1
|
Takada N, Hagiwara S, Abe N, Yamazaki R, Tsuneishi K, Yasuda K. Open-End Control of Neurite Outgrowth Lengths with Steep Bending Confinement Microchannel Patterns for Miswiring-Free Neuronal Network Formation. MICROMACHINES 2024; 15:1374. [PMID: 39597186 PMCID: PMC11596160 DOI: 10.3390/mi15111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Wiring technology to control the length and direction of neurite outgrowth and to connect them is one of the most crucial development issues for forming single-cell-based neuronal networks. However, with current neurite wiring technology, it has been difficult to stop neurite extension at a specific length and connect it to other neurites without causing miswiring due to over-extension. Here, we examined a novel method of wiring neurites without miswiring by controlling the length of neurites in open-ended bending microchannel arrays connected beyond the maximum bending angle of neurite outgrowth. First, we determined the maximum bending angle of neurite elongation to pass through the bending point of a bending microfluidic channel; the maximum angle (the critical angle) was 90°. Next, we confirmed the control of neurite outgrowth length in open-ended microchannels connected at 120°, an angle beyond the maximum bending angle. The neurites stopped when elongated to the bend point, and no further elongation was observed. Finally, we observed that in bending microchannel arrays connected at an angle of 120°, two neurite outgrowths stopped and contacted each other without crossing over the bend point. The results show that the steep bending connection pattern is a robust open-end neurite wiring technique that prevents over-extension and miswiring.
Collapse
Affiliation(s)
- Naoya Takada
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
| | - Soya Hagiwara
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
| | - Nanami Abe
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
| | - Ryohei Yamazaki
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
| | - Kazuhiro Tsuneishi
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
| | - Kenji Yasuda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
2
|
Hong N, Nam Y. Neurons-on-a-Chip: In Vitro NeuroTools. Mol Cells 2022; 45:76-83. [PMID: 35236782 PMCID: PMC8906998 DOI: 10.14348/molcells.2022.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 02/15/2022] [Indexed: 11/27/2022] Open
Abstract
Neurons-on-a-Chip technology has been developed to provide diverse in vitro neuro-tools to study neuritogenesis, synaptogensis, axon guidance, and network dynamics. The two core enabling technologies are soft-lithography and microelectrode array technology. Soft lithography technology made it possible to fabricate microstamps and microfluidic channel devices with a simple replica molding method in a biological laboratory and innovatively reduced the turn-around time from assay design to chip fabrication, facilitating various experimental designs. To control nerve cell behaviors at the single cell level via chemical cues, surface biofunctionalization methods and micropatterning techniques were developed. Microelectrode chip technology, which provides a functional readout by measuring the electrophysiological signals from individual neurons, has become a popular platform to investigate neural information processing in networks. Due to these key advances, it is possible to study the relationship between the network structure and functions, and they have opened a new era of neurobiology and will become standard tools in the near future.
Collapse
Affiliation(s)
- Nari Hong
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Yoonkey Nam
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KAIST Institute for Institute for Health Science and Technology, KAIST, Daejeon 34141, Korea
| |
Collapse
|
3
|
Tanaka Y, Watanabe H, Shimoda K, Sakamoto K, Hondo Y, Sentoku M, Sekine R, Kikuchi T, Yasuda K. Stepwise neuronal network pattern formation in agarose gel during cultivation using non-destructive microneedle photothermal microfabrication. Sci Rep 2021; 11:14656. [PMID: 34282174 PMCID: PMC8289850 DOI: 10.1038/s41598-021-93988-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/05/2021] [Indexed: 01/25/2023] Open
Abstract
Conventional neuronal network pattern formation techniques cannot control the arrangement of axons and dendrites because network structures must be fixed before neurite differentiation. To overcome this limitation, we developed a non-destructive stepwise microfabrication technique that can be used to alter microchannels within agarose to guide neurites during elongation. Micropatterns were formed in thin agarose layer coating of a cultivation dish using the tip of a 0.7 [Formula: see text]-diameter platinum-coated glass microneedle heated by a focused 1064-nm wavelength infrared laser, which has no absorbance of water. As the size of the heat source was 0.7 [Formula: see text], which is smaller than the laser wavelength, the temperature fell to 45 [Formula: see text] within a distance of 7.0 [Formula: see text] from the edge of the etched agarose microchannel. We exploited the fast temperature decay property to guide cell-to-cell connection during neuronal network cultivation. The first neurite of a hippocampal cell from a microchamber was guided to a microchannel leading to the target neuron with stepwise etching of the micrometer resolution microchannel in the agarose layer, and the elongated neurites were not damaged by the heat of etching. The results indicate the potential of this new technique for fully direction-controlled on-chip neuronal network studies.
