1
|
Qin Z, Ng W, Ede J, Shatkin JA, Feng J, Udo T, Kong F. Nanocellulose and its modified forms in the food industry: Applications, safety, and regulatory perspectives. Compr Rev Food Sci Food Saf 2024; 23:e70049. [PMID: 39495568 DOI: 10.1111/1541-4337.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/16/2024] [Accepted: 10/02/2024] [Indexed: 11/06/2024]
Abstract
Nanocellulose (NC), known for its unique properties including high mechanical strength, low density, and extensive surface area, presents significant potential for broad application in the food sector. Through further modification, NC can be enhanced and adapted for various purposes. Applications in the food industry include stabilizing, encapsulating, and packaging material. Additionally, due to its unique characteristics during digestion in the gastrointestinal tract, NC and its derivatives exhibit the potential to be used as health-promotion food ingredients. However, while the safety data on unmodified NC is readily available, the safety of modified forms of NC for use in food remains uncertain. This review offers a comprehensive analysis of recent breakthroughs in NC and its derivatives for innovative food applications. It synthesizes existing research on safety evaluations, with a particular emphasis on the latest findings on toxicity and biocompatibility. Furthermore, the paper outlines the regulatory landscape for NC-based food ingredients and food contact materials in the United States and European Union and provides recommendations to expedite regulatory authorization and commercialization. Ultimately, this work offers valuable insights to promote the sustainable and innovative application of NC compounds in the food sector.
Collapse
Affiliation(s)
- Zijin Qin
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, Georgia, USA
| | - Wei Ng
- Vireo Advisors, LLC, Boston, Massachusetts, USA
| | - James Ede
- Vireo Advisors, LLC, Boston, Massachusetts, USA
| | | | - Jiannan Feng
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, Georgia, USA
| | - Toshifumi Udo
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, Georgia, USA
| | - Fanbin Kong
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, Georgia, USA
| |
Collapse
|
2
|
Zhuo S, Liang Y, Wu Z, Zhao X, Han Y, Guo B. Supramolecular hydrogels for wound repair and hemostasis. MATERIALS HORIZONS 2024; 11:37-101. [PMID: 38018225 DOI: 10.1039/d3mh01403g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The unique network characteristics and stimuli responsiveness of supramolecular hydrogels have rendered them highly advantageous in the field of wound dressings, showcasing unprecedented potential. However, there are few reports on a comprehensive review of supramolecular hydrogel dressings for wound repair and hemostasis. This review first introduces the major cross-linking methods for supramolecular hydrogels, which includes hydrogen bonding, electrostatic interactions, hydrophobic interactions, host-guest interactions, metal ligand coordination and some other interactions. Then, we review the advanced materials reported in recent years and then summarize the basic principles of each cross-linking method. Next, we classify the network structures of supramolecular hydrogels before outlining their forming process and propose their potential future directions. Furthermore, we also discuss the raw materials, structural design principles, and material characteristics used to achieve the advanced functions of supramolecular hydrogels, such as antibacterial function, tissue adhesion, substance delivery, anti-inflammatory and antioxidant functions, cell behavior regulation, angiogenesis promotion, hemostasis and other innovative functions in recent years. Finally, the existing problems as well as future development directions of the cross-linking strategy, network design, and functions in wound repair and hemostasis of supramolecular hydrogels are discussed. This review is proposed to stimulate further exploration of supramolecular hydrogels on wound repair and hemostasis by researchers in the future.
Collapse
Affiliation(s)
- Shaowen Zhuo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Zhengying Wu
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
3
|
Yadav C, Lee JM, Mohanty P, Li X, Jang WD. Graft onto approaches for nanocellulose-based advanced functional materials. NANOSCALE 2023; 15:15108-15145. [PMID: 37712254 DOI: 10.1039/d3nr03087c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The resurgence of cellulose as nano-dimensional 'nanocellulose' has unlocked a sustainable bioeconomy for the development of advanced functional biomaterials. Bestowed with multifunctional attributes, such as renewability and abundance of its source, biodegradability, biocompatibility, superior mechanical, optical, and rheological properties, tunable self-assembly and surface chemistry, nanocellulose presents exclusive opportunities for a wide range of novel applications. However, to alleviate its intrinsic hydrophilicity-related constraints surface functionalization is inevitably needed to foster various targeted applications. The abundant surface hydroxyl groups on nanocellulose offer opportunities for grafting small molecules or macromolecular entities using either a 'graft onto' or 'graft from' approach, resulting in materials with distinctive functionalities. Most of the reviews published to date extensively discussed 'graft from' modification approaches, however 'graft onto' approaches are not well discussed. Hence, this review aims to provide a comprehensive summary of 'graft onto' approaches. Furthermore, insight into some of the recently emerging applications of this grafted nanocellulose including advanced nanocomposite formulation, stimuli-responsive materials, bioimaging, sensing, biomedicine, packaging, and wastewater treatment has also been reviewed.
