1
|
He L, Di D, Chu X, Liu X, Wang Z, Lu J, Wang S, Zhao Q. Photothermal antibacterial materials to promote wound healing. J Control Release 2023; 363:180-200. [PMID: 37739014 DOI: 10.1016/j.jconrel.2023.09.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Wound healing is a crucial process that restores the integrity and function of the skin and other tissues after injury. However, external factors, such as infection and inflammation, can impair wound healing and cause severe tissue damage. Therefore, developing new drugs or methods to promote wound healing is of great significance. Photothermal therapy (PTT) is a promising technique that uses photothermal agents (PTAs) to convert near-infrared radiation into heat, which can eliminate bacteria and stimulate tissue regeneration. PTT has the advantages of high efficiency, controllability, and low drug resistance. Hence, nanomaterial-based PTT and its related strategies have been widely explored for wound healing applications. However, a comprehensive review of PTT-related strategies for wound healing is still lacking. In this review, we introduce the physiological mechanisms and influencing factors of wound healing, and summarize the types of PTAs commonly used for wound healing. Then, we discuss the strategies for designing nanocomposites for multimodal combination treatment of wounds. Moreover, we review methods to improve the therapeutic efficacy of PTT for wound healing, such as selecting the appropriate wound dressing form, controlling drug release, and changing the infrared irradiation window. Finally, we address the challenges of PTT in wound healing and suggest future directions.
Collapse
Affiliation(s)
- Luning He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Donghua Di
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinhui Chu
- Wuya College of innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinlin Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Ziyi Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Junya Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
2
|
Development of a food grade sanitizer delivery system with chlorine loaded gelatin microgels for enhanced binding and inactivation of biofilms. Food Res Int 2022; 155:111026. [DOI: 10.1016/j.foodres.2022.111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022]
|
3
|
Li L, Zhang G, Niu R, Xia Z. Quaternary Ammonium (QA)
N
‐Chloramines: Chemical Synthesis and Study on Structure Bactericidal Activity Relationship. ChemistrySelect 2022. [DOI: 10.1002/slct.202103960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lingdong Li
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Dagong Road, Liaodongwan New District Panjin 124221 China
- School of Chemical Engineering Dalian University of Technology 2 Dagong Road, Liaodongwan New District Panjin 124221 China
| | - Guangqing Zhang
- School of Chemical Engineering Dalian University of Technology 2 Dagong Road, Liaodongwan New District Panjin 124221 China
| | - Ruiting Niu
- School of Chemical Engineering Dalian University of Technology 2 Dagong Road, Liaodongwan New District Panjin 124221 China
| | - Zhilin Xia
- School of Chemical Engineering Dalian University of Technology 2 Dagong Road, Liaodongwan New District Panjin 124221 China
| |
Collapse
|
4
|
Alayande AB, Kang Y, Jang J, Jee H, Lee YG, Kim IS, Yang E. Antiviral Nanomaterials for Designing Mixed Matrix Membranes. MEMBRANES 2021; 11:membranes11070458. [PMID: 34206245 PMCID: PMC8303748 DOI: 10.3390/membranes11070458] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 01/02/2023]
Abstract
Membranes are helpful tools to prevent airborne and waterborne pathogenic microorganisms, including viruses and bacteria. A membrane filter can physically separate pathogens from air or water. Moreover, incorporating antiviral and antibacterial nanoparticles into the matrix of membrane filters can render composite structures capable of killing pathogenic viruses and bacteria. Such membranes incorporated with antiviral and antibacterial nanoparticles have a great potential for being applied in various application scenarios. Therefore, in this perspective article, we attempt to explore the fundamental mechanisms and recent progress of designing antiviral membrane filters, challenges to be addressed, and outlook.
