1
|
Basak S, Das TK. Zwitterionic, Stimuli-Responsive Liposomes for Curcumin Drug Delivery: Enhancing M2 Macrophage Polarization and Reducing Oxidative Stress through Enzyme-Specific and Hyperthermia-Triggered Release. ACS APPLIED BIO MATERIALS 2025; 8:726-740. [PMID: 39680711 DOI: 10.1021/acsabm.4c01579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
A zwitterionic, stimuli-responsive liposomal system was meticulously designed for the precise and controlled delivery of curcumin, leveraging enzyme-specific and hyperthermic stimuli to enhance therapeutic outcomes. This platform is specifically engineered to release curcumin in response to phospholipase A2, an enzyme that degrades phospholipids, enabling highly targeted and site-specific drug release. Mild hyperthermia (40 °C) further enhances membrane permeability and activates thermosensitive carriers, optimizing drug delivery. Curcumin encapsulation is facilitated through a combination of zwitterionic and electrostatic interactions, significantly improving both loading capacity and encapsulation efficiency. A design of experiments (DoE) approach was employed to systematically optimize lipid-to-cholesterol ratios and formulation conditions. The liposomal system was thoroughly characterized using dynamic light scattering, zeta potential measurements, and transmission electron microscopy, ensuring stability and structural integrity. Notably, this system effectively encapsulates hydrophobic curcumin while maintaining particle size and bioactivity. In vitro studies revealed robust antioxidant and anti-ROS activities, alongside excellent biocompatibility, with no cytotoxicity observed at concentrations up to 2000 μg/mL. Furthermore, the zwitterionic liposomes enhanced M2 macrophage polarization and reduced oxidative stress. This advanced platform offers a promising, biocompatible solution for targeted curcumin delivery.
Collapse
Affiliation(s)
- Suman Basak
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Tushar Kanti Das
- Institute of Physics - Centre for Science and Education, Silesian University of Technology, Krasińskiego 8, Katowice 40-019, Poland
| |
Collapse
|
2
|
Wang C, Wang X, Tian Y, Tian H, Chen Y, Wu B, Cheng W. Cs xWO 3@NBs as a Multi-Image Guided Photothermal/Photodynamic Combination Therapy Platform for the Treatment of Hepatocellular Carcinoma. Int J Nanomedicine 2024; 19:13375-13389. [PMID: 39679255 PMCID: PMC11646368 DOI: 10.2147/ijn.s484694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
Purpose Effective cancer treatment relies on the precise deployment of clinical imaging techniques to accurately treat tumors. One highly representative technology among these is multi-imaging guided phototherapy. This work introduces a new and innovative theranostic drug that combines near-infrared (NIR) irradiation-induced photodynamic therapy (PDT) and photothermal therapy (PTT) to treat malignancies. Moreover, it can be utilized as a contrasting substance for X-ray computed tomography (CT) imaging and contrast-enhanced ultrasound (CEUS) to aid in the administration of therapy. Methods Cesium tungsten bronze nanobubbles (CsxWO3@NBs) were constructed via a water-controlled solvothermal synthesis and thin film hydration of phospholipid. Various methods, including dynamic light scattering, transmission electron microscopy, and X-ray photoelectron spectroscopy, were used to analyze and describe the size, shape, and chemical characteristics of the nanoparticles. In this study, hepatoma cell lines HepG2 and HUH7 were employed in vitro, and xenotransplantation mouse models were used to assess their antitumor effects. A series of in vitro and in vivo trials were conducted to assess the effectiveness of combining photodynamic and photothermal therapies, as well as using CEUS and CT imaging. Results The CsxWO3@NBs exhibit photothermal effects and the generation of reactive oxygen species (ROS) under laser irradiation, thereby enabling effective photothermal and photodynamic combinatorial therapy. Following combined treatment, the activity and invasive capacity of hepatocellular carcinoma cells were markedly diminished, the development rate of the tumor was noticeably reduced, and the level of biological toxicity was low. Additionally, CsxWO3@NBs possess the capacity to serve as both a CT imaging agent and a contrast-enhanced ultrasound agent. Conclusion CsxWO3@NBs represent a promising theranostic agent for image-guided cancer therapy.
Collapse
Affiliation(s)
- Chunyue Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Xiaodong Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Huimin Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yichi Chen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| |
Collapse
|
3
|
Mokudai T, Kawada M, Tadaki D, Hirano-Iwata A, Kanetaka H, Fujimori H, Takemoto E, Niwano M. Radical generation and bactericidal activity of nanobubbles produced by ultrasonic irradiation of carbonated water. ULTRASONICS SONOCHEMISTRY 2024; 103:106809. [PMID: 38364483 PMCID: PMC10879770 DOI: 10.1016/j.ultsonch.2024.106809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Our previous study showed that nanobubbles (NBs) encapsulating CO2 gas have bactericidal activity due to reactive oxygen species (ROS) (Yamaguchi et al., 2020). Here, we report that bulk NBs encapsulating CO2 can be efficiently generated by ultrasonically irradiating carbonated water using a piezoelectric transducer with a frequency of 1.7 MHz. The generated NBs were less than 100 nm in size and had a lifetime of 500 h. Furthermore, generation of ROS in the NB suspension was investigated using electron spin resonance spectroscopy and fluorescence spectrometry. The main ROS was found to be the hydroxyl radical, which is consistent with our previous observations. The bactericidal activity lasted for at least one week. Furthermore, a mist generated by atomizing the NB suspension with ultrasonic waves was confirmed to have the same bactericidal activity as the suspension itself. We believe that the strong, persistent bactericidal activity and radical generation phenomenon are unique to NBs produced by ultrasonic irradiation of carbonated water. We propose that entrapped CO2 molecules strongly interact with water at the NB interface to weaken the interface, and high-pressure CO2 gas erupts from this weakened interface to generate ROS with bactericidal activity.