Collapse
Affiliation(s)
- Chandravati Yadav
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| | - Jeong-Min Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| | - Paritosh Mohanty
- Functional Materials Laboratory, Department of Chemistry, IIT Roorkee, Roorkee 247667, Uttarakhand, India
| | - Xinping Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| |
Collapse
|
4
|
Meng X, Xiong H, Ji F, Gao X, Han L, Wu Z, Jia L, Ren J. Facile surface treatment strategy to generate dense lysozyme layer on ultra-high molecular weight polyethylene enabling inhibition of bacterial biofilm formation. Colloids Surf B Biointerfaces 2023; 225:113243. [PMID: 36893665 DOI: 10.1016/j.colsurfb.2023.113243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Medical plastics such as those found in endotracheal tubes are widely used in intensive care units for the treatment of critically ill patients. Although commonplace in hospital environment, these catheters are at a high risk of bacterial contamination and have been found responsible for numerous health-care-associated infections. Antimicrobial coatings that can prevent harmful bacterial growth are required to reduce the occurrence of such infections. In this study, we introduce a facile surface treatment strategy that could form antimicrobial coatings on the surface of average medical plastics. The strategy involves treatment of activated surfaces with lysozyme, a natural antimicrobial enzyme presenting in human lacrimal gland secretions which is widely used for wound healing. Using ultra-high molecular weight polyethylene (UHMWPE) as the representative surface, oxygen/argon plasma treatment for 3 min led to the increase of surface roughness and the generation of negatively charged groups, with the zeta potential measured as -94.5 mV at pH 7. The activated surface could accommodate lysozyme with a density of up to 0.3 nmol/cm2 through electrostatic interaction. Antimicrobial activity of the resulting surface (UHMWPE@Lyz) was characterized with Escherichia coli and Pseudomonas sp. strains, and the treated surface significantly inhibited the bacterial colonization and the formation of biofilm compared to the untreated UHMWPE. This method of constructing an effective lysozyme-based antimicrobial coating is a generally applicable, simple and fast process for surface treatment with no adverse solvent and wastes involved.
Collapse
Affiliation(s)
- Xiao Meng
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Hao Xiong
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Xiaorong Gao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Lulu Han
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Zhenlin Wu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116023, PR China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Jun Ren
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China.
| |
Collapse
|
5
|
Guo L, Liu H, Peng F, Kang J, Qi H. Novel multifunctional papers based on chemical modified cellulose fibers derived from waste bagasse. Carbohydr Polym 2022; 297:120013. [DOI: 10.1016/j.carbpol.2022.120013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
|
6
|
Abdelhamid HN, Mathew AP. Cellulose-Based Nanomaterials Advance Biomedicine: A Review. Int J Mol Sci 2022; 23:5405. [PMID: 35628218 PMCID: PMC9140895 DOI: 10.3390/ijms23105405] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
There are various biomaterials, but none fulfills all requirements. Cellulose biopolymers have advanced biomedicine to satisfy high market demand and circumvent many ecological concerns. This review aims to present an overview of cellulose knowledge and technical biomedical applications such as antibacterial agents, antifouling, wound healing, drug delivery, tissue engineering, and bone regeneration. It includes an extensive bibliography of recent research findings from fundamental and applied investigations. Cellulose-based materials are tailorable to obtain suitable chemical, mechanical, and physical properties required for biomedical applications. The chemical structure of cellulose allows modifications and simple conjugation with several materials, including nanoparticles, without tedious efforts. They render the applications cheap, biocompatible, biodegradable, and easy to shape and process.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden;
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Aji P. Mathew
