1
|
Kuang Y, Luo R, Chen A, Zhang Z, Wang K, Lu J, Luo Y, Liu X, Zhu Y. Vacancy-engineered Mn-doped iron oxide nano-crystals for enhanced sonodynamic therapy through self-supplied oxygen. Colloids Surf B Biointerfaces 2024; 244:114172. [PMID: 39191114 DOI: 10.1016/j.colsurfb.2024.114172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Sonodynamic therapy (SDT) is a minimally invasive therapeutic approach, that uses ultrasound activating sonosensitizers to generate reactive oxygen species (ROS) for inducing the tumor cell death. However, the SDT is always limited by the dissatisfactory performance of sonosensitizers and hypoxic tumor microenvironment (TME). Nano iron oxide is a narrow bandgap semiconductor material with good biocompatibility. The doping of manganese into iron oxide (Mn-doped iron oxide nano-crystals named Mn-Fe2O3 NCs) not only reduced the band gap of iron oxide and altered the valence band position of iron oxide, but also introduced more oxygen vacancies and inhibited the complexation of electrons (e-) and holes (h+), significantly enhancing the ability to generate ROS. The Mn-Fe2O3 NCs improved the hypoxic TME by self-generating oxygen and consuming endogenous glutathione (GSH), which amplified oxidative stress and further enhanced the SDT. The therapeutic results showed that the prepared Mn-Fe2O3 NCs could efficiently inhibit the triple-negative breast cancer (TNBC) cells by SDT (80.49 % inhibition ratio in vivo). Overall, we propose a simple method to design inorganic sonosensitizers for enhancing efficient sonodynamic therapy.
Collapse
Affiliation(s)
- Yunqi Kuang
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ruixin Luo
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Aihong Chen
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ziwen Zhang
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Kaiyang Wang
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yu Luo
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Yicheng Zhu
- Department of Ultrasound, Shanghai Pudong New Area People's Hospital, China.
| |
Collapse
|
2
|
Wu X, Chen F, Zhang Q, Tu J. What Is the Magical Cavitation Bubble: A Holistic Perspective to Trigger Advanced Bubbles, Nano-Sonocatalysts, and Cellular Sonosensitizers. BME FRONTIERS 2024; 5:0067. [PMID: 39301016 PMCID: PMC11411164 DOI: 10.34133/bmef.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Sonodynamic therapy (SDT) has emerged as a novel and highly researched advancement in the medical field. Traditional ultrasound contrast agents and novel bubble-shaped agents are used to stimulate cavitation and enhance SDT efficiency. However, the impact of artificially modified shell structures on the acoustic properties of microbubbles remains to be explored. Alternatively, in the absence of bubble-shaped agents, some clinically available organic sonosensitizers and advanced inorganic materials are also used to enhance the efficacy of SDT. Diagnostic and therapeutic ultrasound can also activate cavitation bubbles, which supply energy to sonosensitive agents, leading to the production of cytotoxic free radicals to achieve therapeutic effects. While inorganic materials often spark controversy in clinical applications, their relatively simple structure enables researchers to gain insight into the mechanism by which SDT produces various free radicals. Some organic-inorganic hybrid sonosensitive systems have also been reported, combining the benefits of inorganic and organic sonosensitive agents. Alternatively, by employing cell surface modification engineering to enable cells to perform functions such as immune escape, drug loading, gas loading, and sonosensitivity, cellular sonosensitizers have also been developed. However, further exploration is needed on the acoustic properties, ability to generate reactive oxygen species (ROS), and potential clinical application of this cellular sonosensitizer. This review offers a comprehensive analysis of vesical microbubbles and nanoscale sonocatalysts, including organic, inorganic, combined organic-inorganic sonosensitizers, and cellular sonosensitizers. This analysis will enhance our understanding of SDT and demonstrate its important potential in transforming medical applications.
Collapse
Affiliation(s)
- Xiaoge Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Fulong Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Qi Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
3
|
Zhang R, Mao YW, Li JQ, Ni LJ, Lin L, Wang AJ, Feng JJ, Cheang TY, Zhou H. Fe single atoms encapsulated in N, P-codoped carbon nanosheets with enhanced peroxidase-like activity for colorimetric detection of methimazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123934. [PMID: 38266603 DOI: 10.1016/j.saa.2024.123934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Excessive use of antithyroid drug methimazole (MMI) in pharmaceutical samples can cause hypothyroidism and symptoms of metabolic decline. Hence, it is urgent to develop rapid, low cost and accurate colorimetric method with peroxidase-like nanozymes for determination of MMI in medical, nutrition and pharmaceutical studies. Herein, Fe single atoms were facilely encapsulated into N, P-codoped carbon nanosheets (Fe SAs/NP-CSs) by a simple pyrolysis strategy, as certified by a series of characterizations. UV-vis absorption spectroscopy was employed to illustrate the high peroxidase-mimicking activity of the resultant Fe SAs/NP-CSs nanozyme through the typical catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) oxidation. The catalytic mechanism was scrutionously investigated by the fluorescence spectroscopy and electron paramagnetic resonance (EPR) tests. Additionally, the introduced MMI had the ability to reduce the oxidation of TMB (termed oxTMB) as a peroxidase inhibitor, coupled by fading the blue color. By virtue of the above findings, a visual colorimetric sensor was established for dual detection of methimazole (MMI) with a linear scope of 5-50 mM and a LOD of 1.57 mM, coupled by assay of H2O2 at a linear range of 3-50 mM. According to the irreversible oxidation of the drug, its screening with acceptable results was achieved on the sensing platform even in commercial tablets The Fe SAs/NP-CSs nanozyme holds great potential for clinical diagnosis and drug analysis.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yan-Wen Mao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Qi Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ling-Jie Ni
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lei Lin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Tuck Yun Cheang
- Department of Breast Care Centre, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China.