Collapse
Affiliation(s)
- Takayuki Mokudai
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan; Joining and Welding Research Institute, Osaka University, Osaka 567-0047, Japan
| | - Michi Kawada
- Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Daisuke Tadaki
- Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
| | - Ayumi Hirano-Iwata
- Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
| | - Hiroyasu Kanetaka
- Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Hiroshi Fujimori
- Planning & Development Department, Takemoto Yohki Co., Ltd., Tokyo 111-0036, Japan
| | - Emiko Takemoto
- Planning & Development Department, Takemoto Yohki Co., Ltd., Tokyo 111-0036, Japan
| | - Michio Niwano
- Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan.
| |
Collapse
|
4
|
Niwano M, Ma T, Iwata K, Tadaki D, Yamamoto H, Kimura Y, Hirano-Iwata A. Two-dimensional water-molecule-cluster layers at nanobubble interfaces. J Colloid Interface Sci 2023; 652:1775-1783. [PMID: 37678082 DOI: 10.1016/j.jcis.2023.08.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
HYPOTHESIS Bulk nanobubbles (NBs) have high surface charge densities and long lifetimes. Despite several attempts to understand the lifetime of NBs, their interfacial layer structure remains unknown. It is hypothesized that a specific interfacial layer exists with a hydrogen bond network that stabilizes NBs. EXPERIMENTS In situ infrared reflectance-absorption spectroscopy and density functional theory were used to determine the interfacial layer structure of NBs. Furthermore, nuclear magnetic resonance spectroscopy was used to examine the interfacial layer hardness of bubbles filled with N2, O2, and CO2, which was expected to depend on the encapsulated gas species. FINDINGS The interfacial layer was composed of three-, four-, and five-membered ring clusters of water molecules. An interface model was proposed in which a two-dimensional layer of clusters with large electric dipole moments is oriented toward the endohedral gas, and the hydrophobic surface is adjacent to the free water. The interfacial layer hardness was dependent on the interaction with the gas (N2 > O2 > CO2), which supports the proposed interface model. These findings can be generalized to the structure of water at gas-water interfaces.
Collapse
Affiliation(s)
- Michio Niwano
- Laboratory for Nano-electronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi 980-8577, Japan.
| | - Teng Ma
- Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kazuki Iwata
- Faculty of Comprehensive Management, Tohoku Fukushi University, Sendai, Miyagi 989-3201, Japan
| | - Daisuke Tadaki
- Laboratory for Nano-electronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Hideaki Yamamoto
- Laboratory for Nano-electronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yasuo Kimura
- Department of Electric and Electronic Engineering, Tokyo University of Technology, Hachioji, Tokyo 192-0983, Japan
| | - Ayumi Hirano-Iwata
- Laboratory for Nano-electronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi 980-8577, Japan; Faculty of Comprehensive Management, Tohoku Fukushi University, Sendai, Miyagi 989-3201, Japan
| |
Collapse
|
5
|
Wang X, Liu Y, Li M, Ju Y, Tang J, Chen T, Lin X, Gu N, Yang F. Neuroinflammation catching nanobubbles for microglia-neuron unit modulation against epilepsy. Biomaterials 2023; 302:122302. [PMID: 37666103 DOI: 10.1016/j.biomaterials.2023.122302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Epilepsy is a common neurological disease caused by synchronous firing of hyperexcitable neurons. Currently, patients with epilepsy are typically treated with antiseizure medicines that work by interrupting the hyperexcitability or hypersynchrony of localized neurons or by inhibiting excitatory neurotransmission. However, these drugs do not treat the underlying causes of epilepsy, and nearly one-third of patients have seizures that cannot be controlled by these medications. Animal and clinical evidence suggests that inflammation caused by neuronal and non-neuronal cells within the epilepsy lesion could play a central role in seizure disorders. Here we report a gas-filled nanobubble (NB) conjugated with diammonium glycyrrhizinate (DG) drugs and sphingosine-1-phosphate (S1P) molecules (S1P@DG-NBs) on the lipid shell for targeted therapy and real-time ultrasound visualization applications against neuroinflammatory injury. Affinity of S1P@DG-NBs for the S1P receptor endows these NBs with enhanced targeting capability to the neuroinflammatory microenvironment of epilepsy, where the DG drugs modulate endothelium-microglia-neuron inflammation by inhibiting high-mobility group box 1 molecules and downregulating the Toll-like receptor 4 signaling pathway, resulting in anti-inflammatory M2 microglia that exert anti-epilepsy effects. Our results show that this technology can enhance visualization of epileptic brain and deliver drugs with anti-inflammatory and immunomodulatory properties to ameliorate seizures symptoms.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Yang Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Mingxi Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Yongxu Ju
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Jian Tang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Tiandong Chen
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, PR China
| | - Ning Gu
- Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Fang Yang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, PR China.
