batteries. In this work, a multifunctional composite solid electrolyte (CSE) is developed by incorporating boron nitride nanotubes (BNNTs) into polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP). BNNTs, with a high aspect ratio, trigger the dissociation of Li salts, thus generating a greater population of mobile Li+, and establishing long-distance Li+ transport pathways. PVDF-HFP/BNNT exhibits a high ionic conductivity of 8.0 × 10-4 S cm-1 at room temperature and a Li+ transference number of 0.60. Moreover, a Li//Li symmetric cell based on PVDF-HFP/BNNT demonstrates robust cyclic performance for 3400 h at a current density of 0.2 mA cm-2. The ASSLMB formed from the assembly of PVDF-HFP/BNNT with LiFePO4 and Li exhibits a capacity retention of 93.2% after 850 cycles at 0.5C and 25 °C. The high-voltage all-solid-state LiCoO2/Li cell based on PVDF-HFP/BNNT also exhibits excellent cyclic performance, maintaining a capacity retention of 96.4% after 400 cycles at 1C and 25 °C. Furthermore, the introduction of BNNTs is shown to enhance the thermal conductivity and flame retardancy of the CSE.
Collapse
Affiliation(s)
- Qian He
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Xiongxiong Liu
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Guang Xiao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Xuhua He
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Lingfei Tang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qi Chen
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yagang Yao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
2
|
Pan L, Feng S, Sun H, Liu XX, Yuan P, Cao M, Gao M, Wang Y, Sun Z. Ultrathin, Mechanically Durable, and Scalable Polymer-in-Salt Solid Electrolyte for High-Rate Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400272. [PMID: 38623970 DOI: 10.1002/smll.202400272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/21/2024] [Indexed: 04/17/2024]
Abstract
Polymer-in-salt solid-state electrolytes (PIS SSEs) are emerging for high room-temperature ionic conductivity and facile handling, but suffer from poor mechanical durability and large thickness. Here, Al2O3-coated PE (PE/AO) separators are proposed as robust and large-scale substrates to trim the thickness of PIS SSEs without compromising mechanical durability. Various characterizations unravel that introducing Al2O3 coating on PE separators efficiently improves the wettability, thermal stability, and Li-dendrite resistance of PIS SSEs. The resulting PE/AO@PIS demonstrates ultra-small thickness (25 µm), exceptional mechanical durability (55.1 MPa), high decomposition temperature (330 °C), and favorable ionic conductivity (0.12 mS cm-1 at 25 °C). Consequently, the symmetrical Li cells remain stable at 0.1 mA cm-2 for 3000 h, without Li dendrite formation. Besides, the LiFePO4|Li full cells showcase excellent rate capability (131.0 mAh g-1 at 10C) and cyclability (93.6% capacity retention at 2C after 400 cycles), and high-mass-loading performance (7.5 mg cm-2). Moreover, the PE/AO@PIS can also pair with nickel-rich layered oxides (NCM811 and NCM9055), showing a remarkable specific capacity of 165.3 and 175.4 mAh g-1 at 0.2C after 100 cycles, respectively. This work presents an effective large-scale preparation approach for mechanically durable and ultrathin PIS SSEs, driving their practical applications for next-generation solid-state Li-metal batteries.
Collapse
Affiliation(s)
- Long Pan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Shengfa Feng
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Hui Sun
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Xiong Xiong Liu
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Pengcheng Yuan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Mufan Cao
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Min Gao
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yaping Wang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - ZhengMing Sun
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
3
|
Wei L, Xu X, Xi K, Lei Y, Cheng X, Shi X, Wu H, Gao Y. Ultralong Cycling and Interfacial Regulation of Bilayer Heterogeneous Composite Solid-State Electrolytes in Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33578-33589. [PMID: 38905020 DOI: 10.1021/acsami.4c06026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Under the background of "carbon neutral", lithium-ion batteries (LIB) have been widely used in portable electronic devices and large-scale energy storage systems, but the current commercial electrolyte is mainly liquid organic compounds, which have serious safety risks. In this paper, a bilayer heterogeneous composite solid-state electrolyte (PLPE) was constructed with the 3D LiX zeolite nanofiber (LiX-NF) layer and in-situ interfacial layer, which greatly extends the life span of lithium metal batteries (LMB). LiX-NF not only offers a continuous fast path for Li+, but also zeolite's Lewis acid-base interaction can immobilize large anions, which significantly improves the electrochemical performance of the electrolyte. In addition, the in-situ interfacial layer at the electrode-electrolyte interface can effectively facilitate the uniform deposition of Li+ and inhibit the growth of lithium dendrites. As a result, the Li/Li battery assembled with PLPE can be stably cycled for more than 2500 h at 0.1 mA cm-2. Meanwhile, the initial discharge capacity of the LiFePO4/PLPE/Li battery can be 162.43 mAh g-1 at 0.5 C, and the capacity retention rate is 82.74% after 500 cycles. These results emphasize that this bilayer heterogeneous composite solid-state electrolyte has distinct properties and shows excellent potential for application in LMB.
