1
|
Verding P, Mary Joy R, Reenaers D, Kumar RS, Rouzbahani R, Jeunen E, Thomas S, Desta D, Boyen HG, Pobedinskas P, Haenen K, Deferme W. The Influence of UV-Ozone, O 2 Plasma, and CF 4 Plasma Treatment on the Droplet-Based Deposition of Diamond Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1719-1726. [PMID: 38154790 PMCID: PMC10789259 DOI: 10.1021/acsami.3c14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/30/2023]
Abstract
Surface treatment is critical for homogeneous coating over a large area and high-resolution patterning of nanodiamond (ND) particles. To optimize the interaction between the surface of a substrate and the colloid of ND particles, it is essential to remove hydrocarbon contamination by surface treatment and to increase the surface energy of the substrate, hence improving the diamond film homogeneity upon its deposition. However, the impact of substrate surface treatment on the properties of coatings and patterns is not fully understood. This study explores the impact of UV-ozone, O2 plasma, and CF4 plasma treatments on the wetting properties of the fused silica glass substrate surface. We identify the optimal time interval between the treatment and subsequent ND coating/patterning processes, which were conducted using inkjet printing and ultrasonic spray coating techniques. Our results showed that UV-ozone and O2 plasma resulted in hydrophilic surfaces, while CF4 plasma treatment resulted in hydrophobic surfaces. We demonstrate the use of CF4 plasma treatment before inkjet printing to generate high-resolution patterns with dots as small as 30 μm in diameter. Ultrasonic spray coating showed homogeneous coatings after using UV-ozone and O2 plasma treatment. The findings of this study provide valuable insights into the hydrocarbon airborne contamination on cleaned surfaces over time even in clean-room environments and have a notable impact on the performance of liquid coatings and patterns. We highlight the importance of timing between the surface treatment and printing in achieving high resolution or homogeneity.
Collapse
Affiliation(s)
- Pieter Verding
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMEC
vzw, IMOMEC, Wetenschapspark
1, 3590 Diepenbeek, Belgium
| | - Rani Mary Joy
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMEC
vzw, IMOMEC, Wetenschapspark
1, 3590 Diepenbeek, Belgium
| | - Dieter Reenaers
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMEC
vzw, IMOMEC, Wetenschapspark
1, 3590 Diepenbeek, Belgium
| | - Rachith Shanivarasanthe
Nithyananda Kumar
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMEC
vzw, IMOMEC, Wetenschapspark
1, 3590 Diepenbeek, Belgium
| | - Rozita Rouzbahani
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMEC
vzw, IMOMEC, Wetenschapspark
1, 3590 Diepenbeek, Belgium
| | - Ewoud Jeunen
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Seppe Thomas
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Derese Desta
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMEC
vzw, IMOMEC, Wetenschapspark
1, 3590 Diepenbeek, Belgium
| | - Hans-Gerd Boyen
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMEC
vzw, IMOMEC, Wetenschapspark
1, 3590 Diepenbeek, Belgium
| | - Paulius Pobedinskas
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMEC
vzw, IMOMEC, Wetenschapspark
1, 3590 Diepenbeek, Belgium
| | - Ken Haenen
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMEC
vzw, IMOMEC, Wetenschapspark
1, 3590 Diepenbeek, Belgium
| | - Wim Deferme
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMEC
vzw, IMOMEC, Wetenschapspark
1, 3590 Diepenbeek, Belgium
| |
Collapse
|
2
|
Hoff A, Farahat ME, Pahlevani M, Welch GC. Tin Oxide Electron Transport Layers for Air-/Solution-Processed Conventional Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1568-1577. [PMID: 34978404 DOI: 10.1021/acsami.1c19790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Commercialization of organic solar cells (OSC) is imminent. Interlayers between the photoactive film and the electrodes are critical for high device efficiency and stability. Here, the applicability of SnO2 nanoparticles (SnO2 NPs) as the electron transport layer (ETL) in conventional OSCs is evaluated. A commercial SnO2 NPs solution in butanol is mixed with ethanol (EtOH) as a processing co-solvent to improve film formation for spin and slot-die coating deposition procedures. When processed with 200% v/v EtOH, the SnO2 NPs film presents uniform film quality and low photoactive layer degradation. The optimized SnO2 NPs ink is coated, in air, on top of two polymer:fullerene-based systems and a nonfullerene system, to form an efficient ETL film. In every case, addition of SnO2 NPs film significantly enhances photovoltaic performance, from 3.4 and 3.7% without the ETL to 6.0 and 5.7% when coated on top of PBDB-T:PC61BM and PPDT2FBT:PC61BM, respectively, and from 3.7 to 7.1% when applied on top of the PTQ10:IDIC system. Flexible, all slot-die-coated devices, in air, are also fabricated and tested, demonstrating the versatility of the SnO2 NPs ink for efficient ETL formation on top of organic photoactive layers, processed under ambient condition, ideal for practical large-scale production of OSCs.