| |
Collapse
|
6
|
Tian J, Wan S, Tian J, Liu L, Xia J, Hu Y, Yang Z, Zhao H, Wang H, Guo Y, Guo J. Anti-HER2 scFv-nCytc-Modified Lipid-Encapsulated Oxygen Nanobubbles Prepared with Bulk Nanobubble Water for Inducing Apoptosis and Improving Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206091. [PMID: 36855335 DOI: 10.1002/smll.202206091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/30/2022] [Indexed: 06/08/2023]
Abstract
Bulk nanobubbles fascinate scientists because of their stability over long periods of time and their ability to carry gases, leading to numerous potential applications. Considering the hypoxic tumor microenvironment and the advantages of bulk nanobubbles, lipid-encapsulated oxygen nanobubbles are prepared from free bulk oxygen nanobubbles in this study. The obtained carrier is then modified with a protein fused with the single-chain antibody of human epidermal growth factor receptor 2 (anti-HER2 scFv) and tandem-repeat cytochrome c (anti-HER2 scFv-nCytc) to enhance tumor targeting and induce tumor apoptosis. Copper phthalocyanine is used as the photosensitizer to demonstrate how the oxygen in the nanobubbles affects the efficiency of photodynamic therapy (PDT). The combination of anti-HER2 scFv-nCytc and PDT synergistically improves the therapeutic effect and alleviates hypoxia in tumors in vivo while causing little inflammatory response. Based on the findings, bulk nanobubble water shows promise in the targeted delivery of oxygen and can be combined with antibody therapy to enhance the efficiency of PDT.
Collapse
Affiliation(s)
- Jilai Tian
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Shixiao Wan
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Jing Tian
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Liming Liu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Jintao Xia
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Yunfeng Hu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Zhen Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Huanhuan Zhao
- Basic Medical Experiment Center, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Haixiang Wang
- Department of Food Nutrition and Health, School of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, P. R. China
| | - Yichen Guo
- Department of Biomedical Engineering, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Jun Guo
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
7
|
Wang J, Guo Y, Jiao Z, Tan J, Zhang M, Zhang Q, Gu N. Generation of micro-nano bubbles by magneto induced internal heat for protecting cells from intermittent hypoxic damage. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Renard C, Leclercq L, Cottet H. Generation and characterization of air micro-bubbles in highly hydrophobic capillaries. Electrophoresis 2021; 43:767-775. [PMID: 34752637 DOI: 10.1002/elps.202100171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/07/2021] [Accepted: 10/04/2021] [Indexed: 11/12/2022]
Abstract
The generation of air microbubbles in microfluidic systems or in capillaries could be of great interest for transportation (single cell analysis, organite transportation) or for liquid compartmentation. The physicochemical characterization of air bubbles and a better understanding of the process leading to bubble generation during electrophoresis is also interesting in a theoretical point of view. In this work, the generation of microbubbles on hydrophobic Glaco™ coated capillaries has been studied in water-based electrolyte. Air bubbles were generated at the detection window and the required experimental parameters for microbubbles generation have been identified. Generated bubbles migrated against the electroosmotic flow, as would do strongly negatively charged solutes, under constant electric field. They have been characterized in terms of dimensions, electrophoretic mobility, and apparent charge.
Collapse
Affiliation(s)
- Charly Renard
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
9
|
Biomembrane-based nanostructures for cancer targeting and therapy: From synthetic liposomes to natural biomembranes and membrane-vesicles. Adv Drug Deliv Rev 2021; 178:113974. [PMID: 34530015 DOI: 10.1016/j.addr.2021.113974] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
The translational success of liposomes in chemotherapeutics has already demonstrated the great potential of biomembrane-based nanostructure in effective drug delivery. Meanwhile, increasing efforts are being dedicated to the application of naturally derived lipid membranes, including cellular membranes and extracellular vesicles in anti-cancer therapies. While synthetic liposomes support superior multifunctional flexibility, natural biomembrane materials possess interesting biomimetic properties and can also be further engineered for intelligent design. Despite being remarkably different from each other in production and composition, the phospholipid bilayer structure in common allows liposomes, cell membrane-derived nanomaterials, and extracellular vesicles to be modified, functionalized, and exploited in many similar manners against challenges posed by tumor-targeted drug delivery. This review will summarize the recent advancements in engineering the membrane-derived nanostructures with "intelligent" modules to respond, regulate, and target tumor cells and the microenvironment to fight against malignancy. We will also discuss perspectives of combining engineered functionalities with naturally occurring activity for enhanced cancer therapy.