Collapse
Affiliation(s)
| | - Yesol Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - Jaewon Jang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - Hobin Jee
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong-si 53064, Korea;
| | - Yong-Gu Lee
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Chuncheon-si 24341, Korea;
| | - In S. Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - Euntae Yang
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong-si 53064, Korea;
- Correspondence:
| |
Collapse
|
5
|
Borjihan Q, Dong A. Design of nanoengineered antibacterial polymers for biomedical applications. Biomater Sci 2021; 8:6867-6882. [PMID: 32756731 DOI: 10.1039/d0bm00788a] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pathogenic bacteria have become global threats to public health. Since the advent of antibiotics about 100 years ago, their use has been embraced with great enthusiasm because of their effective treatment of bacterial infections. However, the evolution of pathogenic bacteria with resistance to conventional antibiotics has resulted in an urgent need for the development of a new generation of antibiotics. The use of antimicrobial polymers offers the promise of enhancing the efficacy of antimicrobial agents. Of the various antibacterial polymers that effectively eradicate pathogenic bacteria, those that are nanoengineered have garnered significant research interest in their design and biomedical applications. Because of their high surface area and high reactivity, these polymers show greater antibacterial activity than conventional antibacterial agents, by inhibiting the growth or destroying the cell membrane of pathogenic bacteria. This review summarizes several strategies for designing nanoengineered antibacterial polymers, explores the factors that affect their antibacterial properties, and examines key features of their design. It then comments briefly on the future prospects for nanoengineered antibacterial polymers. This review thus provides a feasible guide to developing nanoengineered antibacterial polymers by presenting both broad and in-depth bench research, and it offers suggestions for their potential in biomedical applications.
Collapse
Affiliation(s)
- Qinggele Borjihan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| | | |
Collapse
|
6
|
Ahmadi R, Fashandi H, Akbari V. Development of N-halamine Low-Melting Point Poly(ethylene terephthalate) Fibers via Melt Spinning: Structural Characterization and Demonstration of Rechargeable Antibacterial Properties. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1888981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Rouhollah Ahmadi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Hossein Fashandi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology, Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Abstract
Pathogenic microbial contamination poses serious threats to human healthcare and economies worldwide, which instigates the booming development of challenging antibacterial materials. N-halamine fibrous materials (NFMs), as an important part of antibacterial materials, featuring structural continuity, good pore connectivity, rapid sterilization, rechargeable bactericidal activity, and safety to humans and environment, have received significant research attention. This review aims to present a systematic discussion of the recent advances in N-halamine antibacterial fibrous materials. We firstly introduce the chemical structures and properties of N-halamine materials. Subsequently, the developed NFMs can be categorized based on their fabrication strategies, including surface modification and one-step spinning. Then some representative applications of these fibrous materials are highlighted. Finally, challenges and future research directions of the materials are discussed in the hope of giving suggestions for the following studies. The chemical structures and properties of N-halamine materials are briefly introduced. Design and fabrication strategies of N-halamine fibrous materials are systematically reviewed. The functional applications of the N-halamine fibrous materials are discussed. Challenges and future research directions of the antibacterial N-halamine fibrous materials are provided.
Collapse
|
8
|
Chen Y, Feng C, Chen Q, Yu H, Wang Y, Han Q. Novel composite unit with one pyridinium and three N-halamine structures for enhanced synergism and superior biocidability on magnetic nanoparticles. Colloids Surf B Biointerfaces 2020; 190:110890. [PMID: 32113165 DOI: 10.1016/j.colsurfb.2020.110890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/06/2020] [Accepted: 02/20/2020] [Indexed: 01/01/2023]
Abstract
A novel composite unit of enhanced synergism that rises from the use of a cationic pyridinium structure to attract anionic bacteria to three N-halamine structures was designed for superior biocidability on recyclable magnetic nanoparticles. Briefly, 5-(4-hydroxybenzylidene)hydantoin (HBH), containing one imide and amide NH bonds, was synthesized by Knoevenagel condensation ofp-hydroxybenzaldehyde with hydantoin. 3-Triethoxysilylpropyl succinic anhydride was ammonolyzed with 4-aminopyridine to introduce a pyridine structure and form an amide NH and a carboxylic acid group that was esterified with HBH to introduce its two NH bonds. The triethoxysilyl groups of the esterification product were hydrolyzed into silanols to condense with the counterparts of different hydrolysates and on silica modified Fe3O4nanoparticles to provide a layer of polymeric modifier. After quaternization of the pyridine and chlorination of NH bonds from each esterification product, the resultant layer is composed of units each of which contains one pyridinium and threeN-halamine sites and exerted higher biocidability against Escherichia coli and Staphylococcus aureus than comparable systems including synergistic ones with one cationic center and one N-halamine, demonstrating an enhanced synergism. The biocidal layer had promising stability under quenching-chlorinating cycles and long-term storage. The study affords a strategy for syntheses of more powerful biocidal surfaces.