Collapse
Affiliation(s)
- Yuhei Tanaka
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Haruki Watanabe
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Kenji Shimoda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Kazufumi Sakamoto
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Yoshitsune Hondo
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Mitsuru Sentoku
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Rikuto Sekine
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Takahito Kikuchi
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Kenji Yasuda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.
| |
Collapse
|
4
|
Pasquardini L, Roncador A, Prusakova V, Vanzetti L, Potrich C, Lunelli L, Pederzolli C, Iannotta S, Macchi P, Dirè S. Functionalization of TiO 2 sol-gel derived films for cell confinement. Colloids Surf B Biointerfaces 2021; 204:111787. [PMID: 33962371 DOI: 10.1016/j.colsurfb.2021.111787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022]
Abstract
The neuroscience field has increased enormously over the last decades, achieving the possible real application of neuronal cultures not only for reproducing neural architectures resembling in vivo tissues, but also for the development of functional devices. In this context, surface patterning for cell confinement is crucial, and new active materials together with new protocols for preparing substrates suitable for confining cells, guiding their processes in the desired configuration are extremely appreciated. Here, TiO2 sol-gel derived films were selected as proof-of-concept materials to grow neurons in suitable confined configurations, taking advantage of the biocompatible properties of modified TiO2 substrates. TiO2 sol-gel derived films were made compatible with the growth of neurons thanks to a stable and controlled poly-lysine coating, obtained by silanization chemistry and streptavidin-biotin interactions. Moreover, a spotting protocol, here described and optimized, allowed the simple preparation of arrays of neurons, where cell adhesion was guided in specific areas and the neurites development driven in the desired arrangement. The resulting arrays were successfully tested for the growth and differentiation of neurons, demonstrating the possible adhesion of cells in specific areas of the film, therefore paving the way to applications such as the direct growth of excitable cells nearby electrodes of devices, with an evident enhancement of cell-electrodes communication.
Collapse
Affiliation(s)
- L Pasquardini
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - A Roncador
- Department of Cellular, Computational and Integrative Biology - CIBIO, Laboratory of Molecular and Cellular Neurobiology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - V Prusakova
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - L Vanzetti
- Fondazione Bruno Kessler (FBK), Center for Sensors & Devices, Via Sommarive 18, 38123 Trento, Italy
| | - C Potrich
- Fondazione Bruno Kessler (FBK), Center for Sensors & Devices, Via Sommarive 18, 38123 Trento, Italy; Istituto di Biofisica, Unitá di Trento, Consiglio Nazionale delle Ricerche (IBF-CNR), Via alla Cascata 56/C 18, 38123 Trento, Italy.
| | - L Lunelli
- Fondazione Bruno Kessler (FBK), Center for Sensors & Devices, Via Sommarive 18, 38123 Trento, Italy; Istituto di Biofisica, Unitá di Trento, Consiglio Nazionale delle Ricerche (IBF-CNR), Via alla Cascata 56/C 18, 38123 Trento, Italy
| | - C Pederzolli
- Fondazione Bruno Kessler (FBK), Center for Sensors & Devices, Via Sommarive 18, 38123 Trento, Italy
| | - S Iannotta
- Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche (IMEM-CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - P Macchi
- Department of Cellular, Computational and Integrative Biology - CIBIO, Laboratory of Molecular and Cellular Neurobiology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - S Dirè
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
5
|
Forró C, Thompson-Steckel G, Weaver S, Weydert S, Ihle S, Dermutz H, Aebersold MJ, Pilz R, Demkó L, Vörös J. Modular microstructure design to build neuronal networks of defined functional connectivity. Biosens Bioelectron 2018; 122:75-87. [DOI: 10.1016/j.bios.2018.08.075] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 02/01/2023]
|
6
|