Collapse
Affiliation(s)
- Lai Wei
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xin Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Kang Xi
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yue Lei
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiang Cheng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiaobei Shi
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Haihua Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yunfang Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
4
|
Zhang Z, Gou J, Cui K, Zhang X, Yao Y, Wang S, Wang H. 12.6 μm-Thick Asymmetric Composite Electrolyte with Superior Interfacial Stability for Solid-State Lithium-Metal Batteries. NANO-MICRO LETTERS 2024; 16:181. [PMID: 38668771 PMCID: PMC11052750 DOI: 10.1007/s40820-024-01389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/24/2024] [Indexed: 04/29/2024]
Abstract
Solid-state lithium metal batteries (SSLMBs) show great promise in terms of high-energy-density and high-safety performance. However, there is an urgent need to address the compatibility of electrolytes with high-voltage cathodes/Li anodes, and to minimize the electrolyte thickness to achieve high-energy-density of SSLMBs. Herein, we develop an ultrathin (12.6 µm) asymmetric composite solid-state electrolyte with ultralight areal density (1.69 mg cm-2) for SSLMBs. The electrolyte combining a garnet (LLZO) layer and a metal organic framework (MOF) layer, which are fabricated on both sides of the polyethylene (PE) separator separately by tape casting. The PE separator endows the electrolyte with flexibility and excellent mechanical properties. The LLZO layer on the cathode side ensures high chemical stability at high voltage. The MOF layer on the anode side achieves a stable electric field and uniform Li flux, thus promoting uniform Li+ deposition. Thanks to the well-designed structure, the Li symmetric battery exhibits an ultralong cycle life (5000 h), and high-voltage SSLMBs achieve stable cycle performance. The assembled pouch cells provided a gravimetric/volume energy density of 344.0 Wh kg-1/773.1 Wh L-1. This simple operation allows for large-scale preparation, and the design concept of ultrathin asymmetric structure also reveals the future development direction of SSLMBs.
Collapse
Affiliation(s)
- Zheng Zhang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jingren Gou
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Kaixuan Cui
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xin Zhang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yujian Yao
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Suqing Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510000, People's Republic of China.
| | - Haihui Wang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
5
|
Lan X, Luo N, Li Z, Peng J, Cheng HM. Status and Prospect of Two-Dimensional Materials in Electrolytes for All-Solid-State Lithium Batteries. ACS NANO 2024; 18:9285-9310. [PMID: 38522089 DOI: 10.1021/acsnano.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Replacing liquid electrolytes and separators in conventional lithium-ion batteries with solid-state electrolytes (SSEs) is an important strategy to ensure both high energy density and high safety. Searching for fast ionic conductors with high electrochemical and chemical stability has been the core of SSE research and applications over the past decades. Based on the atomic-level thickness and infinitely expandable planar structure, numerous two-dimensional materials (2DMs) have been exploited and applied to address the most critical issues of low ionic conductivity of SSEs and lithium dendrite growth in all-solid-state lithium batteries. This review introduces the research process of 2DMs in SSEs, then summarizes the mechanisms and strategies of inert and active 2DMs toward Li+ transport to improve the ionic conductivity and enhance the electrode/SSE interfacial compatibility. More importantly, the main challenges and future directions for the application of 2DMs in SSEs are considered, including the importance of exploring the relationship between the anisotropic structure of 2DMs and Li+ diffusion behavior, the exploitation of more 2DMs, and the significance of in situ characterizations in elucidating the mechanisms of Li+ transport and interfacial reactions. This review aims to provide a comprehensive understanding to facilitate the application of 2DMs in SSEs.
