1
|
Kižys K, Pirštelis D, Morkvėnaitė-Vilkončienė I. Effect of Gold Nanoparticles in Microbial Fuel Cells Based on Polypyrrole-Modified Saccharomyces cerevisiae. BIOSENSORS 2024; 14:572. [PMID: 39727837 DOI: 10.3390/bios14120572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Microbial fuel cells (MFCs) are a candidate for green energy sources due to microbes' ability to generate charge in their metabolic processes. The main problem in MFCs is slow charge transfer between microorganisms and electrodes. Several methods to improve charge transfer have been used until now: modification of microorganisms by conductive polymers, use of lipophilic mediators, and conductive nanomaterials. We created an MFC with a graphite anode, covering it with 9,10-phenatrenequinone and polypyrrole-modified Saccharomyces cerevisiae with and without 10 nm sphere gold nanoparticles. The MFC was evaluated using cyclic voltammetry and power density measurements. The peak current from cyclic voltammetry measurements increased from 3.76 mA/cm2 to 5.01 mA/cm2 with bare and polypyrrole-modified yeast, respectively. The MFC with polypyrrole- and nanoparticle-modified yeast reached a maximum power density of 150 mW/m2 in PBS with 20 mM Fe(III) and 20 mM glucose, using a load of 10 kΩ. The same MFC with the same load in wastewater reached 179.2 mW/m2. These results suggest that this MFC configuration can be used to improve charge transfer.
Collapse
Affiliation(s)
- Kasparas Kižys
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, 02300 Vilnius, Lithuania
| | - Domas Pirštelis
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, 02300 Vilnius, Lithuania
| | - Inga Morkvėnaitė-Vilkončienė
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, 02300 Vilnius, Lithuania
| |
Collapse
|
2
|
Balboni RDC, Cholant CM, Lemos RMJ, Rodrigues LS, Carreno NLV, Santos MJL, Avellaneda CAO, Andreazza R. Highly transparent sustainable biogel electrolyte based on cellulose acetate for application in electrochemical devices. Int J Biol Macromol 2024; 265:130757. [PMID: 38462107 DOI: 10.1016/j.ijbiomac.2024.130757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
In this study, an easy and low-cost production method for a cellulose acetate-based gel polymer containing lithium perchlorate and propylene carbonate is described, as well as the investigation of its properties for potential use as an electrolyte in electrochemical devices. Cellulose acetate, a biopolymer derived from natural matrix, is colourless and transparent, as confirmed by the UV-Vis spectroscopy, with 85 % transparency in visible spectrum. The gels were prepared and tested at different concentrations and proportions to optimise their properties. Thermogravimetry, XRD, and FTIR analyses revealed crucial characteristics, including a substantial 90 % mass loss between 150 and 250 °C, a semi-crystalline nature with complete salt dissociation within the polymer matrix, and a decrease in intensity at 1780 cm-1 with increasing Li+ ion concentration, suggesting an improvement in ionic conduction capacity. In terms of electrochemical performance, the gel containing 10 % by mass of cellulose acetate and 1.4 M of LiClO4 emerged as the most promising. It exhibited a conductivity of 2.3 × 10-4 S.cm-1 at 25 °C and 3.0 × 10-4 S.cm-1 at 80 °C. Additionally, it demonstrated an ideal shape of cyclic voltammetry curves and stability after 400 cycles, establishing its suitability as an electrolyte in electrochemical devices.
Collapse
Affiliation(s)
- Raphael D C Balboni
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS 96010-000, Brazil
| | - Camila M Cholant
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS 96010-000, Brazil
| | - Rafaela M J Lemos
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS 96010-000, Brazil
| | - Lucas S Rodrigues
- Engineering, Modeling and Applied Social Sciences Center, Federal University of ABC (UFABC), Santo André, SP 09210-580, Brazil
| | - Neftali L V Carreno
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS 96010-000, Brazil.
| | - Marcos J L Santos
- Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil.
| | - Cesar A O Avellaneda
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS 96010-000, Brazil
| | - Robson Andreazza
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS 96010-000, Brazil.
