1
|
Gu H, Sun X, Bao H, Feng X, Chen Y. Optically pH-Sensing in smart wound dressings towards real-time monitoring of wound states: A review. Anal Chim Acta 2025; 1350:343808. [PMID: 40155158 DOI: 10.1016/j.aca.2025.343808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Over the recent years, the investigations on wound dressings have been undergoing significant evolution, and now smart dressings with the function of the real-time monitoring of the wound states have been recognized as one of the most advanced treatment modalities. Among a variety of wound-related biomarkers, pH represents a promising candidate for in situ supervising the wound healing status. In this regard, a variety of optically pH sensing agents have been widely incorporated into different types of wound dressings. RESULTS Herein, we first presented an overview of the advanced wound dressings, especially those commonly used in wound pH sensing. Then, a comprehensive summary of the optical pH sensing agents that could be incorporated into the wound dressings for detecting the pH alteration on the wound bed was described in detail. These materials were classified into colorimetric dyes (i.e., synthetic and plant-based dyes) and fluorescent probes (i.e., small-molecular fluorescein and fluorescent nanomaterials). Each type of pH sensing agent was fully discussed with advantages and limitations for monitoring the wound pH alteration, as well as typical examples of practical applications. To well interpret messages produced by the color-coding dressings, the approaches for defining and communicating color were also summarized, and a proof-of-concept, the smartphone-based remote supervision was particularly highlighted. SIGNIFICANCE This review provides a comprehensive overview of the utilization of optically pH sensing in advanced wound dressings for the real-time monitoring of the wound states. It was expected to be an informative source for the exploitation of novel diagnostic dressings for wound management, and also a reference the for application of these materials in the biosensing of other physiological or pathological fluids.
Collapse
Affiliation(s)
- Hongchun Gu
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xinxing Sun
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Hongyang Bao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, Shenyang, 110034, China.
| | - Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
2
|
Zhang J, Xue Y, Zhang L, Chen J, Ma D, Zhang Y, Han Y. A Targeted Core-Shell ZIF-8/Au@Fe 3O 4 Platform with Multiple Antibacterial Pathways for Infected Skin Wound Regeneration. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20901-20918. [PMID: 40132060 DOI: 10.1021/acsami.5c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Bacterial infections seriously retard skin wound healing. To enhance the antibacterial efficiency and subsequent skin regeneration, a core-shell structured therapeutic platform, named FZAM, was designed with multiple antimicrobial pathways. FZAM consists of nanosized Fe3O4 as the core and ZIF-8 loaded with Au nanoparticles (NPs) and maltodextrin as the shell. Fe3O4 and Au NPs form a heterojunction that generates hyperthermia and abundant reactive oxide species (ROS) under near-infrared (NIR) irradiation. This heterojunction also exhibits outstanding peroxidase-like activity. When bacteria invade, maltodextrin plays a targeting effect to increase the interaction between FZAM and bacteria, and with the synergistic action of NIR-induced hyperthermia and ROS as well as Zn2+ from ZIF-8, FZAM kills more than 99% of bacteria at 200 μg mL-1. Fortunately, FZAM is cytocompatible and even promotes the biofunctions of fibroblasts and endothelial cells. In infected skin wound models, FZAM sterilizes bacteria with NIR irradiation and subsequently reduces the inflammatory response and accelerates skin regeneration. This work provides a core-shell structured therapy platform for treating infection with the assistance of NIR irradiation and helping skin wound healing.
Collapse
Affiliation(s)
- Jing Zhang
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yang Xue
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lan Zhang
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun Chen
- Department of Osteology, Xi'an People's Hospital (Xi'an No. 4 Hospital), Xi'an 710100, China
| | - Dayan Ma
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yingang Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yong Han
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
3
|
Chang J, Wu W, Wu R, Guo Z, Wang S, Mao J. Hydrogel biomimetic skin inspired by human skin for resisting bacterial infection. BIOMATERIALS ADVANCES 2025; 168:214126. [PMID: 39616683 DOI: 10.1016/j.bioadv.2024.214126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
The flexible surface and chemical compatibility of hydrogels render them particularly appealing for research and development in antibacterial materials. However, designing tough hydrogels with multiple antibacterial mechanisms simultaneously remains a challenge. Inspired by the human skin, a hydrogel with bacterial antifouling, detection, and inactivation functions has been prepared using zwitterionic [2-(methylacrylyl) ethyl] dimethyl-(3-propyl sulfonate) ammonium hydroxide (SBMA) as the matrix and cadmium telluride quantum dots functionalised with cysteamine (CA-CdTe QDs) as the filler through micelle copolymerisation technology, achieving the integration of multiple antimicrobial mechanisms. The experimental analysis demonstrated that the SBMA/CA-CdTe/Micelle (SCM) hydrogel exhibited antibacterial activity against both Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus), proving its excellent broad-spectrum antibacterial properties. Introducing micelles imparts excellent hydrophilicity, stability, and mechanical properties to the SCM hydrogel. Moreover, the SCM hydrogels possess significant self-adhesive properties, enabling them to function as biomimetic skin that tightly adheres to target surfaces, protecting them from bacterial contamination. In addition, the SCM hydrogel biomimetic skin exhibits good electrical conductivity and biocompatibility, capable of converting the motion amplitude of human activity into stable electrical signals, suggesting potential for human motion sensing applications. Overall, the SCM hydrogel biomimetic skin designed in this work, as a multifunctional antibacterial platform, effectively reduces bacterial contamination and holds significant application potential in healthcare and life sciences.
