1
|
Rosa NMP, Borges I. Photophysical properties of donor (D)-acceptor (A)-donor (D) diketopyrrolopyrrole (A) systems as donors for applications to organic electronic devices. J Comput Chem 2024; 45:2885-2898. [PMID: 39212065 DOI: 10.1002/jcc.27492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/15/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Fourteen substituted diketopyrrolopyrrole (DPP) molecules in a donor (D)-acceptor (DPP)-donor (D) arrangement were designed. We employed density functional theory, time-dependent DFT, DFT-MRCI and the ab initio wave function second-order algebraic diagrammatic construction (ADC(2)) methods to investigate theoretically these systems. The examined aromatic substituents have one, two, or three hetero- and non-hetero rings. We comprehensively investigated their optical, electronic, and charge transport properties to evaluate potential applications in organic electronic devices. We found that the donor substituents based on one, two, or three aromatic rings bonded to the DPP core can improve the efficiency of an organic solar cell by fine-tuning the highest occupied molecular orbital/lowest unoccupied molecular orbital levels to match acceptors in typical bulk heterojunctions acceptors. Several properties of interest for organic photovoltaic devices were computed. We show that the investigated molecules are promising for applications as donor materials when combined with typical acceptors in bulk heterojunctions because they have appreciable energy conversion efficiencies resulting from their low ionization potentials and high electron affinities. This scenario allows a more effective charge separation and reduces the recombination rates. A comprehensive charge transfer analysis shows that D-A (DDP)-D systems have significant intramolecular charge transfer, further confirming their promise as candidates for donor materials in solar cells. The significant photophysical properties of DPP derivatives, including the high fluorescence emission, also allow these materials to be used in organic light-emitting diodes.
Collapse
Affiliation(s)
- Nathália M P Rosa
- Departamento de Química, Instituto Militar de Engenharia, Rio de Janeiro, Brazil
| | - Itamar Borges
- Departamento de Química, Instituto Militar de Engenharia, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Yamada M. Perspectives on push-pull chromophores derived from click-type [2 + 2] cycloaddition-retroelectrocyclization reactions of electron-rich alkynes and electron-deficient alkenes. Beilstein J Org Chem 2024; 20:125-154. [PMID: 38292046 PMCID: PMC10825803 DOI: 10.3762/bjoc.20.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Various push-pull chromophores can be synthesized in a single and atom-economical step through [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) reactions involving diverse electron-rich alkynes and electron-deficient alkenes. In this review, a comprehensive investigation of the recent and noteworthy advancements in the research on push-pull chromophores prepared via the [2 + 2] CA-RE reaction is conducted. In particular, an overview of the physicochemical properties of the family of these compounds that have been investigated is provided to clarify their potential for future applications.
Collapse
Affiliation(s)
- Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi 4-1-1, Koganei, Tokyo 184-8501, Japan
| |
Collapse
|
3
|
Sheokand M, Ji Tiwari N, Misra R. Near-IR absorbing 1,1,4,4-tetracyanobutadiene-functionalized phenothiazine sulfones. Org Biomol Chem 2023; 21:3896-3905. [PMID: 37165921 DOI: 10.1039/d3ob00361b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Triphenylamine (TPA) substituted π-conjugated chromophores TPA1-TPA5 were designed and synthesized via Pd-catalysed Sonogashira cross-coupling followed by [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) reactions. The effects of acceptor 1,1,4,4-tetracyanobutadiene (TCBD) and cyclohexa-2,5-diene-1,4-diylidene-expanded TCBD (DCNQ) units in the photophysical studies and the HOMO-LUMO energy levels of the phenothiazine sulfones TPA1-TPA5 were evaluated. The absorption spectra of chromophores TPA4 and TPA5 show a significant change due to the incorporation of DCNQ units, resulting in bathochromically shifted broad absorption in the NIR region. The photophysical studies revealed that DCNQ-based chromophores TPA4 and TPA5 have a better D-A interaction than the TCBD functionalized TPA2 and TPA3. Density functional theory calculations and electrochemical studies were performed to examine the molecular geometry and frontier energy levels of the sulfone-based chromophores. Systematic structural modification of the chromophore TPA1 modulated the electrochemical properties and successively tuned the energy gaps for TPA2-TPA5. The theoretically estimated HOMO-LUMO gaps for TPA1-TPA5 exhibit good agreement with the experimental data calculated from the electrochemical studies. The chromophore TPA1 exhibits solvatochromism and aggregation-induced emission (AIE) behavior owing to the emission in the solid state.
Collapse
Affiliation(s)
- Manju Sheokand
- Department of Chemistry, Indian Institute of Technology Indore, Indore-453552, India.
| | - Nikhil Ji Tiwari
- Department of Chemistry, Indian Institute of Technology Indore, Indore-453552, India.
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore-453552, India.
| |
Collapse
|
4
|
Etabti H, Fitri A, Benjelloun AT, Benzakour M, Mcharfi M. Designing and theoretical study of benzocarbazole-based D-π-D type small molecules donor for organic solar cells. J Mol Graph Model 2023; 121:108455. [PMID: 36965230 DOI: 10.1016/j.jmgm.2023.108455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/19/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023]
Abstract
Seven new molecules (S1-S7) of D-π-D type have been designed for organic photovoltaic applications. The DFT and TD-DFT methods were used to investigate the effect of different central bridge groups on the geometric, optoelectronic, and charge transport properties of the constructed molecules. Among them, S4 and S6 have the lowest energy band gap and a red shift in the absorption spectra, revealing the perfect relationship between the central bridge and the strong electron withdrawal character through extended conjugation. Similarly, S6 explored the lowest reorganization energy (RE) value for electron and hole revealing its enhanced charge transition, also shows better ICT characteristics with its highest NLO properties. Compound S4 showed the smallest value of ΔEL-L and Eb, and the highest Voc due to its low HOMO, which improves the photocurrent density of the devices. Thus, the results suggest that bridge modification is a practical strategy to improve the efficiency of OSCs.
Collapse
Affiliation(s)
- Hanane Etabti
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
| | - Asmae Fitri
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Adil Touimi Benjelloun
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed Benzakour
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed Mcharfi
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
5
|
El Mouhi R, Daoui O, Fitri A, Benjelloun AT, El Khattabi S, Benzakour M, Mcharfi M, Kurban M. A strategy to enhance VOC of π-conjugated molecules based on thieno[2,3- b] indole for applications in bulk heterojunction organic solar cells using DFT, TD-DFT, and 3D-QSPR modeling studies. NEW J CHEM 2023. [DOI: 10.1039/d2nj04281a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The electronic structure and optical properties of eight novel molecules based on 8-alkyl-8H-thieno[2,3-b] indole was determined using density functional theory DFT, TD-DFT and 3D-QSPR.