Collapse
Affiliation(s)
- Yong Chen
- Department of Applied Chemistry, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Chunyan Feng
- Department of Applied Chemistry, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Qi Chen
- Department of Applied Chemistry, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Hao Yu
- Department of Applied Chemistry, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Yuyu Wang
- Department of Applied Chemistry, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Qiuxia Han
- Department of Biological Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
9
|
Anchoring N-Halo (sodium dichloroisocyanurate) on the nano-Fe3O4 surface as “chlorine reservoir”: Antibacterial properties and wastewater treatment. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
10
|
Sikder P, Bhaduri SB, Ong JL, Guda T. Silver (Ag) doped magnesium phosphate microplatelets as next‐generation antibacterial orthopedic biomaterials. J Biomed Mater Res B Appl Biomater 2019; 108:976-989. [DOI: 10.1002/jbm.b.34450] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/06/2019] [Accepted: 07/11/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Prabaha Sikder
- Department of Mechanical Industrial and Manufacturing Engineering The University of Toledo Toledo Ohio
| | - Sarit B. Bhaduri
- Department of Mechanical Industrial and Manufacturing Engineering The University of Toledo Toledo Ohio
| | - Joo L. Ong
- Department of Biomedical Engineering The University of Texas at San Antonio San Antonio Texas
| | - Teja Guda
- Department of Biomedical Engineering The University of Texas at San Antonio San Antonio Texas
| |
Collapse
|
11
|
Wang R, Li Y, Si Y, Wang F, Liu Y, Ma Y, Yu J, Yin X, Ding B. Rechargeable polyamide-based N-halamine nanofibrous membranes for renewable, high-efficiency, and antibacterial respirators. NANOSCALE ADVANCES 2019; 1:1948-1956. [PMID: 36134243 PMCID: PMC9418896 DOI: 10.1039/c9na00103d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/24/2019] [Indexed: 05/25/2023]
Abstract
Emerging infectious diseases (EIDs) have been acknowledged as a major public health concern worldwide. Unfortunately, most protective respirators used to prevent EID transmission suffer from the disadvantage of lacking antimicrobial activity, leading to an increased risk of cross-contamination and post-infection. Herein, we report a novel and facile strategy to fabricate rechargeable and biocidal air filtration materials by creating advanced N-halamine structures based on electrospun polyamide (PA) nanofibers. Our approach can endow the resultant nanofibrous membranes with powerful biocidal activity (6 log CFU reduction against E. coli), an ultrahigh fine particle capture efficiency of 99.999% (N100 level for masks), and can allow the antibacterial efficacy and air filtration performance to be renewed in a one-step chlorination process, which has never been reported before. More importantly, for the first time, we revealed the synergistic effect involving the intrinsic structure of polymers and the assembling structure of nanofibers on the chlorination capacity. The successful fabrication of such a fascinating membrane can provide new insights into the development of nanofibrous materials in a multifunctional, durable, and renewable form.
