1
|
Lin C, Peng R, Shi J, Ge Z. Research progress and application of high efficiency organic solar cells based on benzodithiophene donor materials. EXPLORATION (BEIJING, CHINA) 2024; 4:20230122. [PMID: 39175891 PMCID: PMC11335474 DOI: 10.1002/exp.20230122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/07/2024] [Indexed: 08/24/2024]
Abstract
In recent decades, the demand for clean and renewable energy has grown increasingly urgent due to the irreversible alteration of the global climate change. As a result, organic solar cells (OSCs) have emerged as a promising alternative to address this issue. In this review, we summarize the recent progress in the molecular design strategies of benzodithiophene (BDT)-based polymer and small molecule donor materials since their birth, focusing on the development of main-chain engineering, side-chain engineering and other unique molecular design paths. Up to now, the state-of-the-art power conversion efficiency (PCE) of binary OSCs prepared by BDT-based donor materials has approached 20%. This work discusses the potential relationship between the molecular changes of donor materials and photoelectric performance in corresponding OSC devices in detail, thereby presenting a rational molecular design guidance for stable and efficient donor materials in future.
Collapse
Affiliation(s)
- Congqi Lin
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
- Faculty of Materials and Chemical EngineeringNingbo UniversityNingboPeople's Republic of China
| | - Ruixiang Peng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| | - Jingyu Shi
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| |
Collapse
|
2
|
Alam S, Lee J. Progress and Future Potential of All-Small-Molecule Organic Solar Cells Based on the Benzodithiophene Donor Material. Molecules 2023; 28:molecules28073171. [PMID: 37049934 PMCID: PMC10096353 DOI: 10.3390/molecules28073171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Organic solar cells have obtained a prodigious amount of attention in photovoltaic research due to their unique features of light weight, low cost, eco-friendliness, and semitransparency. A rising trend in this field is the development of all-small-molecules organic solar cells (ASM-OSCs) due to their merits of excellent batch-to-batch reproducibility, well-defined structures, and simple purification. Among the numerous organic photovoltaic (OPV) materials, benzodithiophene (BDT)-based small molecules have come to the fore in achieving outstanding power conversion efficiency (PCE) and breaking the 17% efficiency barrier in single-junction OPV devices, indicating the significant potential of this class of materials in commercial photovoltaic applications. This review specially focuses on up-to-date information about improvements in BDT-based ASM-OSCs since 2011 and provides an outlook on the most significant challenges that remain in the field. We believe there will be more exciting BDT-based photovoltaic materials and devices developed in the near future.
Collapse
Affiliation(s)
- Shabaz Alam
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaewon Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
3
|
Wang R, Zhou W, Lin K, Jiang F, Wang Z, Xu J, Zhang Y, Liang A, Nie G, Duan X. Highly efficient electrochemical energy storage of fluorinated nano-polyindoles with different morphology. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Wang K, Li Y, Li Y. Challenges to the Stability of Active Layer Materials in Organic Solar Cells. Macromol Rapid Commun 2020; 41:e1900437. [DOI: 10.1002/marc.201900437] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Kun Wang
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 451191 China
| | - Yaowen Li
- Laboratory of Advanced Optoelectronic MaterialsCollege of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic MaterialsCollege of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| |
Collapse
|
5
|
Wang K, Guo X, Ye C, Wang Y, Meng Y, Li X, Zhang M. A New Small-Molecule Donor Containing Non-Fused Ring π-Bridge Enables Efficient Organic Solar Cells with High Open Circuit Voltage and Low Acceptor Content. Chemphyschem 2019; 20:2674-2682. [PMID: 31257670 DOI: 10.1002/cphc.201900368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/23/2019] [Indexed: 01/09/2023]
Abstract
To achieve high open-circuit voltage (Voc ) and low acceptor content, the molecular design of a small-molecule donor with low energy loss (Eloss ) is very important for solution-processable organic solar cells (OSCs). Herein, we designed and synthesized a new coplanar A-D-A structured organic small-molecule semiconductor with non-fused ring structure π-bridge, namely B2TPR, and applied it as donor material in OSCs. Owing to the strong electron-withdrawing effect of the end group and the coplanar π-bridge, B2TPR exhibits a low-lying highest occupied molecular orbital and strong crystallinity. Furthermore, benefiting from the coplanar molecular skeleton, the high hole mobility, balanced charge transport and reduced recombination were achieved, leading to a high fill factor (FF). The OSCs based on B2TPR : PC71 BM blend film (w/w=1 : 0.35) demonstrates a moderate power conversion efficiency (PCE) of 7.10 % with a remarkable Voc of 0.98 V and FF of 64 %, corresponding to a low fullerene content of 25.9 % and a low Eloss of 0.70 eV. These results demonstrate the great potential of small-molecule with structure of B2TPR for future low-cost organic photovoltaic applications.