| |
Collapse
|
3
|
Ponder JF, Gregory SA, Atassi A, Advincula AA, Rinehart JM, Freychet G, Su GM, Yee SK, Reynolds JR. Metal-like Charge Transport in PEDOT(OH) Films by Post-processing Side Chain Removal from a Soluble Precursor Polymer. Angew Chem Int Ed Engl 2023; 62:e202211600. [PMID: 36269867 DOI: 10.1002/anie.202211600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Indexed: 11/05/2022]
Abstract
Herein, a route to produce highly electrically conductive doped hydroxymethyl functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) films, termed PEDOT(OH) with metal-like charge transport properties using a fully solution processable precursor polymer is reported. This is achieved via an ester-functionalized PEDOT derivative [PEDOT(EHE)] that is soluble in a range of solvents with excellent film-forming ability. PEDOT(EHE) demonstrates moderate electrical conductivities of 20-60 S cm-1 and hopping-like (i.e., thermally activated) transport when doped with ferric tosylate (FeTos3 ). Upon basic hydrolysis of PEDOT(EHE) films, the electrically insulative side chains are cleaved and washed from the polymer film, leaving a densified film of PEDOT(OH). These films, when optimally doped, reach electrical conductivities of ≈1200 S cm-1 and demonstrate metal-like (i.e., thermally deactivated and band-like) transport properties and high stability at comparable doping levels.
Collapse
Affiliation(s)
- James F Ponder
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, 45433, United States.,UES, Inc., Dayton, Ohio 45432, USA
| | - Shawn A Gregory
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Amalie Atassi
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Abigail A Advincula
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Joshua M Rinehart
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Gregory M Su
- Advanced Light Source & Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Shannon K Yee
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - John R Reynolds
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Chemistry and Biochemistry, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Basurto IM, Muhammad SA, Gardner GM, Christ GJ, Caliari SR. Controlling scaffold conductivity and pore size to direct myogenic cell alignment and differentiation. J Biomed Mater Res A 2022; 110:1681-1694. [PMID: 35762455 PMCID: PMC9540010 DOI: 10.1002/jbm.a.37418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/27/2022]
Abstract
Skeletal muscle's combination of three-dimensional (3D) anisotropy and electrical excitability is critical for enabling normal movement. We previously developed a 3D aligned collagen scaffold incorporating conductive polypyrrole (PPy) particles to recapitulate these key muscle properties and showed that the scaffold facilitated enhanced myotube maturation compared with nonconductive controls. To further optimize this scaffold design, this work assessed the influence of conductive polymer incorporation and scaffold pore architecture on myogenic cell behavior. Conductive PPy and poly(3,4-ethylenedioxythiophene) (PEDOT) particles were synthesized and mixed into a suspension of type I collagen and chondroitin sulfate prior to directional freeze-drying to produce anisotropic scaffolds. Energy dispersive spectroscopy revealed homogenous distribution of conductive PEDOT particles throughout the scaffolds that resulted in a threefold increase in electrical conductivity while supporting similar myoblast metabolic activity compared to nonconductive scaffolds. Control of freezing temperature enabled fabrication of PEDOT-doped scaffolds with a range of pore diameters from 98 to 238 μm. Myoblasts conformed to the anisotropic contact guidance cues independent of pore size to display longitudinal cytoskeletal alignment. The increased specific surface area of the smaller pore scaffolds helped rescue the initial decrease in myoblast metabolic activity observed in larger pore conductive scaffolds while also promoting modestly increased expression levels of the myogenic marker myosin heavy chain (MHC) and gene expression of myoblast determination protein (MyoD). However, cell infiltration to the center of the scaffolds was marginally reduced compared with larger pore variants. Together these data underscore the potential of aligned and PEDOT-doped collagen scaffolds for promoting myogenic cell organization and differentiation.
