1
|
Temmerman W, Goeminne R, Rawat KS, Van Speybroeck V. Computational Modeling of Reticular Materials: The Past, the Present, and the Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412005. [PMID: 39723710 DOI: 10.1002/adma.202412005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Reticular materials rely on a unique building concept where inorganic and organic building units are stitched together giving access to an almost limitless number of structured ordered porous materials. Given the versatility of chemical elements, underlying nets, and topologies, reticular materials provide a unique platform to design materials for timely technological applications. Reticular materials have now found their way in important societal applications, like carbon capture to address climate change, water harvesting to extract atmospheric moisture in arid environments, and clean energy applications. Combining predictions from computational materials chemistry with advanced experimental characterization and synthesis procedures unlocks a design strategy to synthesize new materials with the desired properties and functions. Within this review, the current status of modeling reticular materials is addressed and supplemented with topical examples highlighting the necessity of advanced molecular modeling to design materials for technological applications. This review is structured as a templated molecular modeling study starting from the molecular structure of a realistic material towards the prediction of properties and functions of the materials. At the end, the authors provide their perspective on the past, present of future in modeling reticular materials and formulate open challenges to inspire future model and method developments.
Collapse
Affiliation(s)
- Wim Temmerman
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| | - Ruben Goeminne
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| | - Kuber Singh Rawat
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| |
Collapse
|
2
|
Su J, Li P, Duan F, Chen Y, Zhou Y, Shen M, Zhang L, Ren SB, Chen M. Molecular Engineering of Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution from Water. Chemistry 2024:e202403627. [PMID: 39582257 DOI: 10.1002/chem.202403627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 11/26/2024]
Abstract
Covalent organic frameworks (COFs) have demonstrated significant potential as photocatalysts for efficiently generating hydrogen through photocatalytic water splitting. However, the design of COFs with distinct organic unit blocks at a molecular level profoundly influences their photocatalytic performance. In this study, we synthesized a series of β-ketoamine COFs through molecular engineering of nitrogen sites, including phenyl-structured TpBD, phenylpyridine-structured TpPpy, phenylpyrimidine-structured TpPpm, and bipyridine-structured TpBpy. Advanced characterization techniques reveal that TpPpm and TpBpy with more nitrogen sites exhibit superior efficiencies in electron transfer and charge separation compared to TpBD and TpPpy, thereby endowing them with enhanced photocatalytic performance for hydrogen evolution from water. As a result, the photocatalytic hydrogen production rates of TpPpm (33.80 mmol g-1 h-1) and TpBpy (29.18 mmol g-1 h-1) surpass those of TpBD (20.82 mmol g-1 h-1) and TpPpy (27.49 mmol g-1 h-1). Additionally, due to the different plane symmetries between Ppm and Bpy resulting from the various positions of nitrogen sites, TpPpm displays superior photochemical properties and better photocatalytic performance compared to TpBpy. Moreover, theoretical calculation results further confirm the exceptional intramolecular charge transfer ability of TpPpm among all COFs. This work underscores the significance of precisely controlling N sites in COFs for designing high-performance photocatalysts.
Collapse
Affiliation(s)
- Jie Su
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, P. R. China
| | - Ping Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Feng Duan
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Yuxiang Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, P. R. China
| | - Yida Zhou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Mao Shen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, P. R. China
| | - Li Zhang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Shi-Bin Ren
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, P. R. China
| | - Mengyang Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, P. R. China
| |
Collapse
|
3
|
Jena CK, Sharma NK. Non-benzenoid N-aryl oxalamide: synthesis of troponyl-oxalamide peptides by Pd(II)-catalyzed C(sp 3)-H functionalization of glycinamides. Org Biomol Chem 2024; 22:6822-6832. [PMID: 39114897 DOI: 10.1039/d4ob00800f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Aryl oxalamides are constituents of various promising drug-like molecules. Their aryl groups are derived from the benzenoid aromatic moiety. However, non-benzenoid aromatic molecules, troponoids, are found in various bioactive natural products. It would be thought-provoking to explore non-benzenoid aryl oxalamide derivatives. This report describes the synthesis of N-troponyl-oxalamide peptides by Pd(II)-catalyzed C(sp3)-H functionalization of N-troponyl glycinate peptides. This is the first instance of β-hydride elimination at the palladium complex of N-troponyl glycinates that generates imine in situ, rendering the synthesis of oxalamides. Importantly, the crystal structures of representative oxalamide derivatives form distinctive foldameric structures, such as β-sheet type structures, owing to the presence of additional troponyl carbonyl groups. Hence, these non-benzenoid oxalamides are potential scaffolds for tuning the structure and function of N-troponyl peptides, which could provide innovative avenues of research in the development of emerging structural and functional peptides.
Collapse
Affiliation(s)
- Chinmay K Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni campus, Bhubaneswar-752050, Odisha, India.
- Homi Bhabha National Institute (HBNI)-Mumbai, Anushaktinagar, Mumbai, 400 094, India
| | - Nagendra K Sharma
- School of Chemical Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni campus, Bhubaneswar-752050, Odisha, India.