Collapse
Affiliation(s)
- Ru Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University Shanghai 201620 China
| | - Yuyao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University Shanghai 201620 China
| | - Yang Si
- Innovation Center for Textile Science and Technology, Donghua University Shanghai 200051 China
| | - Fei Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University Shanghai 201620 China
| | - Yitao Liu
- Innovation Center for Textile Science and Technology, Donghua University Shanghai 200051 China
| | - Ying Ma
- Innovation Center for Textile Science and Technology, Donghua University Shanghai 200051 China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University Shanghai 201620 China
- Innovation Center for Textile Science and Technology, Donghua University Shanghai 200051 China
| | - Xia Yin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University Shanghai 201620 China
- Innovation Center for Textile Science and Technology, Donghua University Shanghai 200051 China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University Shanghai 201620 China
- Innovation Center for Textile Science and Technology, Donghua University Shanghai 200051 China
| |
Collapse
|
12
|
Zhu C, Chang D, Wang X, Chai D, Chen L, Dong A, Gao G. Novel antibacterial fibers of amphiphilic
N
‐halamine polymer prepared by electrospinning. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4571] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chongyi Zhu
- College of ChemistryJilin University Changchun 130021 China
| | - Dan Chang
- College of ChemistryJilin University Changchun 130021 China
| | - Xiao Wang
- College of ChemistryJilin University Changchun 130021 China
| | - Danxia Chai
- College of ChemistryJilin University Changchun 130021 China
| | - Lili Chen
- College of ChemistryJilin University Changchun 130021 China
| | - Alideertu Dong
- College of Chemistry and Chemical EngineeringInner Mongolia University Hohhot 010021 China
| | - Ge Gao
- College of ChemistryJilin University Changchun 130021 China
| |
Collapse
|
13
|
Chen Y, Wang Y, Zhang Q, Yang C, Han Q. Preparation of silicone containing 2,2,6,6-tetramethyl-4-piperidinol-based N
-chloramine for antibacterial polyethylene via interpenetration in supercritical carbon dioxide. J Appl Polym Sci 2019. [DOI: 10.1002/app.47614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yong Chen
- Department of Applied Chemistry, College of Chemical & Environmental Engineering; Shandong University of Science and Technology; Qingdao 266590 People's Republic of China
| | - Yuyu Wang
- Department of Applied Chemistry, College of Chemical & Environmental Engineering; Shandong University of Science and Technology; Qingdao 266590 People's Republic of China
| | - Qiang Zhang
- Analytical and Testing Center, School of Materials Science and Engineering; Shandong University of Science and Technology; Qingdao 266590 People's Republic of China
| | - Cuiying Yang
- Analytical and Testing Center, College of Chemical & Environmental Engineering; Shandong University of Science and Technology; Qingdao 266590 People's Republic of China
| | - Qiuxia Han
- Department of Biological Engineering, College of Chemical & Environmental Engineering; Shandong University of Science and Technology; Qingdao 266590 People's Republic of China
| |
Collapse
|
14
|
Gao Y, Song N, Liu W, Dong A, Wang YJ, Yang YW. Construction of Antibacterial N-Halamine Polymer Nanomaterials Capable of Bacterial Membrane Disruption for Efficient Anti-Infective Wound Therapy. Macromol Biosci 2019; 19:e1800453. [PMID: 30645044 DOI: 10.1002/mabi.201800453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/18/2018] [Indexed: 01/31/2023]
Abstract
The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials for wound dressing to avoid the abuse of antibiotics and thereby antibiotic resistance. In this work, the authors first report on antibacterial N-halamine polymer nanomaterials based on a strategic copolymerization of 3-allyl-5,5-dimethylhydantoin (ADMH) and methyl methacrylate (MMA), which exhibits in vitro and in vivo antimicrobial efficacy against pathogenic bacteria including Staphylococcus aureus and Escherichia coli. Particularly, when a biological evaluation is run for wound therapy, the N-halamine polymer nanomaterials exhibit a powerful antibacterial efficiency and wound healing ability after a series of histological examination of mouse wound. After the evaluation of biological and chemical surroundings, the proposed four-stage mechanism suggests that, with unique antibacterial NCl bonds, the N-halamine polymer nanomaterials can disrupt the bacterial membrane, as a result causing intracellular content leaked out and thereby cell death. Based on the synergistic action of antibacterial and wound therapy, the N-halamine polymer nanomaterials are expected to be promising as wound dressing materials in medical healing and biomaterials.
Collapse
Affiliation(s)
- Yangyang Gao
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Nan Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenxin Liu
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Alideertu Dong
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Yan-Jie Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
15
|
Borjihan Q, Yang J, Song Q, Gao L, Xu M, Gao T, Liu W, Li P, Li Q, Dong A. Povidone-iodine-functionalized fluorinated copolymers with dual-functional antibacterial and antifouling activities. Biomater Sci 2019; 7:3334-3347. [DOI: 10.1039/c9bm00583h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Povidone-iodine-functionalized fluorinated polymer coatings with dual-functional antibacterial and antifouling activities should be very promising in practical biomedical applications.