Collapse
Affiliation(s)
- Junfang Chang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Weijun Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Ranran Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Sui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Jie Mao
- Department of Basic, Zhejiang Pharmaceutical University, Ningbo 315500, PR China.
| |
Collapse
|
4
|
Khodami S, Gharakhloo M, Dagdelen S, Fita P, Romanski J, Karbarz M, Stojek Z, Mackiewicz M. Rapid Photoinduced Self-Healing, Controllable Drug Release, Skin Adhesion Ability, and Mechanical Stability of Hydrogels Incorporating Linker-Modified Gold Nanoparticles and Nanogels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57659-57671. [PMID: 39378138 PMCID: PMC11503619 DOI: 10.1021/acsami.4c11908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Appropriately modified thermoresponsive hydrogels, such as poly(N-isopropylacrylamide) hydrogels, bring an opportunity for a variety of biomedical applications. Incorporating compounds with different properties into poly(N-isopropylacrylamide) hydrogels offers opportunities to enhance their mechanical, self-healing ability, adhesiveness, thermal responsiveness, and drug release capabilities. In this study, we investigated the influence of Au-sulfur interactions on the properties of the poly(N-isopropylacrylamide) hydrogels after introducing N,N'-bis(acryloyl)cystine (a newly synthesized cross-linker), modified gold nanoparticles, and a p(NIPAm-BISS) nanogel into the hydrogel matrix. Our findings demonstrated that poly(N-isopropylacrylamide) hydrogels with these compounds exhibited higher mechanical strength (65% tensile stress and 25% elongation), faster thermal responsiveness, controllable self-healing [85% recovery after 2 min, using a NIR laser (800 nm, 0.75 W)], skin adhesiveness, and enhanced drug release (0.08 mg·mL-1, a 93% improvement). These results may contribute to advancements in the design of temperature-responsive hydrogels tailored for specific biomedical needs, such as targeted drug delivery with the use of a NIR laser and tissue engineering.
Collapse
Affiliation(s)
- Samaneh Khodami
- Biological
and Chemical Research Center, University
of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Mosayeb Gharakhloo
- Biological
and Chemical Research Center, University
of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Serife Dagdelen
- Biological
and Chemical Research Center, University
of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland
| | - Piotr Fita
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02-093, Poland
| | - Jan Romanski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Marcin Karbarz
- Biological
and Chemical Research Center, University
of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Zbigniew Stojek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Marcin Mackiewicz
- Biological
and Chemical Research Center, University
of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland
| |
Collapse
|
5
|
Su W, Chen J, Zhang Y, Luo X, Lin C, Li P. Chitosan/agarose hydrogel dressing: pH response real-time monitoring and chemo-/photodynamic therapy synergistic treatment of infected wounds. Int J Biol Macromol 2024; 277:134513. [PMID: 39111468 DOI: 10.1016/j.ijbiomac.2024.134513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/28/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
The early diagnosis and real-time monitoring of bacterial infections are of great significance for the establishment of integrated diagnosis and treatment systems. In this study, a pH-responsive smart hydrogel patch system, named CABP, was developed to monitor and treat wound infections. CABP has a sandwich structure, with non-woven fabric/chitosan (NF/CS) as the intermediate skeleton layer, Agarose/chitosan/Bromothymol Blue (AG/CS/BTB) hydrogel as the detection layer, and Agarose/chitosan/phthalocyanine (AG/CS/Pc) hydrogel as the treatment layer. When Staphylococcus aureus (S. aureus) infection occurs, the pH of the environment decreases, which triggers the CABP to change from its original blue color to yellow, achieving an intuitive visual transformation. Moreover, the hydrogel patch showed a significant inhibition rate of up to 99.99971 % against S. aureus under 660 nm light radiation, showing a good photodynamic therapy (PDT)/ chemotherapy (CT) synergistic effect. In addition, CABP showed excellent antibacterial and wound healing effects on S. aureus infection in a full-layer skin defect experiment. In short, the patch system is simple to prepare and easy to use, and can provide important research value for the integrated diagnosis and treatment system in biomedical applications.