- Homi Bhabha National Institute (HBNI)-Mumbai, Anushaktinagar, Mumbai, 400 094, India
| |
Collapse
|
4
|
Debruyne M, Van Der Voort P, Van Speybroeck V, Stevens CV. The Application of Porous Organic Polymers as Metal Free Photocatalysts in Organic Synthesis. Chemistry 2024; 30:e202400311. [PMID: 38499471 DOI: 10.1002/chem.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Concerns about increasing greenhouse gas emissions and their effect on our environment highlight the urgent need for new sustainable technologies. Visible light photocatalysis allows the clean and selective generation of reactive intermediates under mild conditions. The more widespread adoption of the current generation of photocatalysts, particularly those using precious metals, is hampered by drawbacks such as their cost, toxicity, difficult separation, and limited recyclability. This is driving the search for alternatives, such as porous organic polymers (POPs). This new class of materials is made entirely from organic building blocks, can possess high surface area and stability, and has a controllable composition and functionality. This review focuses on the application of POPs as photocatalysts in organic synthesis. For each reaction type, a representative material is discussed, with special attention to the mechanism of the reaction. Additionally, an overview is given, comparing POPs with other classes of photocatalysts, and critical conclusions and future perspectives are provided on this important field.
Collapse
Affiliation(s)
- Maarten Debruyne
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pascal Van Der Voort
- Department of Chemistry, Ghent University, Krijgslaan 281 (S3), 9000, Ghent, Belgium
| | - Veronique Van Speybroeck
- Department of Applied Physics, Ghent University, Technologiepark Gent, 46, 9052, Zwijnaarde, Belgium
| | - Christian V Stevens
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
5
|
Vanlommel S, Borgmans S, Chandran CV, Radhakrishnan S, Van Der Voort P, Breynaert E, Van Speybroeck V. Computational Protocol for the Spectral Assignment of NMR Resonances in Covalent Organic Frameworks. J Chem Theory Comput 2024; 20:3823-3838. [PMID: 38650071 DOI: 10.1021/acs.jctc.3c01414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Solid-state nuclear magnetic resonance spectroscopy is routinely used in the field of covalent organic frameworks to elucidate or confirm the structure of the synthesized samples and to understand dynamic phenomena. Typically this involves the interpretation and simulation of the spectra through the assumption of symmetry elements of the building units, hinging on the correct assignment of each line shape. To avoid misinterpretation resulting from library-based assignment without a theoretical basis incorporating the impact of the framework, this work proposes a first-principles computational protocol for the assignment of experimental spectra, which exploits the symmetry of the underlying building blocks for computational feasibility. In this way, this protocol accommodates the validation of previous experimental assignments and can serve to complement new NMR measurements.
Collapse
Affiliation(s)
- Siebe Vanlommel
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Ghent, Belgium
| | - Sander Borgmans
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Ghent, Belgium
| | - C Vinod Chandran
- NMRCoRe, NMR/X-Ray Platform for Convergence Research, Celestijnenlaan 200F, Box 2461, B-3001 Leuven, Belgium
| | - Sambhu Radhakrishnan
- NMRCoRe, NMR/X-Ray Platform for Convergence Research, Celestijnenlaan 200F, Box 2461, B-3001 Leuven, Belgium
| | - Pascal Van Der Voort
- Department of Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Ghent, Belgium
| | - Eric Breynaert
- NMRCoRe, NMR/X-Ray Platform for Convergence Research, Celestijnenlaan 200F, Box 2461, B-3001 Leuven, Belgium
| | | |
Collapse
|
6
|
Zhang F, Wang Y, Zhao H, Dong X, Gu XK, Lang X. Expanding Olefin-Linked Covalent Organic Frameworks toward Selective Photocatalytic Oxidation of Organic Sulfides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8772-8782. [PMID: 38324765 DOI: 10.1021/acsami.3c16838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Olefin-linked covalent organic frameworks (COFs) have exhibited great potential in visible-light photocatalysis. In principle, expanding fully conjugated COFs can facilitate light absorption and charge transfer, leading to improved photocatalysis. Herein, three olefin-linked COFs with the same topology are synthesized by combining 2,4,6-trimethyl-1,3,5-triazine (TMT) with 1,3,5-triformylbenzene (TFB), 1,3,5-tris(4-formylphenyl)benzene (TFPB), and 1,3,5-tris(4-formylphenylethynyl)benzene (TFPEB), namely, TMT-TFB-COF, TMT-TFPB-COF, and TMT-TFPEB-COF, respectively. From TMT-TFB-COF to TMT-TFPB-COF, expanding phenyl rings provides only limited expansion for π-conjugation due to the steric effect of structural twisting. However, from TMT-TFPB-COF to TMT-TFPEB-COF, the insertion of acetylenes eliminates the steric effect and provides more delocalized π-electrons. As such, TMT-TFPEB-COF exhibits the best optoelectronic properties among these three olefin-linked COFs. Consequently, the photocatalytic performance of TMT-TFPEB-COF is much better than those of TMT-TFB-COF and TMT-TFPB-COF on the oxidation of organic sulfides into sulfoxides with oxygen. The desirable reusability and substrate compatibility of the TMT-TFPEB-COF photocatalyst are further confirmed. The selective formation of organic sulfoxides over TMT-TFPEB-COF under blue light irradiation proceeds via both electron- and energy-transfer pathways. This work highlights a rational design of expanding the π-conjugation of fully conjugated COFs toward selective visible-light photocatalysis.
Collapse
Affiliation(s)
- Fulin Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuexin Wang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hongxiang Zhao
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Dong
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiang-Kui Gu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|