Collapse
Affiliation(s)
- Ivan M. Basurto
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Samir A. Muhammad
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Gregg M. Gardner
- Department of Chemical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - George J. Christ
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Orthopedic SurgeryUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Steven R. Caliari
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Chemical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
5
|
Bierman-Duquette RD, Safarians G, Huang J, Rajput B, Chen JY, Wang ZZ, Seidlits SK. Engineering Tissues of the Central Nervous System: Interfacing Conductive Biomaterials with Neural Stem/Progenitor Cells. Adv Healthc Mater 2022; 11:e2101577. [PMID: 34808031 PMCID: PMC8986557 DOI: 10.1002/adhm.202101577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/31/2021] [Indexed: 12/19/2022]
Abstract
Conductive biomaterials provide an important control for engineering neural tissues, where electrical stimulation can potentially direct neural stem/progenitor cell (NS/PC) maturation into functional neuronal networks. It is anticipated that stem cell-based therapies to repair damaged central nervous system (CNS) tissues and ex vivo, "tissue chip" models of the CNS and its pathologies will each benefit from the development of biocompatible, biodegradable, and conductive biomaterials. Here, technological advances in conductive biomaterials are reviewed over the past two decades that may facilitate the development of engineered tissues with integrated physiological and electrical functionalities. First, one briefly introduces NS/PCs of the CNS. Then, the significance of incorporating microenvironmental cues, to which NS/PCs are naturally programmed to respond, into biomaterial scaffolds is discussed with a focus on electrical cues. Next, practical design considerations for conductive biomaterials are discussed followed by a review of studies evaluating how conductive biomaterials can be engineered to control NS/PC behavior by mimicking specific functionalities in the CNS microenvironment. Finally, steps researchers can take to move NS/PC-interfacing, conductive materials closer to clinical translation are discussed.
Collapse
Affiliation(s)
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, USA
| | - Joyce Huang
- Department of Bioengineering, University of California Los Angeles, USA
| | - Bushra Rajput
- Department of Bioengineering, University of California Los Angeles, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, USA
- David Geffen School of Medicine, University of California Los Angeles, USA
| | - Ze Zhong Wang
- Department of Bioengineering, University of California Los Angeles, USA
| | | |
Collapse
|
6
|
Zhuang A, Huang X, Fan S, Yao X, Zhu B, Zhang Y. One-Step Approach to Prepare Transparent Conductive Regenerated Silk Fibroin/PEDOT:PSS Films for Electroactive Cell Culture. ACS APPLIED MATERIALS & INTERFACES 2022; 14:123-137. [PMID: 34935351 DOI: 10.1021/acsami.1c16855] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Silk fibroin (SF)-based electroactive biomaterials with favorable electroconductive property and transparency have great potential applications for cell culture and tissue engineering. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is an excellent candidate as a conductive component, which has been widely used in the field of bioelectronics; however, it is hard to be directly coated onto the surface of regenerated SF (RSF) materials with good stability under a cell culture environment. In this study, a one-step facile PEDOT:PSS modification approach for RSF films based on a suitable post-treatment process of RSF was developed. PEDOT:PSS was successfully embedded and fixed into the shallow surface of an RSF film, forming a tightly conjunct conductive layer on the film surface based on the conformation transition of RSF during the post-treatment process. The conductive layer demonstrated a PSS-rich surface and a PEDOT-rich bulk structure and showed excellent stability under a cell culture environment. More specifically, the robust RSF/PEDOT:PSS film achieved in the post-treatment formula with 70% ethanol proportion possessed best comprehensive properties such as a sheet resistance of 3.833 × 103 Ω/square, a conductivity of 1.003 S/cm, and transmittance over 80% at maximum in the visible range. This kind of electroactive biomaterial also showed good electrochemical stability and degradable properties. Moreover, pheochromocytoma-derived cell line (PC12) cells were cultured on the RSF/PEDOT:PSS film, and an effective electrical stimulation cell response was demonstrated. The facile preparation strategy and the good electroconductive property and transparency make this RSF/PEDOT:PSS film an ideal candidate for neuronal tissue engineering and further for biomedical applications.