Collapse
Affiliation(s)
- Rahma El Mouhi
- ECIM, LIMAS, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez, Morocco
| | - Ossama Daoui
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, BP Box 72, Fez, Morocco
| | - Asmae Fitri
- ECIM, LIMAS, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez, Morocco
| | - Adil Touimi Benjelloun
- ECIM, LIMAS, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez, Morocco
| | - Souad El Khattabi
- ECIM, LIMAS, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez, Morocco
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, BP Box 72, Fez, Morocco
| | - Mohammed Benzakour
- ECIM, LIMAS, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez, Morocco
| | - Mohammed Mcharfi
- ECIM, LIMAS, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez, Morocco
| | - Mustafa Kurban
- Department of Prosthetics & Orthotics, Faculty of Health Science, Ankara University, Ankara, Turkey
| |
Collapse
|
6
|
Patil Y, Butenschön H, Misra R. Tetracyanobutadiene Bridged Push-Pull Chromophores: Development of New Generation Optoelectronic Materials. CHEM REC 2023; 23:e202200208. [PMID: 36202630 DOI: 10.1002/tcr.202200208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Indexed: 01/21/2023]
Abstract
This review describes the design strategies used for the synthesis of various tetracyanobutadiene bridged donor-acceptor molecular architectures by a click type [2+2] cycloaddition-retroelectrocyclization (CA-RE) reaction sequence. The photophysical and electrochemical properties of the tetracyanobutadiene bridged molecular architectures based on various moieties including diketopyrrolopyrrole, isoindigo, benzothiadiazole, pyrene, pyrazabole, truxene, boron dipyrromethene (BODIPY), phenothiazine, triphenylamine, thiazole and bisthiazole are summarized. Further, we discuss some important applications of the tetracyanobutadiene bridged derivatives in dye sensitized solar cells, bulk heterojunction solar cells and photothermal cancer therapy.
Collapse
Affiliation(s)
- Yuvraj Patil
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India.,Present Address: Institut des Sciences Chimiques de Rennes (ISCR) -, Université de Rennes 1, Rennes, 35700, France
| | - Holger Butenschön
- Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| |
Collapse
|
7
|
Gowri MR, Ramanathan G. Planarity is one of the essential requirements for fluorescence in Red Fluorescent Protein chromophore analogs. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Yan B, Wang X, Hu C, Wu D, Xia J. Asymmetrical and symmetrical naphthalene monoimide fused perylene diimide acceptors for organic solar cells. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Etabti H, Fitri A, Touimi Benjelloun A, Benzakour M, Mcharfi M. Efficient tuning of benzocarbazole based small donor molecules with D-π-A-π-D configuration for high-efficiency solar cells via π-bridge manipulation: A DFT/ TD-DFT study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Zhang Z, Gou G, Wan J, Li H, Wang M, Li L. Synthesis, Structure, and Significant Energy Gap Modulation of Symmetrical Silafluorene-Cored Tetracyanobutadiene and Tetracyanoquinodimethane Derivatives. J Org Chem 2022; 87:2470-2479. [PMID: 35080882 DOI: 10.1021/acs.joc.1c02382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of symmetrical tetracyanobutadiene and tetracyanoquinodimethane derivatives with a D-A-D'-A-D structural configuration and silafluorene core (D') were designed and readily synthesized via a [2+2] cycloaddition-retroelectrocyclization (CA-RE) reaction. We found that the photophysical properties and HOMO and LUMO energy levels and gaps of the silafluorene derivatives could be profoundly remolded through CA-RE reactions and modulated by varying the peripheral donor units from phenyl, m-dimethoxyphenyl, and N,N-dimethylaniline to triphenylamine groups. After CA-RE reactions, the HOMO-LUMO gaps of 1a-1j are in the range of 1.75-2.78 eV, with significant decreases of 0.52-1.46 eV compared to those of the parent silafluorene compounds 2a-2j. The intriguing crystal structures of 1f and 1j were analyzed and elucidated to show their unique potential porosity. The stability, electrochemical, and computational studies were systematically performed to unveil the reshaped electron-donating and -withdrawing nature in one molecular system. 1h-1j with peripherally strong amino donors exhibit an intense and broad intramolecular charge transfer absorption band in the near-infrared region from 550 to 900 nm. The molecular design and synthesis reported here broaden the types and fields of D-A molecular systems for potential applications in organic optoelectronic devices.
Collapse
Affiliation(s)
- Zhaoling Zhang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Gaozhang Gou
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jun Wan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Hui Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Man Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
11
|
Poddar M, Rout Y, Misra R. Donor‐Acceptor Based 1,8‐Naphthalimide Substituted Phenothiazines: Tuning of HOMO‐LUMO Gap. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Madhurima Poddar
- Discipline of Chemistry Indian Institute of Technology Indore Indore 453552 India
| | - Yogajivan Rout
- Discipline of Chemistry Indian Institute of Technology Indore Indore 453552 India
| | - Rajneesh Misra
- Discipline of Chemistry Indian Institute of Technology Indore Indore 453552 India
| |
Collapse
|
12
|
Raheem AA, Murugan P, Shanmugam R, Praveen C. Azulene Bridged π-Distorted Chromophores: The Influence of Structural Symmetry on Optoelectrochemical and Photovoltaic Parameters. Chempluschem 2021; 86:1451-1460. [PMID: 34648248 DOI: 10.1002/cplu.202100392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Indexed: 11/09/2022]
Abstract
Conjugated chromophores possessing π-twisted functionality such as tetracyanobutadiene (TCBD) have emerged as promising active layer materials for organic photovoltaics (OPVs). In this study, we disclose the synthesis of two azulenyl chromophores containing one and two TCBD groups. The symmetrical and unsymmetrical structural characteristics of these molecules inflict dissimilar optoelectronic and electrochemical properties. Based on molar absorptivity, aggregation behavior, HOMO-LUMO energies and other quantum chemical parameters, the symmetrical molecule (TATC2) appears to be a better non-fullerene acceptor (NFA) compared to its unsymmetrical counterpart (TATC1). For instance, higher absorptivity and deeper HOMO-LUMO levels for TATC2 (23950 M-1 cm-1 ; -6.01 eV/-3.86 eV) over TATC1 (12200 M1 cm-1 ; -5.46 eV/-3.64 eV) was observed. Validating this structure-property relationship on solar cell prototypes exhibited higher photovoltaic parameters (VOC =0.54 V, FF=0.48, JSC =6.42 mA/cm2 ) for TATC2 than TATC1 (VOC =0.47 V, FF=0.38, JSC =5.77 mA/cm2 ). Though the device parameters are not high, this work uncovers the intrinsic properties of azulene-tethered twisted chromophores as potential π-semiconductor choice for NFA solar cells. In particular, this report explores the utility of azulene-based π-twisted semiconductors as acceptor material for OPVs with cell efficiencies of 1.70 and 1.04 % for TATC2 and TATC1 respectively.