Collapse
Affiliation(s)
- Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China.
| | - Jiayin Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China
| | - Ying Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaoyan Luo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China
| | - Chenxiang Lin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China
| | - Peiyuan Li
- Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
6
|
Xu G, Peng G, Yang J, Wu M, Li W, Wang J, Zhu L, Zhang W, Ge F, Song P. Molybdenum disulfide nanosheets based non-oxygen-dependent and heat-initiated free radical nanogenerator with antimicrobial peptides for antimicrobial, biofilm ablation and wound healing. BIOMATERIALS ADVANCES 2024; 162:213920. [PMID: 38901063 DOI: 10.1016/j.bioadv.2024.213920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024]
Abstract
Chronic refractory wounds caused by multidrug-resistant (MDR) bacterial and biofilm infections are a substantial threat to human health, which presents a persistent challenge in managing clinical wound care. We here synthesized a composite nanosheet AIPH/AMP/MoS2, which can potentially be used for combined therapy because of the photothermal effect induced by MoS2, its ability to deliver antimicrobial peptides, and its ability to generate alkyl free radicals independent of oxygen. The synthesized nanosheets exhibited 61 % near-infrared (NIR) photothermal conversion efficiency, marked photothermal stability and free radical generating ability. The minimal inhibitory concentrations (MICs) of the composite nanosheets against MDR Escherichia coli (MDR E. coli) and MDR Staphylococcus aureus (MDR S. aureus) were approximately 38 μg/mL and 30 μg/mL, respectively. The composite nanosheets (150 μg/mL) effectively ablated >85 % of the bacterial biofilm under 808-nm NIR irradiation for 6 min. In the wound model experiment, approximately 90 % of the wound healed after the 4-day treatment with the composite nanosheets. The hemolysis experiment, mouse embryonic fibroblast (MEFs) cytotoxicity experiment, and mouse wound healing experiment all unveiled the excellent biocompatibility of the composite nanosheets. According to the transcriptome analysis, the composite nanosheets primarily exerted a synergistic therapeutic effect by disrupting the cellular membrane function of S. aureus and inhibiting quorum sensing mediated by the two-component system. Thus, the synthesized composite nanosheets exhibit remarkable antibacterial and biofilm ablation properties and therefore can be used to improve wound healing in chronic biofilm infections.
Collapse
Affiliation(s)
- Guanglin Xu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Guanglan Peng
- The first Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241002, Anhui, China
| | - Jianping Yang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Mingcai Wu
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Wanzhen Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Jun Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Longbao Zhu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Weiwei Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China.
| | - Fei Ge
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China.
| | - Ping Song
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China.
| |
Collapse
|
7
|
Jin S, Mia R, Newton MAA, Cheng H, Gao W, Zheng Y, Dai Z, Zhu J. Nanofiber-reinforced self-healing polysaccharide-based hydrogel dressings for pH discoloration monitoring and treatment of infected wounds. Carbohydr Polym 2024; 339:122209. [PMID: 38823899 DOI: 10.1016/j.carbpol.2024.122209] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
The escalating global health concern arises from chronic wounds induced by bacterial infections, posing a significant threat to individuals. Consequently, an imperative exist for the development of hydrogel dressings to facilitate prompt wound monitoring and efficacious wound management. To this end, pH-sensitive bromothymol blue (BTB) and pH-responsive drug tetracycline hydrochloride (TH) were introduced into the polysaccharide-based hydrogel to realize the integration of wound monitoring and controlled treatment. Polysaccharide-based hydrogels were formed via a Schiff base reaction by cross-linking carboxymethyl chitosan (CMCS) on an oxidized sodium alginate (OSA) skeleton. BTB was used as a pH indicator to monitor wound infection through visual color changes visually. TH could be dynamically released through the pH response of the Schiff base bond to provide effective treatment and long-term antibacterial activity for chronically infected wounds. In addition, introducing polylactic acid nanofibers (PLA) enhanced the mechanical properties of hydrogels. The multifunctional hydrogel has excellent mechanical, self-healing, injectable, antibacterial properties and biocompatibility. Furthermore, the multifaceted hydrogel dressing under consideration exhibits noteworthy capabilities in fostering the healing process of chronically infected wounds. Consequently, the research contributes novel perspectives towards the advancement of intelligent and expeditious bacterial infection monitoring and dynamic treatment platforms.