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden;
| |
Collapse
|
7
|
Rashki S, Shakour N, Yousefi Z, Rezaei M, Homayoonfal M, Khabazian E, Atyabi F, Aslanbeigi F, Safaei Lapavandani R, Mazaheri S, Hamblin MR, Mirzaei H. Cellulose-Based Nanofibril Composite Materials as a New Approach to Fight Bacterial Infections. Front Bioeng Biotechnol 2021; 9:732461. [PMID: 34858953 PMCID: PMC8631928 DOI: 10.3389/fbioe.2021.732461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistant microorganisms have become an enormous global challenge, and are predicted to cause hundreds of millions of deaths. Therefore, the search for novel/alternative antimicrobial agents is a grand global challenge. Cellulose is an abundant biopolymer with the advantages of low cost, biodegradability, and biocompatibility. With the recent growth of nanotechnology and nanomedicine, numerous researchers have investigated nanofibril cellulose to try to develop an anti-bacterial biomaterial. However, nanofibril cellulose has no inherent antibacterial activity, and therefore cannot be used on its own. To empower cellulose with anti-bacterial properties, new efficient nanomaterials have been designed based on cellulose-based nanofibrils as potential wound dressings, food packaging, and for other antibacterial applications. In this review we summarize reports concerning the therapeutic potential of cellulose-based nanofibrils against various bacterial infections.
Collapse
Affiliation(s)
- Somaye Rashki
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Yousefi
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Marzieh Rezaei
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ehsan Khabazian
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Aslanbeigi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Samaneh Mazaheri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Saini A, Yadav C, Sethi SK, Xue BL, Xia Y, Li K, Manik G, Li X. Microdesigned Nanocellulose-Based Flexible Antibacterial Aerogel Architectures Impregnated with Bioactive Cinnamomum cassia. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4874-4885. [PMID: 33464809 DOI: 10.1021/acsami.0c20258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work is strategically premeditated to study the potential of a herbal medicinal product as a natural bioactive ingredient to generate nanocellulose-based antibacterial architectures. In situ fibrillation of purified cellulose was done in cinnamon extract (ciE) to obtain microfibrillated cellulose (MFC). To this MFC suspension, carboxylated cellulose nanocrystals (cCNCs) were homogeneously mixed and the viscous gel thus obtained was freeze-dried to obtain lightweight and flexible composite aerogel architectures impregnated with ciE, namely, ciMFC/cCNCs. At an optimal concentration of 0.3 wt % cCNCs (i.e., for ciMFC/cCNCs_0.3), an improvement of around 106% in compressive strength and 175% increment in modulus were achieved as compared to pristine MFC architecture. The efficient loading and interaction of ciE components, specifically cinnamaldehyde, with MFC and cCNCs resulted in developing competent antibacterial surfaces with dense and uniform microstructures. Excellent and long-term antimicrobial activity of the optimized architectures (ciMFC/cCNCs_0.3) was confirmed through various antibacterial assays like the zone inhibition method, bacterial growth observation at OD600, minimum inhibitory concentration (MIC, here 1 mg/mL), minimum bactericidal concentration (MBC, here 3-5 mg/mL), and Live/Dead BacLight viability tests. The changes in the bacterial morphology with a disrupted membrane were further confirmed through various imaging techniques like confocal laser scanning microscopy, FESEM, AFM, and 3D digital microscopy. The dry composite architecture showed the persuasive capability of suppressing the growth of airborne bacteria, which in combination with antibacterial efficiency in the wet state is considered as an imperative aspect for a material to act as the novel biomaterial. Furthermore, these architectures demonstrated excellent antibacterial performance under real "in use" contamination prone conditions. Hence, this work provides avenues for the application of crude natural extracts in developing novel forms of advanced functional biomaterials that can be used for assorted biological/healthcare applications such as wound care and antimicrobial filtering units.
