1
|
Burns R, Chiaro D, Davison H, Arendse CJ, King GM, Guha S. Stabilizing Metal Halide Perovskite Films via Chemical Vapor Deposition and Cryogenic Electron Beam Patterning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406815. [PMID: 39538997 DOI: 10.1002/smll.202406815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Halide perovskites are hailed as semiconductors of the 21st century. Chemical vapor deposition (CVD), a solvent-free method, allows versatility in the growth of thin films of 3- and 2D organic-inorganic halide perovskites. Using CVD grown methylammonium lead iodide (MAPbI3) films as a prototype, the impact of electron beam dosage under cryogenic conditions is evaluated. With 5 kV accelerating voltage, the dosage is varied between 50 and 50000 µC cm-2. An optimum dosage of 35 000 µC cm-2 results in a significant blue shift and enhancement of the photoluminescence peak. Concomitantly, a strong increase in the photocurrent is observed. A similar electron beam treatment on chlorine incorporated MAPbI3, where chlorine is known to passivate defects, shows a blue shift in the photoluminescence without improving the photocurrent properties. Low electron beam dosage under cryogenic conditions is found to damage CVD grown 2D phenylethlyammoinum lead iodide films. Monte Carlo simulations reveal differences in electron beam interaction with 3- and 2D halide perovskite films.
Collapse
Affiliation(s)
- Randy Burns
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Dylan Chiaro
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Harrison Davison
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Christopher J Arendse
- Department of Physics and Astronomy, Nano-Micro Manufacturing Facility, University of the Western Cape, Bellville, 7535, South Africa
| | - Gavin M King
- Department of Physics and Astronomy, Department of Biochemistry, and MU Materials Science and Engineering Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Suchismita Guha
- Department of Physics and Astronomy and MU Materials Science and Engineering Institute, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
2
|
Sanchez-Diaz J, Rodriguez-Pereira J, Das Adhikari S, Mora-Seró I. Synthesis of Hybrid Tin-Based Perovskite Microcrystals for LED Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403835. [PMID: 38973344 PMCID: PMC11425840 DOI: 10.1002/advs.202403835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/11/2024] [Indexed: 07/09/2024]
Abstract
Considerable focus on tin-based perovskites lies on substitution to leadhalide perovskites for the fabrication of eco-friendly optoelectronic devices. The major concern related to tin-based perovskite devices are mainly the stability and the efficiency. However, thinking on the final commercialization scope, other considerations such as precursor stability and cost are major factors to carry about. In this regard, this work presents a robust and facile synthesis of 2D A2SnX4 (A = 4-fluorophenethylammonium(4-FPEA); X = I, Br, I/Br) and 3D FASnI3 perovskite microcrystals following a developed synthesis strategy with low-cost starting materials. In this developed methodology, acetic acid is used as a solvent, which helps to protect from water by making a hydrophobic network over the perovskite surface, and hence provides sufficient ambient and long-term inert atmosphere stability of the microcrystals. Further, the microcrystals are recrystallized in thin films for LED application, allowing the fabrication of orange, near-infrared and purered emitting LEDs. The two-step recrystallized devices show better performance and stability in comparison to the reference devices made by using commercial precursors. Importantly, the developed synthesis methodology is defined as a generic method for the preparation of varieties of hybrid tin-based perovskites microcrystals and application in optoelectronic devices.