Collapse
Affiliation(s)
- Shanshan Jin
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Rajib Mia
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Md All Amin Newton
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Hongju Cheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Weihong Gao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yuansheng Zheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zijian Dai
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Jie Zhu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
8
|
Li X, Zhang L, Liu Z, Wang R, Jiao T. Recent progress in hydrogels combined with phototherapy for bacterial infection: A review. Int J Biol Macromol 2024; 274:133375. [PMID: 38914386 DOI: 10.1016/j.ijbiomac.2024.133375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Phototherapy has become one of the most effective antibacterial methods due to its associated lack of drug resistance and its good antibacterial effect. For the purpose of avoiding the aggregation and premature release of photosensitive/photothermal agents during phototherapy, they can be mixed into three-dimensional hydrogels. The combination of hydrogels and phototherapy combines the merits of both hydrogels and phototherapy, overcomes the disadvantages of traditional antibacterial methodologies, and has broad application prospects. This review presents recent advancements in phototherapeutic antibacterial hydrogels including photodynamic antibacterial hydrogels, photothermal antibacterial hydrogels, photodynamic and photothermal synergistic antibacterial hydrogels, and other synergistic antibacterial hydrogels involving phototherapy.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China
| | - Lexin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhiwei Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China.
| | - Ran Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China.
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
9
|
Doveri L, Diaz Fernandez YA, Dacarro G. Nanomaterials for Photothermal Antimicrobial Surfaces. ACS OMEGA 2024; 9:25575-25590. [PMID: 38911752 PMCID: PMC11190936 DOI: 10.1021/acsomega.4c01449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Microbial infection diseases are a major threat to human health and have become one of the main causes of mortality. The search for novel antimicrobial strategies is an important challenge for the scientific community, considering also the constant increase of antimicrobial resistance and the rise of new diseases. Among the new strategies to combat microbial infections, the photothermal effect seems to be one of the most promising. Hyperthermia is an effective and broad spectrum strategy for the removal of microbial infections. Among all of the strategies to reduce the diffusion of microbial infections, the preparation of antimicrobial surfaces seems of primary importance. In many cases, in fact, an infection can be diffused through surfaces just by touching them, or by inoculating microbes through an internalizable device, such as an implant, a prosthesis, or a catheter. In this review, we will summarize the recent advances in the preparation of photothermal antibacterial surfaces.
Collapse
Affiliation(s)
- Lavinia Doveri
- Department
of Chemistry, University of Pavia, Via Taramelli 12, I-27100 Pavia, Italy
| | | | - Giacomo Dacarro
- Department
of Chemistry, University of Pavia, Via Taramelli 12, I-27100 Pavia, Italy
- Centre
for Health Technologies (CHT), University
of Pavia, I-27100 Pavia, Italy
| |
Collapse
|
10
|
Djordjevic I, Ellis E, Singh J, Ali N, Pena EM, Rajarethinam R, Manikandan L, Goh J, Lim S, Steele T. Color changing bioadhesive barrier for peripherally inserted central catheters. Biomater Sci 2024; 12:1502-1514. [PMID: 38284150 DOI: 10.1039/d3bm01347b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Bacteria migration at catheter insertion sites presents a serious complication (bacteraemia) with high mortality rates. One strategy to mediate bacteraemia is a physical barrier at the skin-catheter interface. Herein a colorimetric biosensor adhesive (CathoGlu) is designed and evaluated for both colorimetric detection of bacterial infection and application as a bacteria barrier. The design intent combines viscous, hydrophobic bioadhesive with an organic pH indicator (bromothymol blue). Visual observation can then distinguish healthy skin at pH = ∼5 from an infected catheter insertion site at pH = ∼8. The liquid-to-biorubber transition of CathoGlu formulation occurs via a brief exposure to UVA penlight, providing an elastic barrier to the skin flora. Leachates from CathoGlu demonstrate no genotoxic and skin sensitization effect, assessed by OECD-recommended in vitro and in chemico assays. The CathoGlu formulation was found non-inferior against clinically approved 2-octyl-cyanoacrylate (Dermabond™), and adhesive tape (Micropore™) within an in vivo porcine model. CathoGlu skin adhesive provides new opportunities to prevent sepsis in challenging clinical situations.