Collapse
Affiliation(s)
- Qinggele Borjihan
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Qing Song
- Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering
- Northwestern Polytechnical University (NPU)
- Xi'an 710072
- China
| | - Lingling Gao
- Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering
- Northwestern Polytechnical University (NPU)
- Xi'an 710072
- China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
| | - Miao Xu
- Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering
- Northwestern Polytechnical University (NPU)
- Xi'an 710072
- China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
| | - Tianyi Gao
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| | - Wenxin Liu
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| | - Peng Li
- Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering
- Northwestern Polytechnical University (NPU)
- Xi'an 710072
- China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| |
Collapse
|
16
|
Wang X, Hao X, Chang D, Zhu C, Chen L, Dong A, Gao G. Novel hydrophilicN-halamine polymer with enhanced antibacterial activity synthesized by inverse emulsion polymerization. J Appl Polym Sci 2018. [DOI: 10.1002/app.47419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiao Wang
- College of Chemistry; Jilin University; Changchun 130021 People's Republic of China
| | - Xiufeng Hao
- College of Chemistry; Jilin University; Changchun 130021 People's Republic of China
| | - Dan Chang
- College of Chemistry; Jilin University; Changchun 130021 People's Republic of China
| | - Chongyi Zhu
- College of Chemistry; Jilin University; Changchun 130021 People's Republic of China
| | - Lili Chen
- College of Chemistry; Jilin University; Changchun 130021 People's Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering; Inner Mongolia University; Hohhot 010021 People's Republic of China
| | - Ge Gao
- College of Chemistry; Jilin University; Changchun 130021 People's Republic of China
| |
Collapse
|
17
|
Liu C, Shan H, Chen X, Si Y, Yin X, Yu J, Ding B. Novel Inorganic-Based N-Halamine Nanofibrous Membranes As Highly Effective Antibacterial Agent for Water Disinfection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44209-44215. [PMID: 30525383 DOI: 10.1021/acsami.8b18322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Novel superhydrophilic inorganic-based N-halamine nanofibrous membranes with high active chlorine contents, outstanding rechargeability, favorable water swelling resistance, and superior mechanical performance were prepared through the combination of electrospinning and sol-gel processing, which could be applied to the dynamic disinfection of bacteria-contaminated water with high disinfection efficiency, large processing flux, and long-term durability. The successful preparation of such silica nanofiber membranous N-halamine antimicrobial with intriguing properties would provide the reference for developing novel antimicrobial nanofibers for multifunctional applications.
Collapse
Affiliation(s)
- Cui Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Haoru Shan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Xingxing Chen
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Yang Si
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Xia Yin
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| |
Collapse
|
18
|
Yu N, Cai T, Sun Y, Jiang C, Xiong H, Li Y, Peng H. A novel antibacterial agent based on AgNPs and Fe3O4 loaded chitin microspheres with peroxidase-like activity for synergistic antibacterial activity and wound-healing. Int J Pharm 2018; 552:277-287. [DOI: 10.1016/j.ijpharm.2018.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/11/2018] [Accepted: 10/02/2018] [Indexed: 01/22/2023]
|
19
|
Bai R, Kang J, Simalou O, Liu W, Ren H, Gao T, Gao Y, Chen W, Dong A, Jia R. Novel N–Br Bond-Containing N-Halamine Nanofibers with Antibacterial Activities. ACS Biomater Sci Eng 2018; 4:2193-2202. [DOI: 10.1021/acsbiomaterials.7b00996] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rong Bai
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Oudjaniyobi Simalou
- Departement de Chimie, Faculte Des Sciences (FDS), Universite de Lome (UL), Lome BP 1515, Togo
| | - Wenxin Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Hui Ren
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Tianyi Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Yangyang Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Wanjun Chen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Ran Jia
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| |
Collapse
|
20
|
Chang D, li Z, Wang X, Zhu C, Dong A, Gao G. N-Halamine polymer from bipolymer to amphiphilic terpolymer with enhancement in antibacterial activity. Colloids Surf B Biointerfaces 2018; 163:402-411. [DOI: 10.1016/j.colsurfb.2018.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/05/2017] [Accepted: 01/10/2018] [Indexed: 01/03/2023]
|
21
|