Collapse
|
10
|
Paknahad AA, Kerr L, Wong DA, Kolios MC, Tsai SSH. Biomedical nanobubbles and opportunities for microfluidics. RSC Adv 2021; 11:32750-32774. [PMID: 35493576 PMCID: PMC9042222 DOI: 10.1039/d1ra04890b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/19/2021] [Indexed: 12/17/2022] Open
Abstract
The use of bulk nanobubbles in biomedicine is increasing in recent years, which is attributable to the array of therapeutic and diagnostic tools promised by developing bulk nanobubble technologies. From cancer drug delivery and ultrasound contrast enhancement to malaria detection and the diagnosis of acute donor tissue rejection, the potential applications of bulk nanobubbles are broad and diverse. Developing these technologies to the point of clinical use may significantly impact the quality of patient care. This review compiles and summarizes a representative collection of the current applications, fabrication techniques, and characterization methods of bulk nanobubbles in biomedicine. Current state-of-the-art generation methods are not designed to create nanobubbles of high concentration and low polydispersity, both characteristics of which are important for several bulk nanobubble applications. To date, microfluidics has not been widely considered as a tool for generating nanobubbles, even though the small-scale precision and real-time control offered by microfluidics may overcome the challenges mentioned above. We suggest possible uses of microfluidics for improving the quality of bulk nanobubble populations and propose ways of leveraging existing microfluidic technologies, such as organ-on-a-chip platforms, to expand the experimental toolbox of researchers working to develop biomedical nanobubbles. The use of bulk nanobubbles in biomedicine is increasing in recent years. This translates into new opportunities for microfluidics, which may enable the generation of higher quality nanobubbles that lead to advances in diagnostics and therapeutics.![]()
Collapse
Affiliation(s)
- Ali A Paknahad
- Department of Mechanical and Industrial Engineering, Ryerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada .,Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada.,Keenan Research Centre for Biomedical Science, Unity Health Toronto 209 Victoria Street Toronto Ontario M5B 1W8 Canada
| | - Liam Kerr
- Department of Mechanical and Industrial Engineering, Ryerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada .,Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada.,Keenan Research Centre for Biomedical Science, Unity Health Toronto 209 Victoria Street Toronto Ontario M5B 1W8 Canada
| | - Daniel A Wong
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada.,Keenan Research Centre for Biomedical Science, Unity Health Toronto 209 Victoria Street Toronto Ontario M5B 1W8 Canada.,Department of Electrical, Computer, and Biomedical Engineering, Ryerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada
| | - Michael C Kolios
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada.,Keenan Research Centre for Biomedical Science, Unity Health Toronto 209 Victoria Street Toronto Ontario M5B 1W8 Canada.,Department of Physics, Ryerson University Toronto Ontario M5B 2K3 Canada
| | - Scott S H Tsai
- Department of Mechanical and Industrial Engineering, Ryerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada .,Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada.,Keenan Research Centre for Biomedical Science, Unity Health Toronto 209 Victoria Street Toronto Ontario M5B 1W8 Canada.,Graduate Program in Biomedical Engineering, Ryerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada
| |
Collapse
|
11
|
|
12
|
|
13
|
Wang S, Zhou L, Gao Y. Can bulk nanobubbles be stabilized by electrostatic interaction? Phys Chem Chem Phys 2021; 23:16501-16505. [PMID: 34286757 DOI: 10.1039/d1cp01279g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been suggested that electrostatic stress arising from charges accumulated at the surface of nanobubbles might balance Laplace pressure leading to their stability. This mechanism has been widely discussed in the nanobubble field for the past decade. However, the stress in the diffusive double layer was overlooked when calculating the electrostatic effect in previous theories. In this communication, we recalculated this effect using the classical double layer theory. Combined with experimentally measured zeta potential, we find that the ratio of electrostatic pressure to Laplace pressure is much less than 10-2, which suggests that electrostatic interaction may not be the main factor for stabilizing bulk nanobubbles.
Collapse
Affiliation(s)
- Shuo Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| | | | | |
Collapse
|
14
|
Melillo JH, Gabriel JP, Pabst F, Blochowicz T, Cerveny S. Dynamics of aqueous peptide solutions in folded and disordered states examined by dynamic light scattering and dielectric spectroscopy. Phys Chem Chem Phys 2021; 23:15020-15029. [PMID: 34190269 DOI: 10.1039/d1cp01893k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Characterizing the segmental dynamics of proteins, and intrinsically disordered proteins in particular, is a challenge in biophysics. In this study, by combining data from broadband dielectric spectroscopy (BDS) and both depolarized (DDLS) and polarized (PDLS) dynamic light scattering, we were able to determine the dynamics of a small peptide [ε-poly(lysine)] in water solutions in two different conformations (pure β-sheet at pH = 10 and a more disordered conformation at pH = 7). We found that the segmental (α-) relaxation, as probed by DDLS, is faster in the disordered state than in the folded conformation. The water dynamics, as detected by BDS, is also faster in the disordered state. In addition, the combination of BDS and DDLS results allows us to confirm the molecular origin of water-related processes observed by BDS. Finally, we discuss the origin of two slow processes (A and B processes) detected by DDLS and PDLS in both conformations and usually observed in other types of water solutions. For fully homogeneous ε-PLL solutions at pH = 10, the A-DLS process is assigned to the diffusion of individual β-sheets. The combination of both techniques opens a route for understanding the dynamics of peptides and other biological solutions.