Collapse
Affiliation(s)
- Kun Wang
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,School of of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 451191, China
| | - Xia Guo
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chennan Ye
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yulong Wang
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yuan Meng
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaojie Li
- School of of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 451191, China
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
6
|
Sun L, Xu X, Song S, Zhang Y, Miao C, Liu X, Xing G, Zhang S. Medium‐Bandgap Conjugated Polymer Donors for Organic Photovoltaics. Macromol Rapid Commun 2019; 40:e1900074. [DOI: 10.1002/marc.201900074] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/30/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Liya Sun
- L. Sun, X. Xu, S. Song, Y. Zhang, Dr. C. Miao, Prof. X. Liu, Prof. S. ZhangKey Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Xiangfei Xu
- L. Sun, X. Xu, S. Song, Y. Zhang, Dr. C. Miao, Prof. X. Liu, Prof. S. ZhangKey Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Shan Song
- L. Sun, X. Xu, S. Song, Y. Zhang, Dr. C. Miao, Prof. X. Liu, Prof. S. ZhangKey Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Yangqian Zhang
- L. Sun, X. Xu, S. Song, Y. Zhang, Dr. C. Miao, Prof. X. Liu, Prof. S. ZhangKey Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Chunyang Miao
- L. Sun, X. Xu, S. Song, Y. Zhang, Dr. C. Miao, Prof. X. Liu, Prof. S. ZhangKey Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Xiang Liu
- L. Sun, X. Xu, S. Song, Y. Zhang, Dr. C. Miao, Prof. X. Liu, Prof. S. ZhangKey Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Guichuan Xing
- Institute of Applied Physics and Materials EngineeringUniversity of Macau Macao SAR 999078 China
| | - Shiming Zhang
- L. Sun, X. Xu, S. Song, Y. Zhang, Dr. C. Miao, Prof. X. Liu, Prof. S. ZhangKey Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 P. R. China
| |
Collapse
|
7
|
Feng X. Electronic Characters and Synthesis Method of Novel Conjugated System Based on Benzodithiophene Groups. MINI-REV ORG CHEM 2019. [DOI: 10.2174/1570193x15666180412152056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Benzodithiophene based conjugated small molecules (SMBDTs) are usually used in organic
photovoltaic (OPV), Organic Filed Effection Transistor (OFET), Organic Phototransistor (OPT) and
Non-Linear Optical (NLO) chromophores. Band-gap engineering is one of the key design principles for
π-conjugated materials and this can be done by altering the structures of SMBDTs with sidechain and
backbone reactions. In this way, scientists develop several kinds of SMBDTs with different electron donors
and acceptors. The alkoxyl and aromatic substituted BDT units are mostly used as the donors,
while the alkyl cyanoacetate, dicyano, rhodamine, indenedione, thieno[3,4-c]pyrrole-4,6(5H)-dione,
benzothiadiazole and diketopyrrolopyrrole groups are used as the acceptors. The electronic characters of
SMBDTs including the HOMO and LUMO energy level are listed and discussed. The synthesis methods
of SMBDTs are mostly in common, especially with the backbone reaction. There are about four
coupling methods for the backbone reaction, mostly used is the Stille coupling methods. In this review
paper, the common synthesis methods and the electronic characters by several samples are summarized
to provide researchers an overview of SMBDTs’ synthesis, structures and applications.