Collapse
Affiliation(s)
- Ao Zhuang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiangyu Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Bo Zhu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
Souri Z, Alizadeh S, Nematollahi D, Mazloum-Ardakani M, Karami A. A green and template-free electropolymerization of imipramine. The decoration of sponge-like polymer film with gold nanoparticles. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Basurto IM, Mora MT, Gardner GM, Christ GJ, Caliari SR. Aligned and electrically conductive 3D collagen scaffolds for skeletal muscle tissue engineering. Biomater Sci 2021; 9:4040-4053. [PMID: 33899845 DOI: 10.1039/d1bm00147g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Skeletal muscle is characterized by its three-dimensional (3D) anisotropic architecture composed of highly aligned and electrically-excitable muscle fibers that enable normal movement. Biomaterial-based tissue engineering approaches to repair skeletal muscle are limited due to difficulties combining 3D structural alignment (to guide cell/matrix organization) and electrical conductivity (to enable electrically-excitable myotube assembly and maturation). In this work we successfully produced aligned and electrically conductive 3D collagen scaffolds using a freeze-drying approach. Conductive polypyrrole (PPy) nanoparticles were synthesized and directly mixed into a suspension of type I collagen and chondroitin sulfate followed by directional lyophilization. Scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and confocal microscopy showed that directional solidification resulted in scaffolds with longitudinally aligned pores with homogeneously-distributed PPy content. Chronopotentiometry verified that PPy incorporation resulted in a five-fold increase in conductivity compared to non-PPy-containing collagen scaffolds without detrimentally affecting myoblast metabolic activity. Furthermore, the aligned scaffold microstructure provided contact guidance cues that directed myoblast growth and organization. Incorporation of PPy also promoted enhanced myotube formation and maturation as measured by myosin heavy chain (MHC) expression and number of nuclei per myotube. Together these data suggest that aligned and electrically conductive 3D collagen scaffolds could be useful for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
| | | | | | - George J Christ
- Department of Biomedical Engineering, USA. and Department of Orthopedic Surgery, University of Virginia, USA
| | - Steven R Caliari
- Department of Biomedical Engineering, USA. and Department of Chemical Engineering, USA
| |
Collapse
|
9
|
Zhuang A, Pan Q, Qian Y, Fan S, Yao X, Song L, Zhu B, Zhang Y. Transparent Conductive Silk Film with a PEDOT-OH Nano Layer as an Electroactive Cell Interface. ACS Biomater Sci Eng 2021; 7:1202-1215. [PMID: 33599501 DOI: 10.1021/acsbiomaterials.0c01665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bioelectronics based on biomaterial substrates are advancing toward biomedical applications. As excellent conductors, poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have been widely developed in this field. However, it is still a big challenge to obtain a functional layer with a good electroconductive property, transparency, and strong adhesion on the biosubstrate. In this work, poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PEDOT-OH) was chemically polymerized and deposited on the surface of a regenerated silk fibroin (RSF) film in an aqueous system. Sodium dodecyl sulfate (SDS) was used as the surfactant to form micelles which are beneficial to the polymer structure. To overcome the trade-off between transparency and the electroconductive property of the PEDOT-OH coating, a composite oxidant recipe of FeCl3 and ammonium persulfate (APS) was developed. Through electrostatic interaction of oppositely charged doping ions, a well-organized conductive nanoscale coating formed and a transparent conductive RSF/PEDOT-OH film was produced, which can hardly be achieved in a traditional single oxidant system. The produced film had a sheet resistance (Rs) of 5.12 × 104 Ω/square corresponding to a conductivity of 8.9 × 10-2 S/cm and a maximum transmittance above 73% in the visible range. In addition, strong adhesion between PEDOT-OH and RSF and favorable electrochemical stability of the film were demonstrated. Desirable transparency of the film allowed real-time observation of live cells. Furthermore, the PEDOT-OH layer provided an improved environment for adhesion and differentiation of PC12 cells compared to the RSF surface alone. Finally, the feasibility of using the RSF/PEDOT-OH film to electrically stimulate PC12 cells was demonstrated.
Collapse
Affiliation(s)
- Ao Zhuang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Qichao Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Ying Qian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Lujie Song
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Bo Zhu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
10
|
Dominguez-Alfaro A, Alegret N, Arnaiz B, Salsamendi M, Mecerreyes D, Prato M. Toward Spontaneous Neuronal Differentiation of SH-SY5Y Cells Using Novel Three-Dimensional Electropolymerized Conductive Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57330-57342. [PMID: 33306363 DOI: 10.1021/acsami.0c16645] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Neuroblastoma-derived SH-SY5Y cells have become an excellent model for nervous system regeneration to treat neurodegenerative disorders. Many approaches achieved a mature population of derived neurons in in vitro plates. However, the importance of the third dimension in tissue regeneration has become indispensable to achieve a potential implant to replace the damaged tissue. Therefore, we have prepared porous 3D structures composed uniquely of carbon nanotubes (CNT) and poly(3,4-ethylenedioxythiophene) (PEDOT) that show great potential in the tridimensional differentiation of SH-SY5Y cells into mature neurons. The scaffolds have been manufactured through electropolymerization by applying 1.2 V in a three-electrode cell using a template of sucrose/CNT as a working electrode. By this method, PEDOT/CNT 3D scaffolds were obtained with homogeneous porosities and high conductivity. In vitro analyses showed that an excellent biocompatibility of the scaffold and the presence of high amount of β-tubulin class III and MAP-II target proteins that mainly expresses in neurons, suggesting the differentiation into neuronal cells already after a week of incubation.