Collapse
Affiliation(s)
- Arun Saini
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Chandravati Yadav
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Sushanta K Sethi
- Department of Polymer and Process Engineering, IIT Roorkee Saharanpur Campus, Saharanpur 247001, Uttar Pradesh, India
| | - Bai-Liang Xue
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Yuanyuan Xia
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Ke Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, PR China
| | - Gaurav Manik
- Department of Polymer and Process Engineering, IIT Roorkee Saharanpur Campus, Saharanpur 247001, Uttar Pradesh, India
| | - Xinping Li
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| |
Collapse
|
9
|
Darpentigny C, Sillard C, Menneteau M, Martinez E, Marcoux PR, Bras J, Jean B, Nonglaton G. Antibacterial Cellulose Nanopapers via Aminosilane Grafting in Supercritical Carbon Dioxide. ACS APPLIED BIO MATERIALS 2020; 3:8402-8413. [PMID: 35019612 DOI: 10.1021/acsabm.0c00688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work, we present an innovative strategy for the grafting of an antibacterial agent onto nanocellulose materials in supercritical carbon dioxide (scCO2). Dense cellulose nanofibril (CNF) nanopapers were prepared and subsequently functionalized in supercritical carbon dioxide with an aminosilane, N-(6-aminohexyl)aminopropyltrimethoxysilane (AHA-P-TMS). Surface characterization (X-ray photoelectron spectroscopy, contact angle, ζ-potential analysis) evidenced the presence of the aminosilane. The results show that the silane conformation depends on the curing process: a nonpolycondensed conformation of grafted silane with the amino groups facing outwards was favored by curing in an oven, while the curing step performed in scCO2 yielded CNF structures with the alkyl chain facing outwards. The grafted nanopapers exhibited antibacterial activity, and no antibacterial agent was released into the media. Furthermore, these materials proved to benefit from low cytotoxicity. This study offers a proof of concept for the covalent grafting of active species on nanocellulose structures and the control of aminosilane orientation using a green and controlled approach. These newly designed materials could be used for their antibacterial activity in the biomedical field. Thus, perspectives for topical administration and design of wound dressing could be envisaged.
Collapse
Affiliation(s)
- Clémentine Darpentigny
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.,Univ. Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France.,Univ. Grenoble Alpes, CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
| | - Cécile Sillard
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | - Mathilde Menneteau
- Univ. Grenoble Alpes, CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
| | - Eugénie Martinez
- Univ. Grenoble Alpes, CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
| | - Pierre R Marcoux
- Univ. Grenoble Alpes, CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
| | - Julien Bras
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | - Bruno Jean
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | | |
Collapse
|
10
|
Linker Regulation: Synthesis and Electrochemical Properties of Ferrocene-Decorated Cellulose. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01562-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Tavakolian M, Jafari SM, van de Ven TGM. A Review on Surface-Functionalized Cellulosic Nanostructures as Biocompatible Antibacterial Materials. NANO-MICRO LETTERS 2020; 12:73. [PMID: 34138290 PMCID: PMC7770792 DOI: 10.1007/s40820-020-0408-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/06/2020] [Indexed: 05/07/2023]
Abstract
As the most abundant biopolymer on the earth, cellulose has recently gained significant attention in the development of antibacterial biomaterials. Biodegradability, renewability, strong mechanical properties, tunable aspect ratio, and low density offer tremendous possibilities for the use of cellulose in various fields. Owing to the high number of reactive groups (i.e., hydroxyl groups) on the cellulose surface, it can be readily functionalized with various functional groups, such as aldehydes, carboxylic acids, and amines, leading to diverse properties. In addition, the ease of surface modification of cellulose expands the range of compounds which can be grafted onto its structure, such as proteins, polymers, metal nanoparticles, and antibiotics. There are many studies in which cellulose nano-/microfibrils and nanocrystals are used as a support for antibacterial agents. However, little is known about the relationship between cellulose chemical surface modification and its antibacterial activity or biocompatibility. In this study, we have summarized various techniques for surface modifications of cellulose nanostructures and its derivatives along with their antibacterial and biocompatibility behavior to develop non-leaching and durable antibacterial materials. Despite the high effectiveness of surface-modified cellulosic antibacterial materials, more studies on their mechanism of action, the relationship between their properties and their effectivity, and more in vivo studies are required.
Collapse
Affiliation(s)
- Mandana Tavakolian
- Department of Chemical Engineering, McGill University, Montreal, QC, H3A 0C5, Canada
- Pulp and Paper Research Center, McGill University, Montreal, QC, H3A 0C7, Canada
- Quebec Centre for Advanced Materials (QCAM/CQMF), Montreal, Canada
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| | - Theo G M van de Ven
- Pulp and Paper Research Center, McGill University, Montreal, QC, H3A 0C7, Canada.