Collapse
Affiliation(s)
- Abbasriyaludeen Abdul Raheem
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR Laboratory), Karaikudi-630003, Sivagangai District, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Ghaziabad District, Uttar Pradesh, India
| | - Palanichamy Murugan
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR Laboratory), Karaikudi-630003, Sivagangai District, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Ghaziabad District, Uttar Pradesh, India
| | - Ramasamy Shanmugam
- Department of Chemistry, Thiagarajar College, Madurai-625009, Madurai District, Tamil Nadu, India
| | - Chandrasekar Praveen
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR Laboratory), Karaikudi-630003, Sivagangai District, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Ghaziabad District, Uttar Pradesh, India
| |
Collapse
|
13
|
Jang Y, Rout Y, Misra R, D’Souza F. Symmetric and Asymmetric Push–Pull Conjugates: Significance of Pull Group Strength on Charge Transfer and Separation. J Phys Chem B 2021; 125:4067-4075. [DOI: 10.1021/acs.jpcb.0c09996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Youngwoo Jang
- Department of Chemistry, University of North Texas, 1155 Union Circle, # 305070, Denton, Texas 76203-5017, United States
| | - Yogajivan Rout
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Francis D’Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, # 305070, Denton, Texas 76203-5017, United States
| |
Collapse
|
14
|
Philippe C, Bui AT, Batsongo-Boulingui S, Pokladek Z, Matczyszyn K, Mongin O, Lemiègre L, Paul F, Hamlin TA, Trolez Y. 1,1,4,4-Tetracyanobutadiene-Functionalized Anthracenes: Regioselectivity of Cycloadditions in the Synthesis of Small Near-IR Dyes. Org Lett 2021; 23:2007-2012. [PMID: 33635667 PMCID: PMC8155560 DOI: 10.1021/acs.orglett.1c00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two small 1,1,4,4-tetracyanobutadiene-functionalized chromophores were obtained by careful leverage of the regioselectivity of the cycloaddition reaction of tetracyanoethylene with anthracene-ynamide derivatives, inducing either a [2 + 2] or a [4 + 2] Diels-Alder process. DFT calculations unraveled the mechanism of the [2 + 2] cycloaddition-retroelectrocyclization reaction sequence with ynamides and elucidated the differing mechanisms in the two substrates. The synthesized dyes presented panchromatic absorption extending into the near-IR and far-red/near-IR photoluminescence in the solid state up to 1550 nm.
Collapse
Affiliation(s)
- Clotilde Philippe
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Anh Thy Bui
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | | | - Ziemowit Pokladek
- Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Katarzyna Matczyszyn
- Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Olivier Mongin
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Loïc Lemiègre
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Frédéric Paul
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Yann Trolez
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| |
Collapse
|
15
|
Wang X, Huang D, Han J, Hu L, Xiao C, Li Z, Yang R. Backbone Engineering with Asymmetric Core to Finely Tune Phase Separation for High-Performance All-Small-Molecule Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11108-11116. [PMID: 33635071 DOI: 10.1021/acsami.0c21986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In order to obtain high-performance all-small-molecule organic solar cells (ASM-OSCs), it is crucial to exploit the available strategy for molecular design and to further understand key structure-property relationship that can rationally control the blend nanomorphology and influence the physical process. In this work, we design two small molecule donors FBD-S1 and TBD-S2 with identical electron-withdrawing units but various asymmetric central cores, which exhibit differing phase separation in Y6-based blend films. It is found that TBD-S2 with increased phase separation between donor and acceptor can lead to more favorable interpenetrating networks, effective exciton dissociation, and enhanced and more balanced charge transport. Importantly, a remarkable PCE of 13.1% is obtained for TBD-S2:Y6 based ASM-OSCs, which is an attractive photovoltaic performance for ASM-OSCs. This result demonstrates that the central core modification at the atomic level for small molecule donors can delicately control the phase separation and optimize photophysical processes, and refines device performance, which facilitate development in the ASM-OSC research field.
Collapse
Affiliation(s)
- Xunchang Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Da Huang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jianhua Han
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Liwen Hu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Cong Xiao
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Zhiya Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| |
Collapse
|
16
|
Samaher C, Mourad C, Alimi K. Theoretical investigations about the effect of electron-withdrawing groups on proprieties of A-π-D-π-A type small molecules donor for organic solar cells. J Mol Model 2021; 27:54. [PMID: 33507405 DOI: 10.1007/s00894-020-04654-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Taking the reporting donor SM0 as reference, three new A-π-D-π-A type small molecules donors (SM1, SM2, and SM3) were designed via replacing acceptor moieties. The molecular proprieties affecting the cell performance, such as, frontier molecular orbital, open circuit voltage (Voc), absorption spectrum, vertical and adiabatic ionization potential, vertical and adiabatic electronic affinity, and energy driving force ΔEL-L were investigated through the density functional theory (DFT) and the time dependent density functional theory (TD-DFT). All new designed molecules exhibit reduced energy gap, show a red shift absorption band, small energy binding Eb, moderate Voc, and improve the creation of hole and electron as compared to SM0, which demonstrate that these new designed molecules could be used as a promising donors materials for organic solar cell. Additionally, the three new designed molecules present a larger amount charge transfer qCT, a longer length charge transfer DCT than SM0 and have a smaller reorganization energy of hole λ(h) which improve the charge carrier mobilities.
Collapse
Affiliation(s)
- Chebil Samaher
- Laboratoire de Recherche: Synthèse asymétriques Et ingénierie moléculaires des matériaux Nouveaux Pour L'électronique Organique (LR 18ES19) Faculté des Sciences de Monastir, Université de Monastir-Tunisie, Monastir, Tunisia
| | - Chemek Mourad
- Laboratoire de Recherche: Synthèse asymétriques Et ingénierie moléculaires des matériaux Nouveaux Pour L'électronique Organique (LR 18ES19) Faculté des Sciences de Monastir, Université de Monastir-Tunisie, Monastir, Tunisia
| | - Kamel Alimi
- Laboratoire de Recherche: Synthèse asymétriques Et ingénierie moléculaires des matériaux Nouveaux Pour L'électronique Organique (LR 18ES19) Faculté des Sciences de Monastir, Université de Monastir-Tunisie, Monastir, Tunisia.
| |
Collapse
|
17
|
Rout Y, Misra R. Design and synthesis of 1,8-naphthalimide functionalized benzothiadiazoles. NEW J CHEM 2021. [DOI: 10.1039/d1nj00919b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Push-pull derivatives BTD2–BTD5 were designed and synthesized via Pd-catalyzed Sonogashira cross-coupling reaction followed by [2+2] cycloaddition–electrocyclic ring-opening reaction.
Collapse
Affiliation(s)
- Yogajivan Rout
- Department of Chemistry
- Indian Institute of Technology
- Indore 453552
- India
| | - Rajneesh Misra
- Department of Chemistry
- Indian Institute of Technology
- Indore 453552
- India
| |
Collapse
|
18
|
Ahn M, Kim MJ, Cho DW, Wee KR. Electron Push–Pull Effects on Intramolecular Charge Transfer in Perylene-Based Donor–Acceptor Compounds. J Org Chem 2020; 86:403-413. [DOI: 10.1021/acs.joc.0c02149] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mina Ahn
- Department of Chemistry and Institute of Natural Science, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Min-Ji Kim
- Department of Chemistry and Institute of Natural Science, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Dae Won Cho
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Kyung-Ryang Wee
- Department of Chemistry and Institute of Natural Science, Daegu University, Gyeongsan 38453, Republic of Korea
| |
Collapse
|
19
|
Jovaisaite J, Cīrule D, Jeminejs A, Novosjolova I, Turks M, Baronas P, Komskis R, Tumkevicius S, Jonusauskas G, Jursenas S. Proof of principle of a purine D-A-D' ligand based ratiometric chemical sensor harnessing complexation induced intermolecular PET. Phys Chem Chem Phys 2020; 22:26502-26508. [PMID: 33185211 DOI: 10.1039/d0cp04091f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A comprehensive photophysical study of a series of purines, doubly decorated at C2 and C6 positions with identical fragments ranging from electron acceptor to donor groups of different strengths, is presented. The asymmetry of substitutions creates a unique molecular D-A-D' structure possessing two independent electronic charge transfer (CT) systems attributed to each fragment and exhibiting dual-band fluorescence. Moreover, the inherent property of coordination of metal ions by purines was enriched due to a presence of nearby triazoles used as spacers for donor or acceptor fragments. New molecules present a bidentate coordination mode, which makes the assembly of several ligands with one metal cation possible. This property was exploited to create a new concept of a ratiometric chemical fluorescence sensor involving the photoinduced electron transfer between branches of different ligands as a mechanism of fluorescence modulation.