Cangellaris OV, Corbin EA, Froeter P, Michaels JA, Li X, Gillette MU. Aligning Synthetic Hippocampal Neural Circuits via Self-Rolled-Up Silicon Nitride Microtube Arrays. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35705-35714. [PMID: 30251826 DOI: 10.1021/acsami.8b10233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Directing neurons to form predetermined circuits with the intention of treating neurological disorders and neurodegenerative diseases is a fundamental goal and current challenge in neuroengineering. Until recently, only neuronal aggregates were studied and characterized in culture, which can limit information gathered to populations of cells. In this study, we use a substrate constructed of arrays of strain-induced self-rolled-up membrane 3D architectures. This results in changes in the neuronal architecture and altered growth dynamics of neurites. Hippocampal neurons from postnatal rats were cultured at low confluency (∼250 cells mm-2) on an array of transparent rolled-up microtubes (μ-tubes; 4-5 μm diameter) of varying topographical arrangements. Neurite growth on the μ-tubes was characterized and compared to controls in order to establish a baseline for alignment imposed by the topography. Compared to control substrates, neurites are significantly more aligned toward the 0° reference on the μ-tube array. Pitch (20-60 and 100 μm) and μ-tube length (30-80 μm) of array elements were also varied to investigate their impact on neurite alignment. We found that alignment was improved by the gradient pitch arrangement and with longer μ-tubes. Application of this technology will enhance the ability to construct intentional neural circuits through array design and manipulation of individual neurons and can be adapted to address challenges in neural repair, reinnervation, and neuroregeneration.
Collapse
Affiliation(s)
- Olivia V Cangellaris
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Medical Scholars Program , University of Illinois College of Medicine at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Elise A Corbin
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Cardiovascular Institute, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | | | | | | | - Martha U Gillette
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
7
|
Joo S, Nam Y. Slow-Wave Recordings From Micro-Sized Neural Clusters Using Multiwell Type Microelectrode Arrays. IEEE Trans Biomed Eng 2018; 66:403-410. [PMID: 29993399 DOI: 10.1109/tbme.2018.2843793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The use of microelectrode array (MEA) recordings is a very effective neurophysiological method because it is able to continuously and noninvasively obtain the spatiotemporal information of electrical activity from many neurons constituting a neural network. Very recently, studies have been published that used MEAs for the measurement of a low-frequency component of electrical activity as an indicator of diverse activity of cultured neurons. The occurrence of low-frequency activities has electrophysiological information that does not include the information from fast spikes. However, there is no in vitro experimental model suitable for measuring the low-frequency activities (slow-waves) for further study. METHODS Neural clusters consisting of dozens of neurons were placed directly onto each electrode of an MEA from which fast spikes and slow-waves were measured. RESULTS We obtained sufficient data on the early development patterns of the slow-waves and the spikes measured from many independent neural clusters confirming that the slow-waves occurred first before the emergence of the spikes in the neural clusters. We also showed that changes in the occurrence frequency of the slow-waves for synaptic blockers were measured from a large number of independent cultures. CONCLUSION Microsized neural cluster arrays, which can be combined with conventional MEAs, are suitable for multiple simultaneous recordings of slow-waves. SIGNIFICANCE Our technology provides a simple but useful method to study the generation of a low-frequency component of the electrical activity in cultured neural networks that are not yet well known as well as to expand the use of conventional MEAs.
Collapse
|
8
|
Zhang H, Zheng X, Ahmed W, Yao Y, Bai J, Chen Y, Gao C. Design and Applications of Cell-Selective Surfaces and Interfaces. Biomacromolecules 2018; 19:1746-1763. [PMID: 29665330 DOI: 10.1021/acs.biomac.8b00264] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue regeneration involves versatile types of cells. The accumulation and disorganized behaviors of undesired cells impair the natural healing process, leading to uncontrolled immune response, restenosis, and/or fibrosis. Cell-selective surfaces and interfaces can have specific and positive effects on desired types of cells, allowing tissue regeneration with restored structures and functions. This review outlines the importance of surfaces and interfaces of biomaterials with cell-selective properties. The chemical and biological cues including peptides, antibodies, and other molecules, physical cues such as topography and elasticity, and physiological cues referring mainly to interactions between cells-cells and cell-chemokines or cytokines are effective modulators for achieving cell selectivity upon being applied into the design of biomaterials. Cell-selective biomaterials have also shown practical significance in tissue regeneration, in particular for endothelialization, nerve regeneration, capture of stem cells, and regeneration of tissues of multiple structures and functions.