Collapse
Affiliation(s)
- Anderson Hoff
- Department of Chemistry, University of Calgary, 2500 University Drive Northwest, Calgary, AlbertaT2N 1N4, Canada
- Department of Electrical and Computer Engineering, Queen's University, 19 Union Street, Kingston, OntarioK7L 3N6, Canada
| | - Mahmoud E Farahat
- Department of Chemistry, University of Calgary, 2500 University Drive Northwest, Calgary, AlbertaT2N 1N4, Canada
- Department of Electrical and Computer Engineering, Queen's University, 19 Union Street, Kingston, OntarioK7L 3N6, Canada
| | - Majid Pahlevani
- Department of Chemistry, University of Calgary, 2500 University Drive Northwest, Calgary, AlbertaT2N 1N4, Canada
- Department of Electrical and Computer Engineering, Queen's University, 19 Union Street, Kingston, OntarioK7L 3N6, Canada
| | - Gregory C Welch
- Department of Chemistry, University of Calgary, 2500 University Drive Northwest, Calgary, AlbertaT2N 1N4, Canada
- Department of Electrical and Computer Engineering, Queen's University, 19 Union Street, Kingston, OntarioK7L 3N6, Canada
| |
Collapse
|
3
|
Kuntamung K, Yaiwong P, Lertvachirapaiboon C, Ishikawa R, Shinbo K, Kato K, Ounnunkad K, Baba A. The effect of gold quantum dots/grating-coupled surface plasmons in inverted organic solar cells. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210022. [PMID: 33959372 PMCID: PMC8074977 DOI: 10.1098/rsos.210022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
We studied the effect of gold quantum dots (AuQDs)/grating-coupled surface plasmon resonance (GC-SPR) in inverted organic solar cells (OSCs). AuQDs are located within a GC-SPR evanescent field in inverted OSCs, indicating an interaction between GC-SPR and AuQDs' quantum effects, subsequently giving rise to improvement in the performance of inverted OSCs. The fabricated solar cell device comprises an ITO/TiO2/P3HT : PCBM/PEDOT : PSS : AuQD/silver grating structure. The AuQDs were loaded into a hole transport layer (PEDOT : PSS) of the inverted OSCs to increase absorption in the near-ultraviolet (UV) light region and to emit visible light into the neighbouring photoactive layer, thereby achieving light-harvesting improvement of the device. The grating structures were fabricated on P3HT:PCBM layers using a nanoimprinting technique to induce GC-SPR within the inverted OSCs. The AuQDs incorporated within the strongly enhanced GC-SPR evanescent electric field on metallic nanostructures in the inverted OSCs improved the short-circuit current and the efficiency of photovoltaic devices. In comparison with the reference OSC and OSCs with only green AuQDs or only metallic grating, the developed device indicates enhancement of up to 16% power conversion efficiency. This indicates that our light management approach allows for greater light utilization of the OSCs because of the synergistic effect of G-AuQDs and GC-SPR.