Collapse
Affiliation(s)
- Antonio Dominguez-Alfaro
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Nuria Alegret
- POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Cardiovascular Institute, UC Denver Anschutz Medical Campus, School of Medicine, 12700 E. 19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
| | - Blanca Arnaiz
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| | - Maitane Salsamendi
- POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Department of Chemical and Pharmaceutical Sciences, INSTM, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
11
|
Magaz A, Spencer BF, Hardy JG, Li X, Gough JE, Blaker JJ. Modulation of Neuronal Cell Affinity on PEDOT-PSS Nonwoven Silk Scaffolds for Neural Tissue Engineering. ACS Biomater Sci Eng 2020; 6:6906-6916. [PMID: 33320623 DOI: 10.1021/acsbiomaterials.0c01239] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peripheral nerve injury is a common consequence of trauma with low regenerative potential. Electroconductive scaffolds can provide appropriate cell growth microenvironments and synergistic cell guidance cues for nerve tissue engineering. In the present study, electrically conductive scaffolds were prepared by conjugating poly (3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT-PSS) or dimethyl sulfoxide (DMSO)-treated PEDOT-PSS on electrospun silk scaffolds. Conductance could be tuned by the coating concentration and was further boosted by DMSO treatment. Analogue NG108-15 neuronal cells were cultured on the scaffolds to evaluate neuronal cell growth, proliferation, and differentiation. Cellular viability was maintained on all scaffold groups while showing comparatively better metabolic activity and proliferation than neat silk. DMSO-treated PEDOT-PSS functionalized scaffolds partially outperformed their PEDOT-PSS counterparts. Differentiation assessments suggested that these PEDOT-PSS assembled silk scaffolds could support neurite sprouting, indicating that they show promise to be used as a future platform to restore electrochemical coupling at the site of injury and preserve normal nerve function.
Collapse
Affiliation(s)
- Adrián Magaz
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, United Kingdom.,Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), Singapore 138634 Singapore
| | - Ben F Spencer
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - John G Hardy
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom.,Materials Science Institute, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Xu Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), Singapore 138634 Singapore.,Department of Chemistry, National University of Singapore, Singapore 117543 Singapore
| | - Julie E Gough
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jonny J Blaker
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, United Kingdom.,Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo 0317, Norway
| |
Collapse
|
12
|
Vandghanooni S, Eskandani M. Natural polypeptides-based electrically conductive biomaterials for tissue engineering. Int J Biol Macromol 2020; 147:706-733. [PMID: 31923500 DOI: 10.1016/j.ijbiomac.2019.12.249] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/28/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
Abstract
Fabrication of an appropriate scaffold is the key fundamental step required for a successful tissue engineering (TE). The artificial scaffold as extracellular matrix in TE has noticeable role in the fate of cells in terms of their attachment, proliferation, differentiation, orientation and movement. In addition, chemical and electrical stimulations affect various behaviors of cells such as polarity and functionality. Therefore, the fabrication approach and materials used for the preparation of scaffold should be more considered. Various synthetic and natural polymers have been used extensively for the preparation of scaffolds. The electrically conductive polymers (ECPs), moreover, have been used in combination with other polymers to apply electric fields (EF) during TE. In this context, composites of natural polypeptides and ECPs can be taken into account as context for the preparation of suitable scaffolds with superior biological and physicochemical features. In this review, we overviewed the simultaneous usage of natural polypeptides and ECPs for the fabrication of scaffolds in TE.