Collapse
Affiliation(s)
- Ivan Djordjevic
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Block N4.1, Singapore 639798.
| | - Elizabeth Ellis
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Block N4.1, Singapore 639798.
| | - Juhi Singh
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335
- School of Chemistry, Chemical Engineering and Biotechnology, 70 Nanyang Drive, Block N1.3, Nanyang Technological University, Singapore 637457
| | - Naziruddin Ali
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Block N4.1, Singapore 639798.
| | - Edgar M Pena
- National Large Animal Research Facility, SingHealth Experimental Medicine Centre, Academia 20 College Road, Singapore 169856
| | - Ravisankar Rajarethinam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673
| | - Lakshmanan Manikandan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673
| | - Jason Goh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673
| | - Sierin Lim
- School of Chemistry, Chemical Engineering and Biotechnology, 70 Nanyang Drive, Block N1.3, Nanyang Technological University, Singapore 637457
| | - Terry Steele
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Block N4.1, Singapore 639798.
| |
Collapse
|
11
|
Chen Z, Xing F, Yu P, Zhou Y, Luo R, Liu M, Ritz U. Metal-organic framework-based advanced therapeutic tools for antimicrobial applications. Acta Biomater 2024; 175:27-54. [PMID: 38110135 DOI: 10.1016/j.actbio.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
The escalating concern over conventional antibiotic resistance has emphasized the urgency in developing innovative antimicrobial agents. In recent times, metal-organic frameworks (MOFs) have garnered significant attention within the realm of antimicrobial research due to their multifaceted antimicrobial attributes, including the sustained release of intrinsic or exogenous antimicrobial components, chemodynamically catalyzed generation of reactive oxygen species (ROS), and formation of photogenerated ROS. This comprehensive review provides a thorough overview of the synthetic approaches employed in the production of MOF-based materials, elucidating their underlying antimicrobial mechanisms in depth. The focal point lies in elucidating the research advancements across various antimicrobial modalities, encompassing intrinsic component release system, extraneous component release system, auto-catalytical system, and energy conversion system. Additionally, the progress of MOF-based antimicrobial materials in addressing wound infections, osteomyelitis, and periodontitis is meticulously elucidated, culminating in a summary of the challenges and potential opportunities inherent within the realm of antimicrobial applications for MOF-based materials. STATEMENT OF SIGNIFICANCE: Growing concerns about conventional antibiotic resistance emphasized the need for alternative antimicrobial solutions. Metal-organic frameworks (MOFs) have gained significant attention in antimicrobial research due to their diverse attributes like sustained antimicrobial components release, catalytic generation of reactive oxygen species (ROS), and photogenerated ROS. This review covers MOF synthesis and their antimicrobial mechanisms. It explores advancements in intrinsic and extraneous component release, auto-catalysis, and energy conversion systems. The paper also discusses MOF-based materials' progress in addressing wound infections, osteomyelitis, and periodontitis, along with existing challenges and opportunities. Given the lack of related reviews, our findings hold promise for future MOF applications in antibacterial research, making it relevant to your journal's readership.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Xing
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Rong Luo
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
12
|
Zhang H, Liu N, Zhang Y, Cang H, Cai Z, Huang Z, Li J. Croconaine conjugated cationic polymeric nanoparticles for NIR enhanced bacterial killing. Colloids Surf B Biointerfaces 2024; 233:113665. [PMID: 38008013 DOI: 10.1016/j.colsurfb.2023.113665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Light-triggered treatment approach has been regarded as an effective option for sterilization due to noninvasiveness, limited drug resistance, and minimized adverse effects. Herein, we designed and synthesized a functionalized cationic polymer, CR-PQAC, with croconaine bridging agent and quaternary ammonium groups for photothermal enhanced antimicrobial therapy under near-infrared irradiation. The quaternary ammonium group on the pendent chain endowing CR-PQAC the ability to effectively bind to bacteria. The CR-PQAC could self-assembles into micellar nanoparticles in aqueous solution, which exhibited strong absorption in the near-infrared (NIR) region, excellent photostability, and photothermal conversion efficiency of up to 43.8 %. Notably, the CR-PQAC nanoparticles presented remarkable antibacterial activity against both methicillin-resistant Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) bacteria with 808 nm laser irradiation. Moreover, the developed CR-PQAC has negligible dark cytotoxicity and good hemolytic compatibility against mammalian cells. Both in vitro and in vivo studies have demonstrated that the desirable antibacterial efficacy of CR-PQAC was obtained. Therefore, the proposed CR-PQAC may be a promising antimicrobial agent for NIR-enhanced killing bacterial.
Collapse
Affiliation(s)
- Huaihong Zhang
- School of Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Na Liu
- School of Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yuting Zhang
- School of Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Hui Cang
- School of Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhaosheng Cai
- School of Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ziqun Huang
- College of Materials and Chemical Engineering, West Anhui University, Luan 237012, China.
| | - Jun Li
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|