Collapse
Affiliation(s)
- Jorge H Melillo
- Centro de Física de Materiales (CSIC-UPV/EHU)-Material Physics Centre (MPC), Paseo Manuel de Lardizabal 5 (20018), San Sebastián, Spain.
| | - Jan Philipp Gabriel
- School for Molecular Sciences, Arizona State University, Tempe, 85287, USA and Institute for Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Florian Pabst
- Institute for Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Thomas Blochowicz
- Institute for Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Silvina Cerveny
- Centro de Física de Materiales (CSIC-UPV/EHU)-Material Physics Centre (MPC), Paseo Manuel de Lardizabal 5 (20018), San Sebastián, Spain. and Donostia International Physics Center, Paseo Manuel de Lardizabal 4 (20018), San Sebastián, Spain
| |
Collapse
|
15
|
Wang S, Zhou L, Wang X, Hu J, Li P, Lin G, Gao Y, Zhang L, Wang C. Collective Dynamics of Bulk Nanobubbles with Size-Dependent Surface Tension. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7986-7994. [PMID: 34157841 DOI: 10.1021/acs.langmuir.1c00973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
It has been suggested that irreversible adsorption at the gas/liquid interface of bulk nanobubbles will reduce the Laplace pressure, leading to their stability. However, most previous studies have focused on the stability of individual nanobubbles. Bulk nanobubbles are polydispersed suspensions, and gas molecules can diffuse between bubbles, leading to their collective dynamics, which may be crucial to understanding their formation process and stability. In this study, we proposed a mean-field theory for computing the evolution of the size-distribution function of bulk nanobubbles with size-dependent surface tension. We applied this theory to investigate the evolution of bulk nanobubbles with insoluble surfactants pinned at their gas/water interface. The results show that Ostwald ripening can be suppressed when enough surfactants are adsorbed. Bulk nanobubbles can be produced by the shrinkage of microbubbles in an air-saturated solution. The mean stable size is controlled by the amount of surfactants and the initial microbubble concentration; these predictions are qualitatively consistent with the experimental results of micro/nanobubbles produced using the microfluidic method.
Collapse
Affiliation(s)
- Shuo Wang
- Institute for advanced study, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Limin Zhou
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai Synchrotron Radiation Facility, Shanghai 201204, China
| | - Xingya Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai Synchrotron Radiation Facility, Shanghai 201204, China
| | - Jun Hu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai Synchrotron Radiation Facility, Shanghai 201204, China
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800, China
| | - Pan Li
- School of Environmental Science and Engineering, Tongji University, Shanghai 200082, China
| | - Guanhua Lin
- Institute for advanced study, Shenzhen University, Shenzhen 518060, China
| | - Yongxiang Gao
- Institute for advanced study, Shenzhen University, Shenzhen 518060, China
| | - Lijuan Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai Synchrotron Radiation Facility, Shanghai 201204, China
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chunlei Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai Synchrotron Radiation Facility, Shanghai 201204, China
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
16
|
Eklund F, Alheshibri M, Swenson J. Differentiating bulk nanobubbles from nanodroplets and nanoparticles. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Ferraro G, Jadhav AJ, Barigou M. A Henry's law method for generating bulk nanobubbles. NANOSCALE 2020; 12:15869-15879. [PMID: 32696779 DOI: 10.1039/d0nr03332d] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new technique for generating bulk nanobubble suspensions has been developed based on Henry's law which states that the amount of dissolved gas in a liquid is proportional to its partial pressure above the liquid. This principle which forms the basis of vacuum degasification has been exploited here to produce stable bulk nanobubbles in excess of 109 bubble mL-1 in pure water, through successive expansion/compression strokes inside a sealed syringe. We provide evidence that the observed nano-entities must be gas-filled nanobubbles by showing that: (i) they cannot be attributed to organic or inorganic impurities; (ii) they disappear gradually over time whilst their mean size remains unchanged; (iii) their number density depends on the concentration of dissolved gas in water and its solubility; and (iv) added sparging of gas enhances process yield. We study the properties of these nanobubbles including the effects of type of dissolved gas, water pH and the presence of different valence salts on their number density and stability. Given the potential of the technique for large scale production of nanobubble suspensions, we describe a successfully tested automated model and outline the basis for process scale-up.