Collapse
Affiliation(s)
- Somayeh Vandghanooni
- Research Center for Pharmaceutical Nanotechnology, Biomedicine institute, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Jadoun S, Riaz U. A review on the chemical and electrochemical copolymerization of conducting monomers: recent advancements and future prospects. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2019.1669647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sapana Jadoun
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Ufana Riaz
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
14
|
Patamia ED, Ostrovsky-Snider NA, Murphy AR. Photolithographic Masking Method to Chemically Pattern Silk Film Surfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33612-33619. [PMID: 31502441 DOI: 10.1021/acsami.9b10226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A method has been developed for selectively patterning silk surfaces using a photolithographic process to mask off sections of silk films, which allows selective and precise patterning of features down to 40 μm. This process is highly versatile, utilizes only low-cost equipment and can be used to rapidly prototype flat silk substrates with spatially controlled chemical patterns. Here we demonstrate the usefulness of this technique to deposit fluorescent dyes, labeled proteins and conducting polymers or to modify the surface charge of the silk protein in desired regions on a silk film surface.
Collapse
Affiliation(s)
- Evan D Patamia
- Department of Chemistry , Western Washington University , 516 High Street , Bellingham , Washington 98225-9150 , United States
| | - Nicholas A Ostrovsky-Snider
- Department of Chemistry , Western Washington University , 516 High Street , Bellingham , Washington 98225-9150 , United States
| | - Amanda R Murphy
- Department of Chemistry , Western Washington University , 516 High Street , Bellingham , Washington 98225-9150 , United States
| |
Collapse
|
15
|
Alegret N, Dominguez-Alfaro A, Mecerreyes D. 3D Scaffolds Based on Conductive Polymers for Biomedical Applications. Biomacromolecules 2018; 20:73-89. [PMID: 30543402 DOI: 10.1021/acs.biomac.8b01382] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
3D scaffolds appear to be a cost-effective ultimate answer for biomedical applications, facilitating rapid results while providing an environment similar to in vivo tissue. These biomaterials offer large surface areas for cell or biomaterial attachment, proliferation, biosensing and drug delivery applications. Among 3D scaffolds, the ones based on conjugated polymers (CPs) and natural nonconductive polymers arranged in a 3D architecture provide tridimensionality to cellular culture along with a high surface area for cell adherence and proliferation as well electrical conductivity for stimulation or sensing. However, the scaffolds must also obey other characteristics: homogeneous porosity, with pore sizes large enough to allow cell penetration and nutrient flow; elasticity and wettability similar to the tissue of implantation; and a suitable composition to enhance cell-matrix interactions. In this Review, we summarize the fabrication methods, characterization techniques and main applications of conductive 3D scaffolds based on conductive polymers. The main barrier in the development of these platforms has been the fabrication and subsequent maintenance of the third dimension due to challenges in the manipulation of conductive polymers. In the last decades, different approaches to overcome these barriers have been developed for the production of conductive 3D scaffolds, demonstrating a huge potential for biomedical purposes. Finally, we present an overview of the emerging strategies developed to manufacture 3D conductive scaffolds, the techniques used to fully characterize them, and the biomedical fields where they have been applied.