Collapse
Affiliation(s)
- Justina Jovaisaite
- Institute of Photonics and Nanotechnology, Faculty of Physics, Vilnius University, Sauletekis Av. 3, LT-10222 Vilnius, Lithuania.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Simón Marqués P, Castán JMA, Raul BAL, Londi G, Ramirez I, Pshenichnikov MS, Beljonne D, Walzer K, Blais M, Allain M, Cabanetos C, Blanchard P. Triphenylamine/Tetracyanobutadiene-Based π-Conjugated Push-Pull Molecules End-Capped with Arene Platforms: Synthesis, Photophysics, and Photovoltaic Response. Chemistry 2020; 26:16422-16433. [PMID: 32701173 DOI: 10.1002/chem.202002810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 01/08/2023]
Abstract
π-Conjugated push-pull molecules based on triphenylamine and 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) have been functionalized with different terminal arene units. In solution, these highly TCBD-twisted systems showed a strong internal charge transfer band in the visible spectrum and no detectable photoluminescence (PL). Photophysical and theoretical investigations revealed very short singlet excited state deactivation time of ≈10 ps resulting from significant conformational changes of the TCBD-arene moiety upon photoexcitation, opening a pathway for non-radiative decay. The PL was recovered in vacuum-processed films or when the molecules were dispersed in a PMMA matrix leading to a significant increase of the excited state deactivation time. As shown by cyclic voltammetry, these molecules can act as electron donors compared to C60 . Hence, vacuum-processed planar heterojunction organic solar cells were fabricated leading to a maximum power conversion efficiency of ca. 1.9 % which decreases with the increase of the arene size.
Collapse
Affiliation(s)
- Pablo Simón Marqués
- MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 bd Lavoisier, 49045, ANGERS Cedex, France
| | - José María Andrés Castán
- MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 bd Lavoisier, 49045, ANGERS Cedex, France
| | - Benedito A L Raul
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Giacomo Londi
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, 7000, Mons, Belgium
| | - Ivan Ramirez
- HELIATEK GmbH, Treidlerstraße 3, 01139, Dresden, Germany
| | - Maxim S Pshenichnikov
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, 7000, Mons, Belgium
| | - Karsten Walzer
- HELIATEK GmbH, Treidlerstraße 3, 01139, Dresden, Germany
| | - Martin Blais
- MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 bd Lavoisier, 49045, ANGERS Cedex, France
| | - Magali Allain
- MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 bd Lavoisier, 49045, ANGERS Cedex, France
| | - Clément Cabanetos
- MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 bd Lavoisier, 49045, ANGERS Cedex, France
| | - Philippe Blanchard
- MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 bd Lavoisier, 49045, ANGERS Cedex, France
| |
Collapse
|
21
|
Planar D-π-A Configured Dimethoxy Vinylbenzene Based Small Organic Molecule for Solution-Processed Bulk Heterojunction Organic Solar Cells. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new and effective planar D-π-A configured small organic molecule (SOM) of 2-5-(3,5-dimethoxystyryl)thiophen-2-yl)methylene)-1H-indene-1,3(2H)-dione, abbreviated as DVB-T-ID, was synthesized using 1,3-indanedione acceptor and dimethoxy vinylbenzene donor units, connected through a thiophene π-spacer. The presence of a dimethoxy vinylbenzene unit and π-spacer in DVB-T-ID significantly improved the absorption behavior by displaying maximum absorbance at ~515 nm, and the reasonable band gap was estimated as ~2.06 eV. The electronic properties revealed that DVB-T-ID SOMs exhibited promising HOMO (−5.32 eV) and LUMO (−3.26 eV). The synthesized DVB-T-ID SOM was utilized as donor material for fabricating solution-processed bulk heterojunction organic solar cells (BHJ-OSCs) and showed a reasonable power conversion efficiency (PCE) of ~3.1% with DVB-T-ID:PC61BM (1:2, w/w) active layer. The outcome of this work clearly reflects that synthesized DVB-T-ID based on 1,3-indanedione units is a promising absorber (donor) material for BHJ-OSCs.
Collapse
|
22
|
Tang Y, Liu X, Wang Y, Liu Q, Li X, Li C, Shen X, Xie Y. Solar cells sensitized by porphyrin dyes containing a substituted carbazole donor with synergistically extended absorption and suppressed the dye aggregation. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.12.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Lim DH, Kang M, Jang SY, Hwang K, Kim IB, Jung E, Jo YR, Kim YJ, Kim J, Choi H, Kim TW, Mathur S, Kim BJ, Kim DY. Unsymmetrical Small Molecules for Broad-Band Photoresponse and Efficient Charge Transport in Organic Phototransistors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25066-25074. [PMID: 32297509 DOI: 10.1021/acsami.0c02229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic photosensitizers have been investigated as effective light-sensing elements that can promote strong absorption with high field-effect mobility in organic phototransistors (OPTs). In this study, a novel organic photosensitizer is synthesized to demonstrate broad-band photoresponse with enhanced electrical performance. An unsymmetrical small molecule of a solubilizing donor (Dsol)-acceptor (A)-dye donor (Ddye) type connected with a twisted conjugation system is designed for broad-band detection (ranging from 250 to 700 nm). This molecule has high solubility, thereby facilitating the formation of uniformly dispersed nanoparticles in an insulating polymer matrix, which is deposited on top of OPT semiconductors by a simple solution process. The broad-band photodetection shown by the organic photosensitizer is realized with improved mobility close to an order of magnitude and high on/off current ratio (∼105) of the organic semiconductor. Furthermore, p-type charge transport behavior in the channel of the OPT is enhanced through the intrinsic electron-accepting ability of the organic photosensitizer caused by the unique molecular configuration. These structural properties of organic photosensitizers contribute to an improvement in broad-band photosensing systems with new optoelectronic properties and functionalities.