Collapse
Affiliation(s)
- Gianluca Ferraro
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | |
Collapse
|
18
|
Ma T, Kimura Y, Yamamoto H, Feng X, Hirano-Iwata A, Niwano M. Characterization of Bulk Nanobubbles Formed by Using a Porous Alumina Film with Ordered Nanopores. J Phys Chem B 2020; 124:5067-5072. [DOI: 10.1021/acs.jpcb.0c02279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Teng Ma
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yasuo Kimura
- Faculty of Engineering, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0914, Japan
| | - Hideaki Yamamoto
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-2-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Xingyao Feng
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-2-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Ayumi Hirano-Iwata
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-2-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Michio Niwano
- Kansei Fukushi Research Institute, Tohoku Fukushi University, 149-1 Kunimi-ga-oka, Aoba-ku, Sendai 989-3201, Japan
| |
Collapse
|
19
|
Shende P, Patil A, Prabhakar B. Layer-by-layer technique for enhancing physicochemical properties of actives. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Jin J, Feng Z, Yang F, Gu N. Bulk Nanobubbles Fabricated by Repeated Compression of Microbubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4238-4245. [PMID: 30817886 DOI: 10.1021/acs.langmuir.8b04314] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanobubbles (NBs), given its extraordinary properties, have drawn keen attention in the field of nanotechnology worldwide. However, compared to that of surface NBs, generation of stable bulk NBs remains an arduous task with the prevailing method. In this study, we developed a pressure-driven method to prepare bulk NBs by repeatedly compressing sulfur hexafluoride (SF6) gas into water. The results show that NBs with a mean diameter of 240 ± 9 nm and a polydispersity index of 0.25 were successfully prepared. The generated NBs had a high negative zeta potential (-40 ± 2 mV) with stability of more than 48 h. Under the condition of 600 times repeated compression, the NB concentration could reach about 1.92 × 1010 bubbles/mL. Furthermore, we examine the possible formation mechanism involved in NB generation by virtue of optical microscopy and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The microscopic results showed that microbubbles about 10-50 μm formed first and then decreased to be nanoscale-sized. A stronger hydrogen bond was detected by ATR-FTIR spectroscopy during the shrinking of microbubbles into NBs. It is speculated that the disappearance of microbubbles contributes to the formation of NBs, and the strong hydrogen bond at the gas-water interface prompts the stability of NBs. Therefore, repeated compression of the gas in aqueous solution could be a new method to prepare stable nanosized bubbles for wide applications in the future.
Collapse
Affiliation(s)
- Juan Jin
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering , Southeast University , Sipailou 2 , Nanjing , Jiangsu 210009 , P. R. China
| | - Zhenqiang Feng
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering , Southeast University , Sipailou 2 , Nanjing , Jiangsu 210009 , P. R. China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering , Southeast University , Sipailou 2 , Nanjing , Jiangsu 210009 , P. R. China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering , Southeast University , Sipailou 2 , Nanjing , Jiangsu 210009 , P. R. China
| |
Collapse
|
21
|
Generation and Stability of Size-Adjustable Bulk Nanobubbles Based on Periodic Pressure Change. Sci Rep 2019; 9:1118. [PMID: 30718777 PMCID: PMC6362149 DOI: 10.1038/s41598-018-38066-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/18/2018] [Indexed: 01/27/2023] Open
Abstract
Recently, bulk nanobubbles have attracted intensive attention due to the unique physicochemical properties and important potential applications in various fields. In this study, periodic pressure change was introduced to generate bulk nanobubbles. N2 nanobubbles with bimodal distribution and excellent stabilization were fabricated in nitrogen-saturated water solution. O2 and CO2 nanobubbles have also been created using this method and both have good stability. The influence of the action time of periodic pressure change on the generated N2 nanobubbles size was studied. It was interestingly found that, the size of the formed nanobubbles decreases with the increase of action time under constant frequency, which could be explained by the difference in the shrinkage and growth rate under different pressure conditions, thereby size-adjustable nanobubbles can be formed by regulating operating time. This study might provide valuable methodology for further investigations about properties and performances of bulk nanobubbles.
Collapse
|
22
|
Huang H, Dong Y, Zhang Y, Ru D, Wu Z, Zhang J, Shen M, Duan Y, Sun Y. GSH-sensitive Pt(IV) prodrug-loaded phase-transitional nanoparticles with a hybrid lipid-polymer shell for precise theranostics against ovarian cancer. Theranostics 2019; 9:1047-1065. [PMID: 30867815 PMCID: PMC6401401 DOI: 10.7150/thno.29820] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Platinum (II) (Pt(II))-based anticancer drugs dominate the chemotherapy field of ovarian cancer. However, the patient's quality of life has severely limited owing to dose-limiting toxicities and the advanced disease at the time of diagnosis. Multifunctional tumor-targeted nanosized ultrasound contrast agents (glutathione (GSH)-sensitive platinum (IV) (Pt(IV)) prodrug-loaded phase-transitional nanoparticles, Pt(IV) NP-cRGD) were developed for precise theranostics against ovarian cancer. Methods: Pt(IV) NP-cRGD were composed of a perfluorohexane (PFH) liquid core, a hybrid lipid-polymer shell with PLGA12k-PEG2k and DSPE-PEG1k-Pt(IV), and an active targeting ligand, the cRGD peptide (PLGA: poly(lactic-co-glycolic acid), PEG: polyethylene glycol, DSPE: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine, cRGD: cyclic Arg-Gly-Asp). Pt(IV), a popular alternative to Pt(II), was covalently attached to DSPE-PEG1k to form the prodrug, which fine-tuned lipophilicity and improved cellular uptake. The potential of Pt(IV) NP-cRGD as contrast agents for ultrasound (US) imaging was assessed in vitro and in vivo. Moreover, studies on the antitumor efficiency and antitumor mechanism of Pt(IV) NP-cRGD assisted by US were carried out. Results: Pt(IV) NP-cRGD exhibited strong echogenic signals and excellent echo persistence under an US field. In addition, the GSH-sensitive and US-triggered drug delivery system maximized the therapeutic effect while reducing the toxicity of chemotherapy. The mechanistic studies confirmed that Pt(IV) NP-cRGD with US consumed GSH and enhanced reactive oxy gen species (ROS) levels, which further causes mitochondria-mediated apoptosis. Conclusion: A multifunctional nanoplatform based on phase-transitional Pt(IV) NP-cRGD with US exhibited excellent echogenic signals, brilliant therapeutic efficacy and limited side effect, suggesting precise theranostics against ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China