- Quebec Centre for Advanced Materials (QCAM/CQMF), Montreal, Canada.
- Department of Chemistry, McGill University, Montreal, QC, H3A 0B8, Canada.
| |
Collapse
|
12
|
Cai XM, Chen X, Chen X, Li Y, Wang F. A luminescent cellulose ether with a regenerated crystal form obtained in tetra(n-butyl)ammonium hydroxide/dimethyl sulfoxide. Carbohydr Polym 2020; 230:115649. [PMID: 31887945 DOI: 10.1016/j.carbpol.2019.115649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
Cellulose-based luminescent materials are usually formed via either covalent attachment or combination with luminogens. In this work, three luminescent cellulose ethers without conventional luminophores have been homogeneously synthesized in a mixed solvent of tetra(n-butyl)ammonium hydroxide (TBAH)/dimethyl sulfoxide (DMSO). The one obtained by etherifying microcrystalline cellulose (MCC) with 4-bromomethylbenzoic acid (BBA), i.e., MCC-BBA, exhibits a regenerated crystal form of IVII, whereas the other two are amorphous. The large difference of crystalline properties might be due to the formation of a new hydrogen bond network in MCC-BBA derived from the intermolecular interactions of COOH and their adjacent C2/C3OH groups. Such structural deviations might result in luminescence variations. Indeed, MCC-BBA can give brighter luminescence, which might be derived from crystallization-induced luminescence as well as photo-induced charge transfer effect. The presented work provides new insights into the rational synthesis of cellulose ethers, paving the way toward the design of non-conventional cellulose-based luminescent materials.
Collapse
Affiliation(s)
- Xu-Min Cai
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, People's Republic of China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road, People's Republic of China
| | - Xiao Chen
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, People's Republic of China
| | - Xinfei Chen
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, People's Republic of China
| | - Yu Li
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, People's Republic of China
| | - Fei Wang
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, People's Republic of China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road, People's Republic of China.
| |
Collapse
|
13
|
|
14
|
Niu X, Liu Y, Fang G, Huang C, Rojas OJ, Pan H. Highly Transparent, Strong, and Flexible Films with Modified Cellulose Nanofiber Bearing UV Shielding Property. Biomacromolecules 2018; 19:4565-4575. [PMID: 30412387 DOI: 10.1021/acs.biomac.8b01252] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This work investigates multifunctional composite films synthesized with cellulose nanofibers (CNFs) and poly(vinyl alcohol) (PVA). First, TEMPO-oxidized CNFs were modified in the heterogeneous phase with benzophenone, diisocyanate, and epoxidized soybean oil via esterification reactions. A thorough characterization was carried out via elemental analysis as well as FT-IR and X-ray photoelectron spectroscopies and solid-state NMR. Following, the surface-modified CNFs were combined with PVA to endow composite films with UV-absorbing capabilities while increasing their thermomechanical strength and maintaining a high light transmittance. Compared to neat PVF films, the tensile strength, Young modulus, and elongation of the films underwent dramatic increases upon addition of the reinforcing phase (maximum values of ∼96 MPa, ∼ 714 MPa, and ∼350%, respectively). A high UV blocking performance, especially in the UVB region, was observed for the introduced multifunctional PVA films at CNF loadings below 5 wt %. The trade-off between modified nanofibril function as interfacial reinforcement and aggregation leads to an optimum loading. The results indicate promising applications, for example, in active packaging.