Collapse
Affiliation(s)
- Nuria Alegret
- POLYMAT University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain.,Cardiovascular Institute, School of Medicine, Division of Cardiology , University of Colorado Denver Anschutz Medical Campus , 12700 E. 19th Avenue, Building P15 , Aurora , Colorado 80045 , United States
| | - Antonio Dominguez-Alfaro
- POLYMAT University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain.,Carbon Nanobiotechnology Group, CIC biomaGUNE , Paseo de Miramón 182 , 2014 Donostia-San Sebastián , Spain
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain.,Ikerasque, Basque Foundation for Science , 48013 Bilbao , Spain
| |
Collapse
|
16
|
Zhuang A, Bian Y, Zhou J, Fan S, Shao H, Hu X, Zhu B, Zhang Y. All-Organic Conductive Biomaterial as an Electroactive Cell Interface. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35547-35556. [PMID: 30234966 DOI: 10.1021/acsami.8b13820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Various attractive materials are being used in bioelectronics recently. In this paper, hydroxymethyl-3,4-ethylenedioxythiophene (EDOT-OH) has been in situ integrated and polymerized on the surface of the regenerated silk fibroin (RSF) film to construct a biocompatible electrode. In order to improve the efficiency of in situ polymerization, sodium dodecyl sulfate (SDS) was adopted as surfactant to construct a well-organized and stable poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PEDOT-OH) coating, whereas ammonium persulfate was used as oxidant. The effects of dosages of surfactant and oxidant, initial pH value, and monomer concentration on the polymerization were studied. Under the optimal conditions, the RSF/PEDOT-OH film exhibited a square resistance of 3.28 × 105 Ω corresponding to a conductance of 6.1 × 10-3 S/cm. Scanning electron microscope images indicated that PEDOT-OH was deposited uniformly on the surface of the RSF film with SDS. Furthermore, Fourier transform infrared spectroscopy confirmed that interactions existed between the peptide linkages of silk fibroin (SF) macromolecules and PEDOT-OH. The RSF/PEDOT-OH film displayed favorable electrochemical stability, biocompatibility, and fastness. This study provides a feasible method to endow conductivity to RSF materials in various forms. In addition, the conductive layer and biocompatible silk substrate make the RSF/PEDOT-OH biomaterial highly suitable for potential applications in bioelectric devices, sensors, and tissue engineering.
Collapse
Affiliation(s)
- Ao Zhuang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Yongjun Bian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
- School of Materials Science and Engineering , Shanghai University , Shanghai 200444 , China
| | - Jianwei Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Huili Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Xuechao Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Bo Zhu
- School of Materials Science and Engineering , Shanghai University , Shanghai 200444 , China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| |
Collapse
|
17
|
Hagler JR, Peterson BN, Murphy AR, Leger JM. Performance of silk‐polypyrrole bilayer actuators under biologically relevant conditions. J Appl Polym Sci 2018. [DOI: 10.1002/app.46922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- J. R. Hagler
- Department of Physics and Astronomy Western Washington University 516 High Street, Bellingham Washington 98225‐9164
| | - B. N. Peterson
- Department of Physics and Astronomy Western Washington University 516 High Street, Bellingham Washington 98225‐9164
| | - A. R. Murphy
- Department of Chemistry Western Washington University 516 High Street, Bellingham Washington 98225‐9150
| | - J. M. Leger
- Department of Physics and Astronomy Western Washington University 516 High Street, Bellingham Washington 98225‐9164
- Department of Chemistry Western Washington University 516 High Street, Bellingham Washington 98225‐9150
| |
Collapse
|
18
|
Polypyrrole as Electrically Conductive Biomaterials: Synthesis, Biofunctionalization, Potential Applications and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:347-370. [DOI: 10.1007/978-981-13-0950-2_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Mao J, Li C, Park HJ, Rouabhia M, Zhang Z. Conductive Polymer Waving in Liquid Nitrogen. ACS NANO 2017; 11:10409-10416. [PMID: 28880520 DOI: 10.1021/acsnano.7b05546] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The poor mechanical properties and processability of pristine heterocyclic conductive polymers represent the most notable scientific and technological challenges that have greatly limited the application of these polymers. We report a soft and mechanically processable free-standing pristine polypyrrole (PPy) membrane (PPy-N) that is as soft in liquid nitrogen (-196 °C) as it is at room temperature, despite a glass transition temperature (Tg) above 100 °C. This PPy membrane also displays a highly attractive combination of properties, including mechanical processability, lightweight (9 g m-2), large surface area (14.5 m2 g-1), stable electrothermal behavior, amphiphilicity, excellent cytocompatibility, and easy synthesis, at virtually any size. This discovery demonstrates an approach to changing the mechanical property of heterocyclic conductive polymer with no chemical alterations or compounding and may enhance the development of inherently conducting polymers for applications in energy storage and biomedicine and as lightweight conducting and heating materials.