| |
Collapse
|
23
|
Nirmalkar N, Pacek AW, Barigou M. Interpreting the interfacial and colloidal stability of bulk nanobubbles. SOFT MATTER 2018; 14:9643-9656. [PMID: 30457138 DOI: 10.1039/c8sm01949e] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This paper elucidates parts of the mystery behind the interfacial and colloidal stability of the novel bubble system of bulk nanobubbles. Stable bulk nanobubble suspensions have been generated in pure water using hydrodynamic cavitation in a high-pressure microfluidic device. The effects of pH adjustment, addition of different types of surfactant molecules and salts on the nanobubble suspensions have been studied. Results show that nanobubble interfaces in pure water are negatively charged, suggesting the formation of an electric double layer around the nanobubbles. It is presumed that the external electrostatic pressure created by the charged nanobubble interface, balances the internal Laplace pressure; therefore, no net diffusion of gas occurs at equilibrium and the nanobubbles are stable. Such stability increases with increasing alkalinity of the suspending medium. The addition of mono- and multi-valent salts leads to the screening of the electric double layer, hence, destabilizing the nanobubbles. Different surfactant molecules (non-ionic, anionic, cationic) affect the stability of bulk nanobubbles in different ways. Calculations based on the DLVO theory predict a stable colloidal system for bulk nanobubbles in pure water and this could be a further reason for their observed longevity. All in all, in pure water, the long-term stability of bulk nanobubbles seems to be caused by a combination of ion-stabilisation of their interface against dissolution and colloidal stability of the suspension.
Collapse
Affiliation(s)
- N Nirmalkar
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | |
Collapse
|
24
|
Nirmalkar N, Pacek AW, Barigou M. On the Existence and Stability of Bulk Nanobubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10964-10973. [PMID: 30179016 DOI: 10.1021/acs.langmuir.8b01163] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Bulk nanobubbles are a novel type of nanoscale bubble system. Because of their extraordinary behavior, however, their existence is not widely accepted. In this paper, we shed light on the hypothesis that bulk nanobubbles do exist, they are filled with gas, and they survive for long periods of time, challenging present theories. An acoustic cavitation technique has been used to produce bulk nanobubbles in pure water in relatively large numbers approaching 109 bubble·mL-1 with a typical diameter of 100-120 nm. We provide multiple evidence that the nanoentities observed in suspension are nanobubbles given that they disappear after freezing and thawing of the suspensions, their nucleation rate depends strongly on the amount of air dissolved in water, and they gradually disappear over time. The bulk nanobubble suspensions were stable over periods of many months during which time the mean diameter remained unchanged, suggesting the absence of significant bubble coalescence, bubble breakage, or Ostwald ripening effects. Measurements suggest that these nanobubbles are negatively charged and their zeta potential does not vary over time. The presence of such a constant charge on the nanobubble surfaces is probably responsible for their stability. The effects of pH, salt, and surfactant addition on their colloidal stability are similar to those reported in the literature for solid nanoparticle suspensions, that is, nanobubbles are more stable in an alkaline medium than in an acidic one; the addition of salt to a nanobubble suspension drives the negative zeta potential toward zero, thus reducing the repulsive electrostatic forces between nanobubbles; and the addition of an anionic surfactant increases the magnitude of the negative zeta potential, thus improving nanobubble electrostatic stabilization.
Collapse
Affiliation(s)
- N Nirmalkar
- School of Chemical Engineering , University of Birmingham , Edgbaston , Birmingham B15 2TT , U.K
| | - A W Pacek
- School of Chemical Engineering , University of Birmingham , Edgbaston , Birmingham B15 2TT , U.K
| | - M Barigou
- School of Chemical Engineering , University of Birmingham , Edgbaston , Birmingham B15 2TT , U.K
| |
Collapse
|
25
|
Liu D, Zhang Z, Qin Z, Xing J, Liu Y, Jin J, Yang F, Gu N. Sinapultide-loaded lipid microbubbles and the stabilization effect of sinapultide on the shells of lipid microbubbles. J Mater Chem B 2018; 6:1335-1341. [DOI: 10.1039/c7tb02799k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sinapultide-loaded lipid microbubbles were fabricated for ultrasound imaging, and the stabilization mechanism was investigated by molecular dynamics simulation.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Zuoheng Zhang
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Zhiguo Qin
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Jing Xing
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Yang Liu
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Juan Jin
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Fang Yang
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Ning Gu
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| |
Collapse
|
26
|
|
27
|
Preparation and characterization of a novel silicon-modified nanobubble. PLoS One 2017; 12:e0178031. [PMID: 28557995 PMCID: PMC5448765 DOI: 10.1371/journal.pone.0178031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/08/2017] [Indexed: 01/05/2023] Open
Abstract
Nanobubbles (NBs) opened a new field of ultrasound imaging. There is still no practical method to control the diameter of bubbles. In this study, we developed a new method to control the size by incorporating of silicon hybrid lipids into the bubble membrane. The range of particle size of resulting NBs is between 523.02 ± 46.45 to 857.18 ± 82.90, smaller than the conventional microbubbles. The size of resulting NBs increased with the decrease in amount of silicon hybrid lipids, indicating the diameter of NBs can be regulated through modulating the ratio of silicon hybrid lipids in the bubble shell. Typical harmonic signals could be detected. The in vitro and in vivo ultrasound imaging experiments demonstrated these silicon-modified NBs had significantly improved ultrasound contrast enhancement abilities. Cytotoxicity assays revealed that these NBs had no obvious cytotoxicity to the 293 cell line at the tested bubble concentration. Our results showed that the novel NBs could use as nanoscale ultrasound contrast agents, providing the foundation for NBs in future applications including contrast-enhanced imaging and drug/gene delivery.