Collapse
Affiliation(s)
- Kulrisa Kuntamung
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patrawadee Yaiwong
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chutiparn Lertvachirapaiboon
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan
| | - Ryousuke Ishikawa
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan
| | - Kazunari Shinbo
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan
| | - Keizo Kato
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan
| | - Kontad Ounnunkad
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Akira Baba
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
4
|
Yuan Q, Zhang Z, Li L, Agbolaghi S, Mousavi S. Improved stability in
P3HT
:
PCBM
photovoltaics by incorporation of
well‐designed
polythiophene/graphene compositions. POLYM INT 2020. [DOI: 10.1002/pi.6024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Zunju Zhang
- Heibei University of Environmental Engineering Qinhuangdao China
| | - Lei Li
- Northeast Petroleum University Qinhuangdao China
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of EngineeringAzarbaijan Shahid Madani University Tabriz Iran
| | - Saina Mousavi
- Department of ChemistryPayame Noor University Tehran Iran
| |
Collapse
|
5
|
Remya R, Gayathri PTG, Unni KNN, Deb B. Physicochemical Studies on Nafion® Modified ZnO Interlayers for Enhanced Electron Transport in the Inverted Polymer Solar Cells. ChemistrySelect 2018. [DOI: 10.1002/slct.201801845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- R. Remya
- Photosciences and Photonics, Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvananthapuram - 695019 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-NIIST; Thiruvananthapuram India
| | - P. T. G. Gayathri
- Photosciences and Photonics, Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvananthapuram - 695019 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-NIIST; Thiruvananthapuram India
| | - K. N. N. Unni
- Photosciences and Photonics, Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvananthapuram - 695019 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-NIIST; Thiruvananthapuram India
| | - Biswapriya Deb
- Photosciences and Photonics, Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvananthapuram - 695019 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-NIIST; Thiruvananthapuram India
| |
Collapse
|
6
|
Ibanez JG, Rincón ME, Gutierrez-Granados S, Chahma M, Jaramillo-Quintero OA, Frontana-Uribe BA. Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical–Chiral Sensors. Chem Rev 2018; 118:4731-4816. [DOI: 10.1021/acs.chemrev.7b00482] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jorge G. Ibanez
- Departamento de Ingeniería y Ciencias Químicas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, 01219 Ciudad de México, Mexico
| | - Marina. E. Rincón
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Apartado Postal 34, 62580, Temixco, MOR, Mexico
| | - Silvia Gutierrez-Granados
- Departamento de Química, DCNyE, Campus Guanajuato, Universidad de Guanajuato, Cerro de la Venada S/N, Pueblito
de Rocha, 36080 Guanajuato, GTO Mexico
| | - M’hamed Chahma
- Laurentian University, Department of Chemistry & Biochemistry, Sudbury, ON P3E2C6, Canada
| | - Oscar A. Jaramillo-Quintero
- CONACYT-Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Apartado Postal 34, 62580 Temixco, MOR, Mexico
| | - Bernardo A. Frontana-Uribe
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca 50200, Estado de México Mexico
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito
exterior Ciudad Universitaria, 04510 Ciudad de México, Mexico
| |
Collapse
|
7
|
High efficient and stabilized photovoltaics via morphology manipulating in active layer by rod-coil block copolymers comprising different hydrophilic to hydrophobic dielectric blocks. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.09.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Li Z, Yang D, Zhao X, Li Z, Zhang T, Wu F, Yang X. New PDI-based small-molecule cathode interlayer material with strong electron extracting ability for polymer solar cells. RSC Adv 2016. [DOI: 10.1039/c6ra22479b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A solution-processed and thickness-insensitive small-molecule perylene diimide derivative, namely PDI-N3I, was synthesized and successfully applied to conventional PSCs.
Collapse
Affiliation(s)
- Zelin Li
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Dalei Yang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiaoli Zhao
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zidong Li
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Tong Zhang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Fan Wu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|