Collapse
Affiliation(s)
- Jesus Sanchez-Diaz
- Institute of Advanced Materials (INAM), Universitat Jaume I. Av. de Vicent Sos Baynat, Castellón de la Plana, 12006, Spain
| | - Jhonatan Rodriguez-Pereira
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, Pardubice, 53002, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
| | - Samrat Das Adhikari
- Institute of Advanced Materials (INAM), Universitat Jaume I. Av. de Vicent Sos Baynat, Castellón de la Plana, 12006, Spain
| | - Iván Mora-Seró
- Institute of Advanced Materials (INAM), Universitat Jaume I. Av. de Vicent Sos Baynat, Castellón de la Plana, 12006, Spain
| |
Collapse
|
3
|
Xu X, Fan C, He H, Ye Z. Epitaxial Growth of CsPbBr 3 Pyramids/CdS Nanobelt Heterostructures for High-Performance Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19742-19750. [PMID: 38563423 DOI: 10.1021/acsami.3c19282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Perovskites have great potential for optoelectronic applications due to their high photoluminescence quantum yield, large absorption coefficient, great defect tolerance, and adjustable band gap. Perovskite heterostructures may further enhance the performance of optoelectronic devices. So far, however, most of perovskite heterostructures are fabricated by mechanical stacking or spin coating, which could introduce a large number of defects or impurities at the heterointerface owing to the random stacking process. Herein, we report the epitaxial growth of CsPbBr3 pyramids/CdS nanobelt heterostructures via a 2-step vapor deposition route. The CsPbBr3 triangular pyramids are well aligned on the surface of CdS nanobelts with the epitaxial relationships of (0-22)CsPbBr3||(1-20)CdS and (-211)CsPbBr3||(002)CdS. Time-resolved photoluminescence results reveal that effective charge transfer occurred at the heterointerface, which can be attributed to the type-II band arrangement. Theoretical simulations reveal that the unique CsPbBr3 pyramids/CdS nanobelt structure facilitates diminishing the reflection losses and enhancing the light absorption. The photodetector based on these CsPbBr3 pyramids/CdS nanobelt heterostructures exhibited an ultrahigh photoswitching ratio of 2.14 × 105, a high responsivity up to 4.07 × 104 A/W, a high detectivity reaching 1.36 × 1013 Jones, fast photoresponses (τrise = 472 μs and τdecay = 894 μs), low dark current, and suppressed hysteresis.
Collapse
Affiliation(s)
- Xing Xu
- College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421010, P. R. China
- Wenzhou XINXINTAIJING Tech. Co., Ltd., Wenzhou 325006, P. R. China
| | - Chao Fan
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
- Wenzhou XINXINTAIJING Tech. Co., Ltd., Wenzhou 325006, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Shanxi 030000, P. R. China
| | - Haiping He
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
- Wenzhou XINXINTAIJING Tech. Co., Ltd., Wenzhou 325006, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Shanxi 030000, P. R. China
| | - Zhizhen Ye
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
- Wenzhou XINXINTAIJING Tech. Co., Ltd., Wenzhou 325006, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Shanxi 030000, P. R. China
| |
Collapse
|
4
|
Shi X, Liu C, Zhang X, Zhan G, Cai Y, Zhou D, Zhao Y, Wang N, Hu F, Wang X, Ma H, Wang L. Vapor Phase Growth of Air-Stable Hybrid Perovskite FAPbBr 3 Single-Crystalline Nanosheets. NANO LETTERS 2024; 24:2299-2307. [PMID: 38334593 DOI: 10.1021/acs.nanolett.3c04604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Organic-inorganic hybrid perovskites have attracted tremendous attention owing to their fascinating optoelectronic properties. However, their poor air stability seriously hinders practical applications, which becomes more serious with thickness down to the nanoscale. Here we report a one-step vapor phase growth of HC(NH2)2PbBr3 (FAPbBr3) single-crystalline nanosheets of tunable size up to 50 μm and thickness down to 20 nm. The FAPbBr3 nanosheets demonstrate high stability for over months of exposure to air with no degradation in surface roughness and photoluminescence efficiency. Besides, the FAPbBr3 photodetectors exhibit superior overall performance as compared to previous devices based on nonlayered perovskite nanosheets, such as an ultralow dark current of 24 pA, an ultrahigh responsivity of 1033 A/W, an external quantum efficiency over 3000%, a rapid response time around 25 ms, and a high on/off ratio of 104. This work provides a strategy to tackle the challenges of hybrid perovskites toward integrated optoelectronics with requirements of nanoscale thickness, high stability, and excellent performance.
Collapse
Affiliation(s)
- Xinyu Shi
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Chao Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Xiaomin Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Yuxiao Cai
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Yuwei Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Nana Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Fengrui Hu
- School of Physics, College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiaoyong Wang
- School of Physics, College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Huifang Ma
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| |
Collapse
|