Collapse
Affiliation(s)
- Xiantao Feng
- School of Chemistry and Pharmaceutical Engeneering, Huanghuai University, Zhumadian, China
| |
Collapse
|
8
|
Fang J, Deng D, Wang Z, Adil MA, Xiao T, Wang Y, Lu G, Zhang Y, Zhang J, Ma W, Wei Z. Critical Role of Vertical Phase Separation in Small-Molecule Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12913-12920. [PMID: 29569439 DOI: 10.1021/acsami.8b00886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An inverted device structure is a more stable configuration than a regular device structure for solution-processed organic solar cells (OSCs). However, most of the solution-processed small-molecule OSCs (SM-OSCs) reported in the literature used the regular device structure, and a regular device normally exhibits a higher efficiency than an inverted device. Herein, a representative small-molecule DR3TBDTT was selected to figure out the reason for photovoltaic performance differences between regular and inverted devices. The mechanisms for a reduced open-circuit voltage ( Voc) and fill factor (FF) in the inverted device were studied. The reduced Voc and FF is due to the vertical phase separation with excess [6,6]-phenyl-C71-butyric acid methyl ester near the air/blend surface, which leads to a reduction in build-in voltage and unbalanced charge transport in the inverted device. Another reason for the reduced FF is the unfavorable DR3TBDTT crystallite orientation distribution along the film thickness, which is preferential edge-on crystallites in the top layer of the blend film and the increased population of face-on crystallites in the bottom layer of the blend film. This study illustrates that the morphology plays a key role in photovoltaic performance difference between regular and inverted devices and provides useful guidelines for further optimization of the morphology of solution-processed SM-OSCs.
Collapse
Affiliation(s)
- Jin Fang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology, Chinese Academy of Sciences , Beijing 100190 , China
| | - Dan Deng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology, Chinese Academy of Sciences , Beijing 100190 , China
| | | | - Muhammad Abdullah Adil
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology, Chinese Academy of Sciences , Beijing 100190 , China
| | | | | | | | - Yajie Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology, Chinese Academy of Sciences , Beijing 100190 , China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology, Chinese Academy of Sciences , Beijing 100190 , China
| | | | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
9
|
Effect of electron-withdrawing terminal group on BDT-based donor materials for organic solar cells: a theoretical investigation. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2242-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Du J, Fortney A, Washington KE, Bulumulla C, Huang P, Dissanayake D, Biewer MC, Kowalewski T, Stefan MC. Systematic Investigation of Benzodithiophene-Benzothiadiazole Isomers for Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33025-33033. [PMID: 27934193 DOI: 10.1021/acsami.6b11806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Two new donor-acceptor small molecules based on benzo[1,2-b:4,5-b']dithiophene (BDT) and benzo[c][1,2,5]thiadiazole (BT) were designed and synthesized. Small molecules 4,4'-[(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(2,2'-bithiophene)-5,5'-diyl]bis(benzo[c][1,2,5]thiadiazole) (BDT-TT-BT) and 4,4'-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis[7-(2,2'-bithiophene-5-yl)benzo[c][1,2,5]thiadiazole] (BDT-BT-TT) are structural isomers with the 2,2-bithiophene unit placed either between the BDT and BT units or at the end of the BT units. This work is targeted toward finding the effect of structural variation on optoelectronic properties, morphology, and photovoltaic performance. On the basis of theoretical calculations, the molecular geometry and energy levels are different for these two molecules when the position of the 2,2-bithiophene unit is changed. Optical and electrochemical properties of these two small molecules were characterized using UV-vis and cyclic voltammetry. The results showed that BDT-BT-TT has broader absorption and an elevated HOMO energy level when compared with those of BDT-TT-BT. The performance of these two isomers in solar cell devices was tested by blending with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). Power conversion efficiencies as high as 3.22 and 3.71% were obtained in conventional solar cell structures for BDT-TT-BT and BDT-BT-TT, respectively. The morphology was studied using grazing incident wide-angle X-ray scattering and transmission electron microscopy, which revealed different phase separations of these two molecules when blended with PC71BM.