Collapse
Affiliation(s)
- Xun Niu
- College of Chemical Engineering , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , PR China
| | - Yating Liu
- College of Chemical Engineering , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , PR China
| | - Guigan Fang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , PR China.,Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry , Nanjing 210042 , PR China
| | - Chaobo Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , PR China.,College of Chemical Engineering , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , PR China
| | - Orlando J Rojas
- Biobased Colloids and Materials group (BiCMat), Department of Bioproducts and Biosystems, School of Chemical Engineering , Aalto University , FI-00076 , Espoo , Finland
| | - Hui Pan
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , PR China.,College of Chemical Engineering , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , PR China
| |
Collapse
|
15
|
Peng F, Wang D, Zhang D, Yan B, Cao H, Qiao Y, Liu X. PEO/Mg–Zn–Al LDH Composite Coating on Mg Alloy as a Zn/Mg Ion-Release Platform with Multifunctions: Enhanced Corrosion Resistance, Osteogenic, and Antibacterial Activities. ACS Biomater Sci Eng 2018; 4:4112-4121. [DOI: 10.1021/acsbiomaterials.8b01184] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Feng Peng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Dongdong Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bangcheng Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiliang Cao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
16
|
Li M, Liu X, Liu N, Guo Z, Singh PK, Fu S. Effect of surface wettability on the antibacterial activity of nanocellulose-based material with quaternary ammonium groups. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Niu X, Liu Y, Song Y, Han J, Pan H. Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid /chitosan composite film for food packaging. Carbohydr Polym 2018; 183:102-109. [DOI: 10.1016/j.carbpol.2017.11.079] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/18/2017] [Accepted: 11/22/2017] [Indexed: 01/12/2023]
|
18
|
Saini S, Belgacem MN, Bras J. Effect of variable aminoalkyl chains on chemical grafting of cellulose nanofiber and their antimicrobial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:760-768. [DOI: 10.1016/j.msec.2017.02.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/08/2016] [Accepted: 02/14/2017] [Indexed: 01/10/2023]
|
19
|
Facile synthesis of novel soluble cellulose-grafted hyperbranched polymers as potential natural antimicrobial materials. Carbohydr Polym 2017; 157:1913-1921. [DOI: 10.1016/j.carbpol.2016.11.076] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/04/2016] [Accepted: 11/27/2016] [Indexed: 01/28/2023]
|
20
|
Hassanpour A, Asghari S, Lakouraj MM. Synthesis, characterization and antibacterial evaluation of nanofibrillated cellulose grafted by a novel quinolinium silane salt. RSC Adv 2017. [DOI: 10.1039/c7ra02765f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nanofibrillated cellulose (NFC) is a bio-based nanomaterial with no intrinsic antibacterial properties.
Collapse
Affiliation(s)
| | - Sakineh Asghari
- Department of Chemistry
- University of Mazandaran
- Babolsar
- Iran
- Nano and Biotechnology Research Group
| | | |
Collapse
|
21
|
Buslovich A, Horev B, Rodov V, Gedanken A, Poverenov E. One-step surface grafting of organic nanoparticles: in situ deposition of antimicrobial agents vanillin and chitosan on polyethylene packaging films. J Mater Chem B 2017; 5:2655-2661. [DOI: 10.1039/c6tb03094g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Natural organic molecules, volatile vanillin and non-volatile chitosan, were deposited from solution onto a polyethylene surface by the ultrasonic method and demonstrate specific antimicrobial activity.
Collapse
Affiliation(s)
- A. Buslovich
- Department of Food Quality and Safety
- Agriculture Research Organization
- The Volcani Center
- Rishon LeZion 7505101
- Israel
| | - B. Horev
- Department of Food Quality and Safety
- Agriculture Research Organization
- The Volcani Center
- Rishon LeZion 7505101
- Israel
| | - V. Rodov
- Department of Food Quality and Safety
- Agriculture Research Organization
- The Volcani Center
- Rishon LeZion 7505101
- Israel
| | - A. Gedanken
- Department of Chemistry and Kanbar Laboratory for Nanomaterials
- Institute for Nanotechnology and Advanced Materials
- Bar-Ilan University
- Ramat Gan 5290002
- Israel
| | - E. Poverenov
- Department of Food Quality and Safety
- Agriculture Research Organization
- The Volcani Center
- Rishon LeZion 7505101
- Israel
| |
Collapse
|
22
|
Mechanical and antibacterial properties of a nanocellulose-polypyrrole multilayer composite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:977-84. [DOI: 10.1016/j.msec.2016.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/06/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023]
|
23
|
Veldurthi N, Ghoderao P, Sahare S, Kumar V, Bodas D, Kulkarni A, Bhave T. Magnetically active micromixer assisted synthesis of drug nanocomplexes exhibiting strong bactericidal potential. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:455-464. [PMID: 27524042 DOI: 10.1016/j.msec.2016.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 05/28/2016] [Accepted: 06/05/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Naresh Veldurthi
- Department of Applied Physics, Defence Institute of Advanced Technology, Pune 411025, India
| | - Prachi Ghoderao
- Department of Applied Physics, Defence Institute of Advanced Technology, Pune 411025, India
| | - Sanjay Sahare
- Department of Applied Physics, Defence Institute of Advanced Technology, Pune 411025, India
| | - Vijay Kumar
- Centre Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Dhananjay Bodas
- Centre for Nanobioscience, Agharkar Research Institute, Pune 411004, India
| | - Anjali Kulkarni
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India.