Collapse
Affiliation(s)
- Jifu Mao
- Département de chirurgie, Faculté de médecine, Université Laval , Québec G1V 0A6, Canada
- L'Axe médecine régénératrice, Centre de recherche du CHU de Québec , Québec G1L 3L5, Canada
| | - Chaojing Li
- Département de chirurgie, Faculté de médecine, Université Laval , Québec G1V 0A6, Canada
- L'Axe médecine régénératrice, Centre de recherche du CHU de Québec , Québec G1L 3L5, Canada
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University , 2999 North Renmin Road, Shanghai 201620, China
| | - Hyun Jin Park
- Département de chirurgie, Faculté de médecine, Université Laval , Québec G1V 0A6, Canada
- L'Axe médecine régénératrice, Centre de recherche du CHU de Québec , Québec G1L 3L5, Canada
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval , Québec G1V 0A6, Canada
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval , Québec G1V 0A6, Canada
| | - Ze Zhang
- Département de chirurgie, Faculté de médecine, Université Laval , Québec G1V 0A6, Canada
- L'Axe médecine régénératrice, Centre de recherche du CHU de Québec , Québec G1L 3L5, Canada
| |
Collapse
|
20
|
Allison L, Hoxie S, Andrew TL. Towards seamlessly-integrated textile electronics: methods to coat fabrics and fibers with conducting polymers for electronic applications. Chem Commun (Camb) 2017; 53:7182-7193. [DOI: 10.1039/c7cc02592k] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Traditional textile materials can be transformed into functional electronic components upon being dyed or coated with films of intrinsically conducting polymers, such as poly(aniline), poly(pyrrole) and poly(3,4-ethylenedioxythiophene).
Collapse
Affiliation(s)
- Linden Allison
- Department of Chemistry, University of Massachusetts Amherst
- Amherst
- USA
| | - Steven Hoxie
- Department of Chemistry, University of Massachusetts Amherst
- Amherst
- USA
| | - Trisha L. Andrew
- Department of Chemistry, University of Massachusetts Amherst
- Amherst
- USA
| |
Collapse
|
21
|
Severt SY, Maxwell SL, Bontrager JS, Leger JM, Murphy AR. Mimicking muscle fiber structure and function through electromechanical actuation of electrospun silk fiber bundles. J Mater Chem B 2017; 5:8105-8114. [DOI: 10.1039/c7tb01904a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fiber bundles composed of silk and conducting polymers undergo linear actuation, thus mimicking the structure and contractile function of muscles.
Collapse
Affiliation(s)
- S. Y. Severt
- Department of Chemistry
- Western Washington University
- Bellingham
- USA
| | - S. L. Maxwell
- Department of Chemistry
- Western Washington University
- Bellingham
- USA
| | - J. S. Bontrager
- Department of Chemistry
- Western Washington University
- Bellingham
- USA
| | - J. M. Leger
- Department of Chemistry
- Western Washington University
- Bellingham
- USA
- Department of Physics and Astronomy
| | - A. R. Murphy
- Department of Chemistry
- Western Washington University
- Bellingham
- USA
| |
Collapse
|
22
|
Hostert L, de Alvarenga G, Vidotti M, Marchesi LF. Sonoelectrodeposition of poly(pyrrole) films: Electrochemical and morphological effects caused by the ultrasonic amplitude. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Nguyen DN, Yoon H. Recent Advances in Nanostructured Conducting Polymers: from Synthesis to Practical Applications. Polymers (Basel) 2016; 8:E118. [PMID: 30979209 PMCID: PMC6432394 DOI: 10.3390/polym8040118] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/19/2016] [Accepted: 03/25/2016] [Indexed: 12/21/2022] Open
Abstract
Conducting polymers (CPs) have been widely studied to realize advanced technologies in various areas such as chemical and biosensors, catalysts, photovoltaic cells, batteries, supercapacitors, and others. In particular, hybridization of CPs with inorganic species has allowed the production of promising functional materials with improved performance in various applications. Consequently, many important studies on CPs have been carried out over the last decade, and numerous researchers remain attracted to CPs from a technological perspective. In this review, we provide a theoretical classification of fabrication techniques and a brief summary of the most recent developments in synthesis methods. We evaluate the efficacy and benefits of these methods for the preparation of pure CP nanomaterials and nanohybrids, presenting the newest trends from around the world with 205 references, most of which are from the last three years. Furthermore, we also evaluate the effects of various factors on the structures and properties of CP nanomaterials, citing a large variety of publications.
Collapse
Affiliation(s)
- Duong Nguyen Nguyen
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| |
Collapse
|