Collapse
Affiliation(s)
- Jia Du
- Department of Chemistry and Biochemistry, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Andria Fortney
- Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Katherine E Washington
- Department of Chemistry and Biochemistry, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Chandima Bulumulla
- Department of Chemistry and Biochemistry, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Peishen Huang
- Department of Chemistry and Biochemistry, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Dushanthi Dissanayake
- Department of Chemistry and Biochemistry, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Tomasz Kowalewski
- Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas , Richardson, Texas 75080, United States
| |
Collapse
|
11
|
Narayanaswamy K, Venkateswararao A, Nagarjuna P, Bishnoi S, Gupta V, Chand S, Singh SP. An Organic Dyad Composed of Diathiafulvalene-Functionalized Diketopyrrolopyrrole-Fullerene for Single-Component High-Efficiency Organic Solar Cells. Angew Chem Int Ed Engl 2016; 55:12334-7. [DOI: 10.1002/anie.201602969] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/15/2016] [Indexed: 11/06/2022]
Affiliation(s)
- K. Narayanaswamy
- Inorganic & Physical Chemistry Division; CSIR-Indian Institute of Chemical Technology; Uppal Road, Tarnaka Hyderabad- 500007 India
- Network Institute of Solar Energy (CSIR-NISE) and Academy of Scientific and Innovative Research (AcSIR); New Delhi India
| | - A. Venkateswararao
- Inorganic & Physical Chemistry Division; CSIR-Indian Institute of Chemical Technology; Uppal Road, Tarnaka Hyderabad- 500007 India
| | - P. Nagarjuna
- Inorganic & Physical Chemistry Division; CSIR-Indian Institute of Chemical Technology; Uppal Road, Tarnaka Hyderabad- 500007 India
- Network Institute of Solar Energy (CSIR-NISE) and Academy of Scientific and Innovative Research (AcSIR); New Delhi India
| | - Swati Bishnoi
- Physics of Energy Harvesting Division; CSIR-National Physical Laboratory; New Delhi India
- Network Institute of Solar Energy (CSIR-NISE) and Academy of Scientific and Innovative Research (AcSIR); New Delhi India
| | - Vinay Gupta
- Physics of Energy Harvesting Division; CSIR-National Physical Laboratory; New Delhi India
- Network Institute of Solar Energy (CSIR-NISE) and Academy of Scientific and Innovative Research (AcSIR); New Delhi India
| | - Suresh Chand
- Physics of Energy Harvesting Division; CSIR-National Physical Laboratory; New Delhi India
- Network Institute of Solar Energy (CSIR-NISE) and Academy of Scientific and Innovative Research (AcSIR); New Delhi India
| | - Surya Prakash Singh
- Inorganic & Physical Chemistry Division; CSIR-Indian Institute of Chemical Technology; Uppal Road, Tarnaka Hyderabad- 500007 India
- Network Institute of Solar Energy (CSIR-NISE) and Academy of Scientific and Innovative Research (AcSIR); New Delhi India
| |
Collapse
|
12
|
An Organic Dyad Composed of Diathiafulvalene-Functionalized Diketopyrrolopyrrole-Fullerene for Single-Component High-Efficiency Organic Solar Cells. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
The impact of regiochemistry of conjugated molecules on the performance of organic electronic devices. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Yao H, Ye L, Zhang H, Li S, Zhang S, Hou J. Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials. Chem Rev 2016; 116:7397-457. [DOI: 10.1021/acs.chemrev.6b00176] [Citation(s) in RCA: 861] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huifeng Yao
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory of
Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Long Ye
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory of
Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao Zhang
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory of
Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Sunsun Li
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory of
Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shaoqing Zhang
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory of
Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianhui Hou
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory of
Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
15
|
Wang K, Guo X, Guo B, Li W, Zhang M, Li Y. Broad Bandgap D-A Copolymer Based on Bithiazole Acceptor Unit for Application in High-Performance Polymer Solar Cells with Lower Fullerene Content. Macromol Rapid Commun 2016; 37:1066-73. [PMID: 27174683 DOI: 10.1002/marc.201600115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/22/2016] [Indexed: 11/06/2022]
Abstract
A new broad bandgap and 2D-conjugated D-A copolymer, PBDTBTz-T, based on bithienyl-benzodithiophene donor unit and bithiazole (BTz) acceptor unit, is designed and synthesized for the application as donor material in polymer solar cells (PSCs). The polymer possesses highly coplanar and crystalline structure with a higher hole mobility and lower HOMO energy level which is beneficial to achieve higher open circuit voltage (Voc ) of the PSCs with the polymer as donor. The PSCs based on PBDTBTz-T:PC71 BM blend film with a lower PC71 BM content of 40% demonstrate a power conversion efficiency (PCE) of 6.09% with a relatively higher Voc of 0.92 V. These results indicate that the lower HOMO energy level of the BTz-based D-A copolymer is beneficial to a high Voc of the PSCs. The polymer, with highly coplanar and crystalline structure, can effectively reduce the content of fullerene acceptor in the active layer and can enhance the absorption and PCE of the PSCs.
Collapse
Affiliation(s)
- Kun Wang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xia Guo
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Bing Guo
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wanbin Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|