Collapse
|
28
|
Thakur SS, Ward MS, Popat A, Flemming NB, Parat MO, Barnett NL, Parekh HS. Stably engineered nanobubbles and ultrasound - An effective platform for enhanced macromolecular delivery to representative cells of the retina. PLoS One 2017; 12:e0178305. [PMID: 28542473 PMCID: PMC5444814 DOI: 10.1371/journal.pone.0178305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/10/2017] [Indexed: 01/10/2023] Open
Abstract
Herein we showcase the potential of ultrasound-responsive nanobubbles in enhancing macromolecular permeation through layers of the retina, ultimately leading to significant and direct intracellular delivery; this being effectively demonstrated across three relevant and distinct retinal cell lines. Stably engineered nanobubbles of a highly homogenous and echogenic nature were fully characterised using dynamic light scattering, B-scan ultrasound and transmission electron microscopy (TEM). The nanobubbles appeared as spherical liposome-like structures under TEM, accompanied by an opaque luminal core and darkened corona around their periphery, with both features indicative of efficient gas entrapment and adsorption, respectively. A nanobubble +/- ultrasound sweeping study was conducted next, which determined the maximum tolerated dose for each cell line. Detection of underlying cellular stress was verified using the biomarker heat shock protein 70, measured before and after treatment with optimised ultrasound. Next, with safety to nanobubbles and optimised ultrasound demonstrated, each human or mouse-derived cell population was incubated with biotinylated rabbit-IgG in the presence and absence of ultrasound +/- nanobubbles. Intracellular delivery of antibody in each cell type was then quantified using Cy3-streptavidin. Nanobubbles and optimised ultrasound were found to be negligibly toxic across all cell lines tested. Macromolecular internalisation was achieved to significant, yet varying degrees in all three cell lines. The results of this study pave the way towards better understanding mechanisms underlying cellular responsiveness to ultrasound-triggered drug delivery in future ex vivo and in vivo models of the posterior eye.
Collapse
Affiliation(s)
- Sachin S. Thakur
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Micheal S. Ward
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
- School of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Nicole B. Flemming
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Marie-Odile Parat
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Nigel L. Barnett
- Queensland Eye Institute, South Brisbane, Queensland, Australia
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane Queensland, Australia
| | - Harendra S. Parekh
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
- * E-mail:
| |
Collapse
|
29
|
Jin Q, Lin CY, Kang ST, Chang YC, Zheng H, Yang CM, Yeh CK. Superhydrophobic silica nanoparticles as ultrasound contrast agents. ULTRASONICS SONOCHEMISTRY 2017; 36:262-269. [PMID: 28069209 DOI: 10.1016/j.ultsonch.2016.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
Microbubbles have been widely studied as ultrasound contrast agents for diagnosis and as drug/gene carriers for therapy. However, their size and stability (lifetime of 5-12min) limited their applications. The development of stable nanoscale ultrasound contrast agents would therefore benefit both. Generating bubbles persistently in situ would be one of the promising solutions to the problem of short lifetime. We hypothesized that bubbles could be generated in situ by providing stable air nuclei since it has been found that the interfacial nanobubbles on a hydrophobic surface have a much longer lifetime (orders of days). Mesoporous silica nanoparticles (MSNs) with large surface areas and different levels of hydrophobicity were prepared to test our hypothesis. It is clear that the superhydrophobic and porous nanoparticles exhibited a significant and strong contrast intensity compared with other nanoparticles. The bubbles generated from superhydrophobic nanoparticles sustained for at least 30min at a MI of 1.0, while lipid microbubble lasted for about 5min at the same settings. In summary MSNs have been transformed into reliable bubble precursors by making simple superhydrophobic modification, and made into a promising contrast agent with the potentials to serve as theranostic agents that are sensitive to ultrasound stimulation.
Collapse
Affiliation(s)
- Qiaofeng Jin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Yu Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih-Tsung Kang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yuan-Chih Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen China
| | - Chia-Min Yang
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|