Collapse
Affiliation(s)
- Dae-Hee Lim
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61002, Republic of Korea
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Minji Kang
- Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61002, Republic of Korea
| | - Soo-Young Jang
- Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61002, Republic of Korea
| | - Kyoungtae Hwang
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61002, Republic of Korea
| | - In-Bok Kim
- Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61002, Republic of Korea
| | - Eunhwan Jung
- Inorganic and Materials Chemistry, University of Cologne, Cologne 50939, Germany
| | - Yong-Ryun Jo
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61002, Republic of Korea
| | - Yeon-Ju Kim
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61002, Republic of Korea
| | - Jihong Kim
- Korea Institute of S&T Evaluation and Planning (KISTEP), Seoul 06775, Republic of Korea
| | - Heechae Choi
- Inorganic and Materials Chemistry, University of Cologne, Cologne 50939, Germany
| | - Tae-Wook Kim
- Department of Flexible and Printable Electronics, Jeonbuk National University, 567 Baekle-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Sanjay Mathur
- Inorganic and Materials Chemistry, University of Cologne, Cologne 50939, Germany
| | - Bong-Joong Kim
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61002, Republic of Korea
| | - Dong-Yu Kim
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61002, Republic of Korea
- Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61002, Republic of Korea
| |
Collapse
|
24
|
Jin R, Zhang X, Xiao W. Theoretical Studies of Photophysical Properties of D-π-A-π-D-Type Diketopyrrolopyrrole-Based Molecules for Organic Light-Emitting Diodes and Organic Solar Cells. Molecules 2020; 25:E667. [PMID: 32033188 PMCID: PMC7038201 DOI: 10.3390/molecules25030667] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 11/17/2022] Open
Abstract
A series of D-π-A diketopyrrolopyrrole(DPP)-based small molecules were designed for organic light-emitting diode(OLEDs) and organic solar cell(OSCs) applications. Applying the PBE0/6-31G(d,p) method, the ground state geometry and relevant electronic properties were investigated. The first excited singlet state geometry and the absorption and fluorescent spectra were simulated at the TD-PBE0/6-31G(d,p) level. The calculated results revealed that the photophysical properties were affected through the introduction of different end groups. Furthermore, the electronic transitions corresponding to absorption and emission exhibited an intramolecular charge transfer feature. Our results suggest that the designed molecules acted not only as luminescent for OLEDs, but also as donor materials in OSCs. Moreover, they can also be used as potential electron transfer materials for OLEDs and OSCs.
Collapse
Affiliation(s)
- Ruifa Jin
- College of Chemistry and Life Science, Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng 024000, China; (X.Z.); (W.X.)
| | | | | |
Collapse
|
25
|
Singh A, Gupta R, Siddiqui N, Kumar Iyer SS, Ramanathan G. Tuning Thin Film Properties by Structural Modulations in Red Fluorescent Protein Chromophore Analogues. ChemistrySelect 2019. [DOI: 10.1002/slct.201903024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ashish Singh
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Raghav Gupta
- Department of Electrical EngineeringIndian Institute of Technology Kanpur Kanpur 208016 India
- Samtel Centre for Display TechnologiesIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Nazia Siddiqui
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - S. Sundar Kumar Iyer
- Department of Electrical EngineeringIndian Institute of Technology Kanpur Kanpur 208016 India
- Samtel Centre for Display TechnologiesIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Gurunath Ramanathan
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| |
Collapse
|
26
|
Hachi M, Slimi A, Fitri A, ElKhattabi S, Benjelloun AT, Benzakour M, Mcharfi M. New small organic molecules based on thieno[2,3-b]indole for efficient bulk heterojunction organic solar cells: a computational study. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1662956] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mohamed Hachi
- Faculty of Sciences Dhar el Mahraz, ECIM, LIMME, Sidi Mohamed Ben Abdallah University, Fez, Morocco
| | - Ahmed Slimi
- Faculty of Sciences Dhar el Mahraz, ECIM, LIMME, Sidi Mohamed Ben Abdallah University, Fez, Morocco
| | - Asmae Fitri
- Faculty of Sciences Dhar el Mahraz, ECIM, LIMME, Sidi Mohamed Ben Abdallah University, Fez, Morocco
| | - Souad ElKhattabi
- Faculty of Sciences Dhar el Mahraz, ECIM, LIMME, Sidi Mohamed Ben Abdallah University, Fez, Morocco
- National School of Applied Sciences, LISA, Sidi Mohamed Ben Abdallah University, Fez, Morocco
| | - Adil Touimi Benjelloun
- Faculty of Sciences Dhar el Mahraz, ECIM, LIMME, Sidi Mohamed Ben Abdallah University, Fez, Morocco
| | - Mohammed Benzakour
- Faculty of Sciences Dhar el Mahraz, ECIM, LIMME, Sidi Mohamed Ben Abdallah University, Fez, Morocco
| | - Mohammed Mcharfi
- Faculty of Sciences Dhar el Mahraz, ECIM, LIMME, Sidi Mohamed Ben Abdallah University, Fez, Morocco
| |
Collapse
|
27
|
Drozdov FV, Luponosov YN, Svidchenko EA, Peregudova SM, Dmitryakov PV, Chvalun SN, Ponomarenko SA. Novel conjugated copolymers with dithienyl and cyclopentadithienyl substituted dicyanoethene acceptor blocks. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.09.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Zhang H, Ma Y, Sun Y, Liu J, Liu Y, Zhao G. The Effect of Donor Molecular Structure on Power Conversion Efficiency of Small-Molecule-Based Organic Solar Cells. MINI-REV ORG CHEM 2019. [DOI: 10.2174/1570193x15666180627145325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this review, small-molecule donors for application in organic solar cells reported in the last
three years are highlighted. Especially, the effect of donor molecular structure on power conversion efficiency
of organic solar cells is reported in detail. Furthermore, the mechanism is proposed and discussed
for explaining the relationship between structure and power conversion efficiency. These results
and discussions draw some rules for rational donor molecular design, which is very important for further
improving the power conversion efficiency of organic solar cells based on the small-molecule donor.