| | - Hongyan Zhou
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
4
|
He W, Li C, Zhao S, Li Z, Wu J, Li J, Zhou H, Yang Y, Xu Y, Xia H. Integrating coaxial electrospinning and 3D printing technologies for the development of biphasic porous scaffolds enabling spatiotemporal control in tumor ablation and osteochondral regeneration. Bioact Mater 2024; 34:338-353. [PMID: 38274295 PMCID: PMC10809007 DOI: 10.1016/j.bioactmat.2023.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
The osteochondral defects (OCDs) resulting from the treatment of giant cell tumors of bone (GCTB) often present two challenges for clinicians: tumor residue leading to local recurrence and non-healing of OCDs. Therefore, this study focuses on developing a double-layer PGPC-PGPH scaffold using shell-core structure nanofibers to achieve "spatiotemporal control" for treating OCDs caused by GCTB. It addresses two key challenges: eliminating tumor residue after local excision and stimulating osteochondral regeneration in non-healing OCD cases. With a shell layer of protoporphyrin IX (PpIX)/gelatin (GT) and inner cores containing chondroitin sulfate (CS)/poly(lactic-co-glycolic acid) (PLGA) or hydroxyapatite (HA)/PLGA, coaxial electrospinning technology was used to create shell-core structured PpIX/GT-CS/PLGA and PpIX/GT-HA/PLGA nanofibers. These nanofibers were shattered into nano-scaled short fibers, and then combined with polyethylene oxide and hyaluronan to formulate distinct 3D printing inks. The upper layer consists of PpIX/GT-CS/PLGA ink, and the lower layer is made from PpIX/GT-HA/PLGA ink, allowing for the creation of a double-layer PGPC-PGPH scaffold using 3D printing technique. After GCTB lesion removal, the PGPC-PGPH scaffold is surgically implanted into the OCDs. The sonosensitizer PpIX in the shell layer undergoes sonodynamic therapy to selectively damage GCTB tissue, effectively eradicating residual tumors. Subsequently, the thermal effect of sonodynamic therapy accelerates the shell degradation and release of CS and HA within the core layer, promoting stem cell differentiation into cartilage and bone tissues at the OCD site in the correct anatomical position. This innovative scaffold provides temporal control for anti-tumor treatment followed by tissue repair and spatial control for precise osteochondral regeneration.
Collapse
Affiliation(s)
- Wenbao He
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunlin Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shitong Zhao
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhendong Li
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing Wu
- Jinan Clinical Research Centre for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Junjun Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haichao Zhou
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunfeng Yang
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huitang Xia
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
- Jinan Clinical Research Centre for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
5
|
Zhou LL, Guan Q, Dong YB. Covalent Organic Frameworks: Opportunities for Rational Materials Design in Cancer Therapy. Angew Chem Int Ed Engl 2024; 63:e202314763. [PMID: 37983842 DOI: 10.1002/anie.202314763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Nanomedicines are extensively used in cancer therapy. Covalent organic frameworks (COFs) are crystalline organic porous materials with several benefits for cancer therapy, including porosity, design flexibility, functionalizability, and biocompatibility. This review examines the use of COFs in cancer therapy from the perspective of reticular chemistry and function-oriented materials design. First, the modification sites and functionalization methods of COFs are discussed, followed by their potential as multifunctional nanoplatforms for tumor targeting, imaging, and therapy by integrating functional components. Finally, some challenges in the clinical translation of COFs are presented with the hope of promoting the development of COF-based anticancer nanomedicines and bringing COFs closer to clinical trials.
Collapse
Affiliation(s)
- Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa, Macau SAR, 999078, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
6
|
Di Y, Deng R, Liu Z, Mao Y, Gao Y, Zhao Q, Wang S. Optimized strategies of ROS-based nanodynamic therapies for tumor theranostics. Biomaterials 2023; 303:122391. [PMID: 37995457 DOI: 10.1016/j.biomaterials.2023.122391] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in regulating the metabolism of tumor growth, metastasis, death and other biological processes. ROS-based nanodynamic therapies (NDTs) are becoming attractive due to non-invasive, low side effects and tumor-specific advantages. NDTs have rapidly developed into numerous branches, such as photodynamic therapy, chemodynamic therapy, sonodynamic therapy and so on. However, the complexity of the tumor microenvironment and the limitations of existing sensitizers have greatly restricted the therapeutic effects of NDTs, which heavily rely on ROS levels. To address the limitations of NDTs, various strategies have been developed to increase ROS yield, which is an urgent aspect for the positive development of NDTs. In this review, the nanodynamic potentiation strategies in terms of unique properties and universalities of NDTs are comprehensively outlined. We mainly summarize the current dilemmas faced by each NDT and the respective solutions. Meanwhile, the NDTs universalities-based potentiation strategies and NDTs-based combined treatments are elaborated. Finally, we conclude with a discussion of the key issues and challenges faced in the development and clinical transformation of NDTs.
Collapse
Affiliation(s)
- Yifan Di
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Ruizhu Deng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yikun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| |
Collapse
|