Gao T, Fan H, Wang X, Gao Y, Liu W, Chen W, Dong A, Wang YJ. Povidone-Iodine-Based Polymeric Nanoparticles for Antibacterial Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25738-25746. [PMID: 28707872 DOI: 10.1021/acsami.7b05622] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As microbial contamination is becoming more and more serious, antibacterial agents play an important role in preventing and removing bacterial pathogens from microbial pollution in our daily life. To solve the issues with water solubility and antibacterial stability of PVP-I2 (povidone-iodine) as a strong antibacterial agent, we successfully obtain hydrophobic povidone-iodine nanoparticles (povidone-iodine NPs) by a two-step method related to the advantage of nanotechnology. First, the synthesis of poly(N-vinyl-2-pyrrolidone-co-methyl methacrylate) nanoparticles, i.e., P(NVP-MMA) NPs, was controlled by tuning a feed ratio of NVP to MMA. Then, the products P(NVP-MMA) NPs were allowed to undergo a complexation reaction with iodine, resulting in the formation of a water-insoluble antibacterial material, povidone-iodine NPs. It is found that the feed ratio of NVP to MMA has an active effect on morphology, chemical composition, molecular weight, and hydrophilic-hydrophobic properties of the P(NVP-MMA) copolymer after some technologies, such as SEM, DLS, elemental analysis, 1H NMR, GPC, and the contact angle test, were used in the characterizations. The antibacterial property of povidone-iodine NPs was investigated by using Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa) as model bacteria with the colony count method. Interestingly, three products, such as glue, ink, and dye, after the incorporation of povidone-iodine NPs, show significant antibacterial properties. It is believed that, with the advantage of nanoscale morphology, the final povidone-iodine NPs should have great potential for utilization in various fields where antifouling and antibacterial properties are highly required.
Collapse
Affiliation(s)
- Tianyi Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Hongbo Fan
- The School of Environment and Civil Engineering, Dongguan University of Technology , No. 1 Daxue Road, Songshan Lake, Dongguan, Guangdong Province 523808, People's Republic of China
| | - Xinjie Wang
- Jiujiang Sixth People's Hospital , 145 Qianjin East Road, Lianxi District, Jiujiang, Jiangxi Province 332005, People's Republic of China
| | - Yangyang Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Wenxin Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Wanjun Chen
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Yan-Jie Wang
- The School of Environment and Civil Engineering, Dongguan University of Technology , No. 1 Daxue Road, Songshan Lake, Dongguan, Guangdong Province 523808, People's Republic of China
- Department of Chemical and Biological Engineering, University of British Columbia , 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
22
|
Microwave-assisted rapid fabrication of antibacterial polyacrylonitrile microfibers/nanofibers via nitrile click chemistry and electrospinning. J Appl Polym Sci 2017. [DOI: 10.1002/app.45490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Dong A, Wang YJ, Gao Y, Gao T, Gao G. Chemical Insights into Antibacterial N-Halamines. Chem Rev 2017; 117:4806-4862. [DOI: 10.1021/acs.chemrev.6b00687] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Alideertu Dong
- College
of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Yan-Jie Wang
- Department
of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada V6T 1Z3
| | - Yangyang Gao
- College
of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Tianyi Gao
- College
of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Ge Gao
- College
of Chemistry, Jilin University, Changchun 130021, People’s Republic of China
| |
Collapse
|
24
|
Li P, Gao Y, Sun Z, Chang D, Gao G, Dong A. Synthesis, Characterization, and Bactericidal Evaluation of Chitosan/Guanidine Functionalized Graphene Oxide Composites. Molecules 2016; 22:molecules22010012. [PMID: 28025561 PMCID: PMC6155602 DOI: 10.3390/molecules22010012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022] Open
Abstract
In response to the wide spread of microbial contamination induced by bacterial pathogens, the development of novel materials with excellent antibacterial activity is of great interest. In this study, novel antibacterial chitosan (CS) and polyhexamethylene guanidine hydrochloride (PHGC) dual-polymer-functionalized graphene oxide (GO) (GO-CS-PHGC) composites were designed and easily fabricated. The as-prepared materials were characterized by Fourier transform infrared (FTIR), X-ray photoelectron spectrometer (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA) and Raman spectroscopy. Their antibacterial capability towards bacterial strains was also studied by incubating both Gram-negative bacteria and Gram-positive bacteria in their presence. More significantly, the synergistic antibacterial action of the three components was assayed, and the findings implied that the as-prepared GO-CS-PHGC shows enhanced antibacterial activity when compared to its single components (GO, CS, PHGC or CS-PHGC) and the mixture of individual components. Not only Gram-negative bacteria but also Gram-positive bacteria are greatly inhibited by GO-CS-PHGC composites. The minimum inhibitory concentration (MIC) value of GO-CS-PHGC against E. coli was 32 μg/mL. With the powerful antibacterial activity as well as its low cost and facile preparation, GO-CS-PHGC has potential applications as a novel antibacterial agent in a wide range of biomedical uses.