Collapse
Affiliation(s)
- Hui Zhang
- College of Computer and Control Engineering, North University of China, Taiyuan 030051, China
| | - Yibing Ma
- Shanxi Province Key Laboratory of Functional Nanocomposites, North University of China, Taiyuan 030051, China
| | - Youyi Sun
- Shanxi Province Key Laboratory of Functional Nanocomposites, North University of China, Taiyuan 030051, China
| | - Jialei Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yaqing Liu
- Shanxi Province Key Laboratory of Functional Nanocomposites, North University of China, Taiyuan 030051, China
| | - Guizhe Zhao
- Shanxi Province Key Laboratory of Functional Nanocomposites, North University of China, Taiyuan 030051, China
| |
Collapse
|
29
|
El Mouhi R, El Khattabi S, Hachi M, Fitri A, Benjelloun AT, Benzakour M, Mcharfi M, Bouachrine M. DFT and TD-DFT calculations on thieno[2,3-b]indole-based compounds for application in organic bulk heterojunction (BHJ) solar cells. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3674-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Haque A, Al-Balushi RA, Al-Busaidi IJ, Khan MS, Raithby PR. Rise of Conjugated Poly-ynes and Poly(Metalla-ynes): From Design Through Synthesis to Structure-Property Relationships and Applications. Chem Rev 2018; 118:8474-8597. [PMID: 30112905 DOI: 10.1021/acs.chemrev.8b00022] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conjugated poly-ynes and poly(metalla-ynes) constitute an important class of new materials with potential application in various domains of science. The key factors responsible for the diverse usage of these materials is their intriguing and tunable chemical and photophysical properties. This review highlights fascinating advances made in the field of conjugated organic poly-ynes and poly(metalla-ynes) incorporating group 4-11 metals. This includes several important aspects of conjugated poly-ynes viz. synthetic protocols, bonding, electronic structure, nature of luminescence, structure-property relationships, diverse applications, and concluding remarks. Furthermore, we delineated the future directions and challenges in this particular area of research.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Rayya A Al-Balushi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Idris Juma Al-Busaidi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Muhammad S Khan
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Paul R Raithby
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| |
Collapse
|
31
|
Shoji T, Miura K, Araki T, Maruyama A, Ohta A, Sekiguchi R, Ito S, Okujima T. Synthesis of 2-Methyl-1-azulenyl Tetracyanobutadienes and Dicyanoquinodimethanes: Substituent Effect of 2-Methyl Moiety on the Azulene Ring toward the Optical and Electrochemical Properties. J Org Chem 2018; 83:6690-6705. [DOI: 10.1021/acs.joc.8b01067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Taku Shoji
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
| | - Kota Miura
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
| | - Takanori Araki
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
| | - Akifumi Maruyama
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
| | - Akira Ohta
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
| | - Ryuta Sekiguchi
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
| | - Shunji Ito
- Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
| | - Tetsuo Okujima
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
32
|
Singh A, Badi-Uz-Zama K, Ramanathan G. Protonation of the imino nitrogen deactivates the excited state of imidazolin-5-one in the solid state. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1429-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Revoju S, Biswas S, Eliasson B, Sharma GD. Asymmetric triphenylamine-phenothiazine based small molecules with varying terminal acceptors for solution processed bulk-heterojunction organic solar cells. Phys Chem Chem Phys 2018; 20:6390-6400. [PMID: 29441385 DOI: 10.1039/c7cp08653a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three compounds consisting of the electron-donating triphenylamine-phenothiazine conjugate backbone and each of the electron-withdrawing groups 3-ethylrhodanine, malononitrile and 1,3-indandione have been synthesized and used as donors in blends with [6,6]-phenyl-C70-butyric acid methyl ester (PC71BM) for organic solar cell devices. After improvements of the active layer structure by a selected donor-to-acceptor weight ratio and a two-step solvent and thermal annealing, the organic solar cells showed power conversion efficiency (PCE) values in the range of 4.79-7.25%. The highest PCE was obtained for the bulk heterojunction device with the indandione compound, which can be attributed to its better absorption profile, higher crystallinity, more balanced electron and hole transport, higher charge collection efficiency and reduced recombination, in comparison with the photovoltaic cells from the other two compounds. DFT-calculated characteristics, absorption spectra and cyclic voltammetry of the compounds, along with X-ray diffraction patterns of the blend films, are used to validate the photovoltaic results.
Collapse
Affiliation(s)
- Srikanth Revoju
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden.
| | | | | | | |
Collapse
|
34
|
Michinobu T, Diederich F. The [2+2] Cycloaddition-Retroelectrocyclization (CA-RE) Click Reaction: Facile Access to Molecular and Polymeric Push-Pull Chromophores. Angew Chem Int Ed Engl 2018; 57:3552-3577. [DOI: 10.1002/anie.201711605] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Tsuyoshi Michinobu
- Department of Materials Science and Engineering; Tokyo Institute of Technology; 2-12-1 Ookayama, Meguro-ku Tokyo 1 52-8552 Japan
| | - François Diederich
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
35
|
Michinobu T, Diederich F. Die [2+2]-Cycloadditions-Retroelektrocyclisierungs(CA-RE)-Klick-Reaktion: ein einfacher Zugang zu molekularen und polymeren Push-pull-Chromophoren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711605] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tsuyoshi Michinobu
- Department of Materials Science and Engineering; Tokyo Institute of Technology; 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
| | - François Diederich
- Laboratorium für Organische Chemie; ETH-Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| |
Collapse
|
36
|
Patil Y, Misra R. Diketopyrrolopyrrole-Based and Tetracyano-Bridged Small Molecules for Bulk Heterojunction Organic Solar Cells. Chem Asian J 2018; 13:220-229. [PMID: 29219247 DOI: 10.1002/asia.201701493] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/08/2017] [Indexed: 11/11/2022]
Abstract
Research on bulk heterojunction organic solar cells has rapidly grown over the past two decades, and device performance has reached power conversion efficiencies over 13 %. In this focus review, we highlight design strategies used for the development of diketopyrrolopyrrole- and tetracyano-based molecular donors. We also describe how tetracyano-bridged non-fullerene acceptors can be developed by a click-type [2+2]-cycloaddition-electrocyclic ring-opening reaction of acetylene-bridged small molecules with tetracyanoethylene by simple modification.
Collapse
Affiliation(s)
- Yuvraj Patil
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| |
Collapse
|
37
|
Sharma R, Maragani R, Misra R. C3-Symmetric star shaped donor–acceptor truxenes: synthesis and photophysical, electrochemical and computational studies. NEW J CHEM 2018. [DOI: 10.1039/c7nj03934d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This manuscript reports the design and synthesis of C3-symmetric star shaped donor and acceptor substituted truxenes 6, 7, 10 and 11 using Pd-catalyzed Sonogashira cross-coupling and [2+2] cycloaddition–retroelectrocyclization reactions.
Collapse
Affiliation(s)
- Rekha Sharma
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| | - Ramesh Maragani
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| | - Rajneesh Misra
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| |
Collapse
|
38
|
Maragani R, Bijesh S, Sharma R, Misra R. C
s
-Symmetric Donor-Acceptor Bis(thiazole)s: Synthesis and Photophysical, Electrochemical, and Computational Studies. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ramesh Maragani
- IIT Indore; Dept. of Chemistry; Khandwa Road, 452017, Indore Madhya Pradesh 453552 India
| | - S. Bijesh
- IIT Indore; Dept. of Chemistry; Khandwa Road, 452017, Indore Madhya Pradesh 453552 India
| | - Rekha Sharma
- IIT Indore; Dept. of Chemistry; Khandwa Road, 452017, Indore Madhya Pradesh 453552 India
| | - Rajneesh Misra
- IIT Indore; Dept. of Chemistry; Khandwa Road, 452017, Indore Madhya Pradesh 453552 India
| |
Collapse
|
39
|
Patil Y, Misra R. Tetracyanobutadiene bridged ferrocene and triphenylamine functionalized pyrazabole dimers. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.03.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Rout Y, Gautam P, Misra R. Unsymmetrical and Symmetrical Push–Pull Phenothiazines. J Org Chem 2017; 82:6840-6845. [DOI: 10.1021/acs.joc.7b00991] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yogajivan Rout
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Prabhat Gautam
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| |
Collapse
|
41
|
Liang T, Xiao L, Gao K, Xu W, Peng X, Cao Y. Modifying the Chemical Structure of a Porphyrin Small Molecule with Benzothiophene Groups for the Reproducible Fabrication of High Performance Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:7131-7138. [PMID: 28185448 DOI: 10.1021/acsami.6b15241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A porphyrin-based molecule DPPEZnP-BzTBO with bulky benzothiophene groups was designed and synthesized as an electron donor material for bulk heterojunction (BHJ) solar cells. The optimized devices under thermal annealing (TA) and then chloroform solvent vapor anneanling (SVA) for 80 s exhibited an outstanding power conversion efficiencie (PCE) of 9.08%. Contrasted with the smaller thienyl substituted analogues we reported previously, DPPEZnP-BzTBO-based BHJ solar cells exhibited a higher open circuit voltage due to the lower highest occupied molecular orbital energy level. The TA post-treatment of the active layers induced the formation of more crystallized components, and the subsequent SVA provided a driving force for the domain growth, resulting in more obvious phase segregation between the donor and the acceptor in nanoscale. Furthermore, the PCEs kept above 95% upon the further SVA treatment within the time range of 60 to 95 s probably because the bulky benzothiophene groups retard the too quick change of crystallinity, providing a wide processing window for the reproducible device fabrication.