| | - Tejashree Bhave
- Department of Applied Physics, Defence Institute of Advanced Technology, Pune 411025, India.
| |
Collapse
|
24
|
Cozzolino CA, Campanella G, Türe H, Olsson RT, Farris S. Microfibrillated cellulose and borax as mechanical, O 2 -barrier, and surface-modulating agents of pullulan biocomposite coatings on BOPP. Carbohydr Polym 2016; 143:179-87. [DOI: 10.1016/j.carbpol.2016.01.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/18/2016] [Accepted: 01/30/2016] [Indexed: 01/21/2023]
|
25
|
de Castro DO, Bras J, Gandini A, Belgacem N. Surface grafting of cellulose nanocrystals with natural antimicrobial rosin mixture using a green process. Carbohydr Polym 2016; 137:1-8. [DOI: 10.1016/j.carbpol.2015.09.101] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/14/2015] [Accepted: 09/27/2015] [Indexed: 01/16/2023]
|
26
|
Dong Y, Mosquera-Giraldo LI, Taylor LS, Edgar KJ. Amphiphilic Cellulose Ethers Designed for Amorphous Solid Dispersion via Olefin Cross-Metathesis. Biomacromolecules 2016; 17:454-65. [DOI: 10.1021/acs.biomac.5b01336] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yifan Dong
- Department
of Sustainable Biomaterials, Virginia Tech, 230 Cheatham Hall, Blacksburg, Virginia 24061, United States
- Department
of Chemistry, Virginia Tech, 2018 Hahn Hall South, MC 0212, Blacksburg, Virginia 24061, United States
| | - Laura I. Mosquera-Giraldo
- Department
of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynne S. Taylor
- Department
of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kevin J. Edgar
- Department
of Sustainable Biomaterials, Virginia Tech, 230 Cheatham Hall, Blacksburg, Virginia 24061, United States
- Macromolecules
and Interfaces Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
27
|
Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces. Carbohydr Polym 2016; 135:239-47. [DOI: 10.1016/j.carbpol.2015.09.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 02/07/2023]
|
28
|
Martoïa F, Dumont PJJ, Orgéas L, Belgacem MN, Putaux JL. On the origins of the elasticity of cellulose nanofiber nanocomposites and nanopapers: a micromechanical approach. RSC Adv 2016. [DOI: 10.1039/c6ra07176g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The elastic properties of cellulose nanofibril (NFC) nanocomposites and nanopapers are predicted by a multiscale network model that shows that the deformation mechanisms are governed by the bonds between rigid NFC segments and in the kinked regions.
Collapse
Affiliation(s)
- F. Martoïa
- Univ. Grenoble Alpes
- LGP2
- F-38000 Grenoble
- France
- CNRS
| | | | - L. Orgéas
- Univ. Grenoble Alpes
- 3SR Lab
- F-38000 Grenoble
- France
- CNRS
| | | | - J.-L. Putaux
- Univ. Grenoble Alpes
- CERMAV
- F-38000 Grenoble
- France
- CNRS
| |
Collapse
|
29
|
Saini S, Sillard C, Naceur Belgacem M, Bras J. Nisin anchored cellulose nanofibers for long term antimicrobial active food packaging. RSC Adv 2016. [DOI: 10.1039/c5ra22748h] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Increasing consumer demand for high performance bio-based materials in order to develop microbiologically safer foods has forced the food industry to revise their packaging strategies.
Collapse
Affiliation(s)
- Seema Saini
- Univ. Grenoble Alpes
- LGP2
- F-38000 Grenoble
- France
- CNRS
| | | | | | - Julien Bras
- Univ. Grenoble Alpes
- LGP2
- F-38000 Grenoble
- France
- CNRS
| |
Collapse
|