Collapse
Affiliation(s)
- Ping Li
- College of Chemistry, Jilin University, Changchun 130021, China.
| | - Yangyang Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Zijia Sun
- College of Chemistry, Jilin University, Changchun 130021, China.
| | - Dan Chang
- College of Chemistry, Jilin University, Changchun 130021, China.
| | - Ge Gao
- College of Chemistry, Jilin University, Changchun 130021, China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
25
|
Fan X, Yin M, Jiang Z, Pan N, Ren X, Huang TS. Antibacterial poly(3-hydroxybutyrate-co-4-hydroxybutyrate) fibrous membranes containing quaternary ammonium salts. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaoyan Fan
- Key Laboratory of Eco-textiles of Ministry of Education, Jiangsu Engineering Technology Research Center for Functional Textiles, College of Textiles and Clothing; Jiangnan University; Wuxi 214122 Jiangsu China
| | - Maoli Yin
- Key Laboratory of Eco-textiles of Ministry of Education, Jiangsu Engineering Technology Research Center for Functional Textiles, College of Textiles and Clothing; Jiangnan University; Wuxi 214122 Jiangsu China
| | - Zhiming Jiang
- Key Laboratory of Eco-textiles of Ministry of Education, Jiangsu Engineering Technology Research Center for Functional Textiles, College of Textiles and Clothing; Jiangnan University; Wuxi 214122 Jiangsu China
| | - Nengyu Pan
- Key Laboratory of Eco-textiles of Ministry of Education, Jiangsu Engineering Technology Research Center for Functional Textiles, College of Textiles and Clothing; Jiangnan University; Wuxi 214122 Jiangsu China
| | - Xuehong Ren
- Key Laboratory of Eco-textiles of Ministry of Education, Jiangsu Engineering Technology Research Center for Functional Textiles, College of Textiles and Clothing; Jiangnan University; Wuxi 214122 Jiangsu China
| | - Tung-Shi Huang
- Department of Poultry Science; Auburn University; Auburn AL 36849 USA
| |
Collapse
|
26
|
J. del Valle L, Franco L, Katsarava R, Puiggalí J. Electrospun biodegradable polymers loaded with bactericide agents. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.1.52] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
27
|
Fan X, Ren X, Huang TS, Sun Y. Cytocompatible antibacterial fibrous membranes based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and quaternarized N-halamine polymer. RSC Adv 2016. [DOI: 10.1039/c6ra08465f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel polymeric N-halamine-containing quaternary ammonium salt (PHQS) was synthesized and used to make antibacterial electrospun fibrous membranes by blending with biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-4HB)).
Collapse
Affiliation(s)
- Xiaoyan Fan
- Key Laboratory of Eco-textiles of Ministry of Education
- Jiangsu Engineering Technology Research Center for Functional Textiles
- College of Textiles and Clothing
- Jiangnan University
- Wuxi 214122
| | - Xuehong Ren
- Key Laboratory of Eco-textiles of Ministry of Education
- Jiangsu Engineering Technology Research Center for Functional Textiles
- College of Textiles and Clothing
- Jiangnan University
- Wuxi 214122
| | | | - Yuyu Sun
- Department of Chemistry
- University of Massachusetts Lowell
- Lowell
- USA
| |
Collapse
|