Collapse
Affiliation(s)
- Tianxiang Liang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology , 381 Wushan Road, Guangzhou 510640, China
| | - Liangang Xiao
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology , 381 Wushan Road, Guangzhou 510640, China
| | - Ke Gao
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology , 381 Wushan Road, Guangzhou 510640, China
| | - Wenzhan Xu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology , 381 Wushan Road, Guangzhou 510640, China
| | - Xiaobin Peng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology , 381 Wushan Road, Guangzhou 510640, China
| | - Yong Cao
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology , 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
42
|
Gautam P, Sharma R, Misra R, Keshtov ML, Kuklin SA, Sharma GD. Donor-acceptor-acceptor (D-A-A) type 1,8-naphthalimides as non-fullerene small molecule acceptors for bulk heterojunction solar cells. Chem Sci 2017; 8:2017-2024. [PMID: 28451319 PMCID: PMC5399534 DOI: 10.1039/c6sc04461a] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/05/2016] [Indexed: 12/29/2022] Open
Abstract
Donor-acceptor-acceptor (D-A-A) type 1,8-naphthalimide based small molecules SM1 and SM2 functionalized with tetracyanobutadiene (TCBD) and dicyanoquino-dimethane (DCNQ) modules, showing strong absorption in the visible and near-infrared (NIR) region are reported. TCBD and DCNQ linked SM1 and SM2 exhibit multi-redox waves. The electrochemical and optical HOMO-LUMO gaps show similar trends. These SMs exhibit a broad absorption profile which is complementary to the D-A copolymer P donor and also possess an appropriate lowest unoccupied molecular orbital (LUMO) to serve as an acceptor with P with a LUMO level of -3.33 eV. The organic solar cells based on P:SM1 and P:SM2 exhibit a PCE of 4.94% and 6.11%, respectively. The higher value of the PCE for the SM2 based organic solar cells has been attributed to the broader absorption profile, more balanced charge transport and lower photon energy loss. The values of Voc of the organic solar cells for the SM1 acceptor (1.06 V and 1.02 V without and with solvent additive) are the highest values reported for devices based on non-fullerene acceptors to the best of our knowledge. The energy loss (Eloss) of 0.56 eV and 0.48 eV for SM1 and SM2 based devices, respectively is one of the smallest reported for BHJ organic solar cells.
Collapse
Affiliation(s)
- Prabhat Gautam
- Department of Chemistry , Indian Institute of Technology Indore , Indore 453552 , India .
| | - Rahul Sharma
- Department of Chemistry , Indian Institute of Technology Indore , Indore 453552 , India .
| | - Rajneesh Misra
- Department of Chemistry , Indian Institute of Technology Indore , Indore 453552 , India .
| | - M L Keshtov
- Institute of Organoelement Compounds of the Russian Academy of Sciences , Vavilova St., 28 , 119991 Moscow , Russian Federation
| | - S A Kuklin
- Institute of Organoelement Compounds of the Russian Academy of Sciences , Vavilova St., 28 , 119991 Moscow , Russian Federation
| | - Ganesh D Sharma
- Department of Physics , LNM Institute of Information Technology , Jamdoli , Jaipur 302031 , Rajasthan , India .
| |
Collapse
|
43
|
Cheng Q, Han X, Tong Y, Huang C, Ding J, Hou H. Two 3D Cd(II) Metal–Organic Frameworks Linked by Benzothiadiazole Dicarboxylates: Fantastic S@Cd6 Cage, Benzothiadiazole Antidimmer, and Dual Emission. Inorg Chem 2017; 56:1696-1705. [DOI: 10.1021/acs.inorgchem.6b02863] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qing Cheng
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, P. R. China
| | - Xiao Han
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, P. R. China
| | - Yue Tong
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, P. R. China
| | - Chao Huang
- Center
for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Jie Ding
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, P. R. China
| | - Hongwei Hou
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, P. R. China
| |
Collapse
|
44
|
Shang Q, Wang M, Wei J, Zheng Q. Indenothiophene-based asymmetric small molecules for organic solar cells. RSC Adv 2017. [DOI: 10.1039/c7ra01902e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Indenothiophene-based asymmetric small molecules have been designed, synthesized, and used for organic solar cells with efficiencies up to 4.57%.
Collapse
Affiliation(s)
- Qi Shang
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
- State Key Laboratory of Structural Chemistry
| | - Meng Wang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Jiajun Wei
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Qingdong Zheng
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| |
Collapse
|
45
|
Busireddy MR, Raju Mantena VN, Chereddy NR, Shanigaram B, Kotamarthi B, Biswas S, Sharma GD, Vaidya JR. A dithieno[3,2-b:2',3'-d]pyrrole based, NIR absorbing, solution processable, small molecule donor for efficient bulk heterojunction solar cells. Phys Chem Chem Phys 2016; 18:32096-32106. [PMID: 27847946 DOI: 10.1039/c6cp06304g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel, NIR absorbing organic small molecular donor material denoted as ICT3 with an A-D-D-D-A architecture having dithieno[3,2-b:2',3'-d]pyrrole (DTP) and butylrhodanine as donor and acceptor moieties, respectively, is synthesized and its thermal, photophysical, electrochemical and photovoltaic properties are explored. ICT3 has excellent stability over a broad range of temperatures with a decomposition temperature (Td corresponds to 5% weight loss) of 372 °C, soluble in most common organic solvents (solubility up to 30 mg mL-1) and suitable for solution processing during device fabrication. ICT3 has broad (520-820 nm) and intense visible region absorption (molar excitation coefficient is 1.69 × 105 mol-1 cm-1) and has suitable HOMO and LUMO energy levels with the [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) acceptor for efficient exciton dissociation and charge transfer. Bulk heterojunction solar cells (BHJSCs) with an indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)/ICT3:PC71BM/poly(9,9-bis(3'-(N,N-dimethylamino)propyl)fluorene-2,7-diyl)-alt-(9,9-dioctylfluorene-2,7-diyl) (PFN)/aluminium (Al) structure are fabricated and the BHJSCs with the active layer as cast from chloroform solution displayed a power conversion efficiency (PCE) of 3.04% (JSC = 8.22 mA cm-2, VOC = 0.86 V and FF = 0.43). Annealing the active layer significantly improved the PCE of these BHJSCs. While thermal annealing of the active layer improved the PCE of the BHJSCs to 4.94%, thermal followed by solvent vapour annealing enhanced the PCE to 6.53%. X-ray diffraction and atomic force microscopy analyses are carried out on the active layer and these results revealed that annealing treatment improves the crystallinity and nanoscale morphology of the active layer, enriches the device exciton generation and dissociation efficiency, charge transport and collection efficiency and reduces carrier recombination. The observed higher PCE (6.53%) of the BHJSCs having ICT3 with a DTP donor moiety broadens the scope to develop new, efficient DTP based small molecular donor materials for BHJSCs.