Collapse
Affiliation(s)
- Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xiaowen Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Wajiha Ahmed
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Jun Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Yicheng Chen
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine , Zhejiang University , Hangzhou 310016 , China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
9
|
Zarrintaj P, Manouchehri S, Ahmadi Z, Saeb MR, Urbanska AM, Kaplan DL, Mozafari M. Agarose-based biomaterials for tissue engineering. Carbohydr Polym 2018; 187:66-84. [PMID: 29486846 DOI: 10.1016/j.carbpol.2018.01.060] [Citation(s) in RCA: 338] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/28/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023]
Abstract
Agarose is a natural polysaccharide polymer having unique characteristics that give reason to consider it for tissue engineering applications. Special characteristics of agarose such as its excellent biocompatibility, thermo-reversible gelation behavior and physiochemical features support its use as a biomaterial for cell growth and/or controlled/localized drug delivery. The resemblance of this natural carbohydrate polymer to the extracellular matrix results in attractive features that bring about a strong interest in its usage in the field. The scope of this review is to summarize the extensive researches addressing agarose-based biomaterials in order to provide an in-depth understanding of its tissue engineering-related applications.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Saeed Manouchehri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Zahed Ahmadi
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran.
| | | | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
10
|
Walczuch K, Renze P, Ingensiep C, Degen R, Bui TP, Schnakenberg U, Bräunig P, Bui-Göbbels K. A new microfluidic device design for a defined positioning of neurons in vitro. BIOMICROFLUIDICS 2017; 11:044103. [PMID: 28794814 PMCID: PMC5507706 DOI: 10.1063/1.4993556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
A new triangle-shaped microfluidic channel system for defined cell trapping is presented. Different variants of the same basic geometry were produced to reveal the best fitting parameter combinations regarding efficiency and sensitivity. Variants with differences in the trap gap width and the inter-trap distance were analyzed in detail by Computational Fluid Dynamics simulations and in experiments with artificial beads of different sizes (30, 60, 80 μm). Simulation analysis of flow dynamics and pressure profiles revealed strongly reduced pressure conditions and balanced flow rates inside the microfluidic channels compared to commonly used systems with meandering channels. Quantitative experiments with beads showed very good trapping results in all channel types with slight variations due to geometrical differences. Highest efficiency in terms of fast trap filling and low particle loss was shown with channel types having a larger trap gap width (20 μm) and/or a larger inter-trap distance (400 μm). Here, experimental success was achieved in almost 85% to 100% of all cases. Particle loss appeared significantly more often with large beads than with small beads. A significantly reduced trapping efficiency of about 50% was determined by using narrow trap gaps and a small inter-trap distance in combination with large 80 μm beads. The combination of the same parameters with small and medium beads led to an only slight decrease in trapping efficiency (80%). All channel types were tested qualitatively with invertebrate neurons from the pond snail Lymnaea stagnalis. The systems were appropriate to trap those sensitive neurons and to keep their viability in the trapping area at the same time.
Collapse
Affiliation(s)
- Katharina Walczuch
- Institute of Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Peter Renze
- Institute of Energy and Drive Technologies, Hochschule Ulm, Eberhard-Finckh-Str. 11, 89075 Ulm, Germany
| | - Claudia Ingensiep
- Institute of Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Rudolf Degen
- Institute of Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Thanh Phong Bui
- Institute of Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Uwe Schnakenberg
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstraße 24, 52074 Aachen, Germany
| | - Peter Bräunig
- Institute of Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Katrin Bui-Göbbels
- Institute of Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| |
Collapse
|
11
|
Sergi PN, Cavalcanti-Adam EA. Biomaterials and computation: a strategic alliance to investigate emergent responses of neural cells. Biomater Sci 2017; 5:648-657. [DOI: 10.1039/c6bm00871b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synergistic use of biomaterials and computation allows to identify and unravel neural cell responses.
Collapse
Affiliation(s)
- Pier Nicola Sergi
- The Biorobotics Institute
- Sant’ Anna Scuola Universitaria Superiore
- Pontedera
- 56025 Italy
| | - Elisabetta Ada Cavalcanti-Adam
- Max Planck Institute for Medical Research
- Dept Cellular Biophysics and Heidelberg University
- Dept Biophysical Chemistry
- Heidelberg
- Germany
| |
Collapse
|