Collapse
Affiliation(s)
- Xuexia Lan
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Na Luo
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhen Li
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Peng
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Materials Science and Energy Engineering, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hui-Ming Cheng
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Materials Science and Energy Engineering, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 1110016, China
| |
Collapse
|
6
|
Deng H, He F, Liu T, Ye M, Wan F, Guo X. Enhancing mechanical properties of composite solid electrolyte by ultra-high molecular weight polymers. NANOTECHNOLOGY 2024; 35:195402. [PMID: 38330458 DOI: 10.1088/1361-6528/ad27ad] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
Composite solid electrolytes combining the advantages of inorganic and polymer electrolytes are considered as one of the promising candidates for solid-state lithium metal batteries. Compared with ceramic-in-polymer electrolyte, polymer-in-ceramic electrolyte displays excellent mechanical strength to inhibit lithium dendrite. However, polymer-in-ceramic electrolyte faces the challenges of lack of flexibility and severely blocked Li+transport. In this study, we prepared polymer-in-ceramic film utilizing ultra-high molecular weight polymers and ceramic particles to combine flexibility and mechanical strength. Meanwhile, the ionic conductivity of polymer-in-ceramic electrolytes was improved by adding excess lithium salt in polymer matrix to form polymer-in-salt structure. The obtained film shows high stiffness (10.5 MPa), acceptable ionic conductivity (0.18 mS cm-1) and high flexibility. As a result, the corresponding lithium symmetric cell stably cycles over 800 h and the corresponding LiFePO4cell provides a discharge capacity of 147.7 mAh g-1at 0.1 C without obvious capacity decay after 145 cycles.
Collapse
Affiliation(s)
- Hongjie Deng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Fa He
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Tongli Liu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Meng Ye
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Fang Wan
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xiaodong Guo
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| |
Collapse
|
7
|
Chen C, Guo J, Wu C, Duan X, Zhang L. Borate-Functionalized Disiloxane as Effective Electrolyte Additive for 4.5 V LiNi 0.8Co 0.1Mn 0.1O 2/Graphite Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8733-8741. [PMID: 38345337 DOI: 10.1021/acsami.3c16531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Ni-rich LiNi0.8Co0.1Mn0.1O2 (NCM811) is considered the most prominent cathode material to establish a practical high energy density of lithium-ion batteries (LIBs) for future electric vehicles. The energy density of LIBs is greatly determined by the capacity of electrode materials and the operating voltage of the cells. To further improve the cycle lifespan of NCM811 batteries to meet the requirement of driving range for the electric vehicle market, it is vital to design a novel electrolyte additive that can enhance the stability of the cathode/electrolyte interface at a wide range of voltage. Herein, a novel borate functionalized disiloxane compound, 1,1,1,3,3-pentamethyl-3-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl) disiloxane (PMBPDS), is synthesized as cathode electrolyte interphase (CEI) film-forming additive to improve the cycling performance of NCM811 batteries. Systematic studies reveal that PMBPDS can construct a stable CEI film on the NCM811 surface and efficiently scavenge hydrofluoric acid (HF). The PMBPDS-derived CEI prevents the dissolution of transmission metals in the NCM811 cathode and enhances the capacity retention of NCM811/graphite cells from 68.3 to 70.6% after 200 cycles at 1 C in the voltage window of 3-4.5 V. This work provides more understanding on designing the molecular structure of additive compounds for improving the electrochemical performance of LIBs.
Collapse
Affiliation(s)
- Cheng Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
| | - Jiali Guo
- Dongguan Amperex Technology Ltd., Songshan Lake, Dongguan 523808, Guangdong, China
| | - Chunlei Wu
- Hubei Huifu Nanomaterial Co. Ltd., Yichang 443007, Hubei , China
| | - Xianjian Duan
- Hubei Huifu Nanomaterial Co. Ltd., Yichang 443007, Hubei , China
| | - Lingzhi Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|