Collapse
Affiliation(s)
- Manohar Reddy Busireddy
- Crop Protection Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
| | | | - Narendra Reddy Chereddy
- Crop Protection Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
| | - Balaiah Shanigaram
- Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Bhanuprakash Kotamarthi
- Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Subhayan Biswas
- Department of Physics, The LNM Institute of Information Technology, Jamdoli, Jaipur, India.
| | - Ganesh Datt Sharma
- Department of Physics, The LNM Institute of Information Technology, Jamdoli, Jaipur, India.
| | - Jayathirtha Rao Vaidya
- Crop Protection Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India. and AcSIR, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| |
Collapse
|
46
|
Larsen CB, van der Salm H, Shillito GE, Lucas NT, Gordon KC. Tuning the Rainbow: Systematic Modulation of Donor–Acceptor Systems through Donor Substituents and Solvent. Inorg Chem 2016; 55:8446-58. [DOI: 10.1021/acs.inorgchem.6b01039] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Holly van der Salm
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | | - Nigel T. Lucas
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Keith C. Gordon
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| |
Collapse
|
47
|
Patil Y, Jadhav T, Dhokale B, Misra R. Design and Synthesis of Low HOMO-LUMO GapN-Phenylcarbazole-Substituted Diketopyrrolopyrroles. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600194] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuvraj Patil
- Department of Chemistry; Indian Institute of Technology Indore; Indore 452020 India
| | - Thaksen Jadhav
- Department of Chemistry; Indian Institute of Technology Indore; Indore 452020 India
| | - Bhausaheb Dhokale
- Department of Chemistry; Indian Institute of Technology Indore; Indore 452020 India
| | - Rajneesh Misra
- Department of Chemistry; Indian Institute of Technology Indore; Indore 452020 India
| |
Collapse
|
48
|
Lim I, Bui HT, Shrestha NK, Lee JK, Han SH. Interfacial Engineering for Enhanced Light Absorption and Charge Transfer of a Solution-Processed Bulk Heterojunction Based on Heptazole as a Small Molecule Type of Donor. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8637-8643. [PMID: 26999287 DOI: 10.1021/acsami.5b12614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the present study, a solution-processed organic semiconductor based on indolocarbazole derivative (heptazole) is introduced as a p-type donor material for a bulk-heterojunction photovoltaic device. The heptazole has an optical band gap of 2.97 eV, and its highest occupied molecular orbital-lowest unoccupied molecular orbital energy levels are compactable with the PC60BM to construct a donor-acceptor heterojuction for energy harvesting and transfer. When the bulk-heterojunction photovoltaic devices consisting of ITO/PEDOT:PSS/heptazole:PC60BM/Al with different blending ratio of heptazole:PC60BM were constructed, the cell with 1:1 blending ratio exhibited the best power conversion efficiency. Further, when an indoline organic dye (D149) was introduced as an interfacial modifier to the above donor/acceptor bulk heterojunction, the device demonstrated an enhanced overall power conversion efficiency from 1.26% to 2.51% hence demonstrating enhancement by the factor of 100%. The device was further characterized using electronic absorption spectroscopy, photoluminescence spectroscopy, electrochemical impedance spectroscopy, and the photovoltage decay kinetics. These studies reveal that the enhanced power conversion efficiency of the device is due to the enhanced charge transfer with the complementary light absorption feature of the interfacial D149 dye molecules.
Collapse
Affiliation(s)
- Iseul Lim
- Institute of Materials Design, Department of Chemistry, Hanyang University , Seongdong-gu, 133791 Seoul, Republic of Korea
| | - Hoa Thi Bui
- Institute of Materials Design, Department of Chemistry, Hanyang University , Seongdong-gu, 133791 Seoul, Republic of Korea
| | - Nabeen K Shrestha
- Institute of Materials Design, Department of Chemistry, Hanyang University , Seongdong-gu, 133791 Seoul, Republic of Korea
| | - Joong Kee Lee
- Energy Storage Research Centre, Korea Institute of Science and Technology , Hwarangno 14-gil 5, Seongbuk-gu, 136791 Seoul, Republic of Korea
| | - Sung-Hwan Han
- Institute of Materials Design, Department of Chemistry, Hanyang University , Seongdong-gu, 133791 Seoul, Republic of Korea
| |
Collapse
|
49
|
Maragani R, Gautam P, Mobin SM, Misra R. C2-Symmetric ferrocenyl bisthiazoles: synthesis, photophysical, electrochemical and DFT studies. Dalton Trans 2016; 45:4802-9. [PMID: 26866584 DOI: 10.1039/c5dt04988a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of donor-acceptor ferrocenyl substituted bisthiazoles 3-8 were designed and synthesized by the Pd-catalyzed Suzuki, Heck, and Sonogashira cross-coupling reactions. Their photophysical, electrochemical and computational studies reveal strong donor-acceptor interactions. The photonic and electrochemical studies show that the ferrocenyl bisthiazoles with vinyl linkage ferrocenyl-bisthiazole 4, show better electronic communication compared to rest of the ferrocenyl bisthiazoles. The time dependent density functional theory (TD-DFT) calculation at B3LYP on the ferrocenyl substituted bisthiazoles 3-5 was performed, in which the ferrocenyl-bisthiazole 4 shows strong donor-acceptor interactions compared to the Fc-bisthiazoles 3 and 5. The thermal stability of the ferrocenyl substituted bisthiazoles 3-8 is reported, in which Fc-bisthiazole 8 shows high thermal stability. The single crystal structures of ferrocenyl-bisthiazoles 3 and 5 are reported.
Collapse
Affiliation(s)
- Ramesh Maragani
- Department of Chemistry, Indian Institute of Technology Indore, Indore-452 017, India.
| | | | | | | |
Collapse
|
50
|
Yang L, Yang D, Chen Y, Luo Q, Zhang M, Huang Y, Lu Z, Sasabe H, Kido J. Unsymmetrical squaraines with new linkage manner for high-performance solution-processed small-molecule organic photovoltaic cells. RSC Adv 2016. [DOI: 10.1039/c5ra24186c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two unsymmetrical squaraines were employed as donors for high performance BHJ-OPV devices with Jsc > 13 mA cm−2 and PCE > 5%.
Collapse
Affiliation(s)
- Lin Yang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Daobin Yang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yao Chen
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qian Luo
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Mangang Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yan Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zhiyun Lu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Hisahiro Sasabe
- Department of Organic Device Engineering
- Yamagata University
- Yonezawa
- Japan
| | - Junji Kido
- Department of Organic Device Engineering
- Yamagata University
- Yonezawa
- Japan
| |
Collapse
|