1
|
Advanced municipal wastewater treatment and simultaneous energy/resource recovery via photo(electro)catalysis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
2
|
Zhuang G, Fang Q, Wei J, Yang C, Chen M, Lyu Z, Zhuang Z, Yu Y. Branched In 2O 3 Mesocrystal of Ordered Architecture Derived from the Oriented Alignment of a Metal-Organic Framework for Accelerated Hydrogen Evolution over In 2O 3-ZnIn 2S 4. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9804-9813. [PMID: 33601886 DOI: 10.1021/acsami.0c19806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is fascinating yet challenging to assemble anisotropic nanowires into ordered architectures of high complexity and intriguing functions. We exploited a facile strategy involving oriented etching of a metal-organic fragment (MOF) to advance the rational design of highly ordered nanostructures. As a proof of concept, a microscale MIL-68(In) single crystal was etched with a K3[Co(CN)6] solution to give a microtube composed of aligned MIL-68(In) nanorods. Annealing such a MIL-68(In) microtube readily created an unprecedented branched In2O3 mesocrystal by assembly of In2O3 nanorods aligned in order. The derived ordered-In2O3-ZnIn2S4 is more efficient in catalyzing visible-light-driven H2 evolution (8753 μmol h-1 g-1) outperforming the disordered-In2O3-ZnIn2S4 counterpart (2700 μmol h-1 g-1) as well as many other state-of-the-art ZnIn2S4-based photocatalysts. The ordered architecture significantly boosts the short-range electron transfer in an In2O3-ZnIn2S4 heterojunction but has a negligible impact on the long-range electron transfer among In2O3 mesocrystals. The density functional theory (DFT) calculation reveals that the oriented etching is achieved by the selective binding of the [Co(CN)6]3- etchant on the (110) plane of MIL-68(In), which can drag the In atoms out of the framework in order. Our findings could broaden the technical sense toward advanced photocatalyst design and impose scientific impacts on unveiling how ordered photosystems operate.
Collapse
Affiliation(s)
- Guoxin Zhuang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian 350108, China
- Key Laboratory of Advanced Materials Technologies (Fuzhou University), Fujian Province University, Fuzhou 350108, China
| | - Qihui Fang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian 350108, China
- Key Laboratory of Advanced Materials Technologies (Fuzhou University), Fujian Province University, Fuzhou 350108, China
| | - Jinxin Wei
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian 350108, China
- Key Laboratory of Advanced Materials Technologies (Fuzhou University), Fujian Province University, Fuzhou 350108, China
| | - Chengkai Yang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian 350108, China
- Key Laboratory of Advanced Materials Technologies (Fuzhou University), Fujian Province University, Fuzhou 350108, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Muqing Chen
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian 350108, China
- Key Laboratory of Advanced Materials Technologies (Fuzhou University), Fujian Province University, Fuzhou 350108, China
| | - Zikun Lyu
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian 350108, China
- Key Laboratory of Advanced Materials Technologies (Fuzhou University), Fujian Province University, Fuzhou 350108, China
| | - Zanyong Zhuang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian 350108, China
- Key Laboratory of Advanced Materials Technologies (Fuzhou University), Fujian Province University, Fuzhou 350108, China
| | - Yan Yu
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian 350108, China
- Key Laboratory of Advanced Materials Technologies (Fuzhou University), Fujian Province University, Fuzhou 350108, China
| |
Collapse
|
3
|
Kampouri S, Stylianou KC. Dual-Functional Photocatalysis for Simultaneous Hydrogen Production and Oxidation of Organic Substances. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00332] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Stavroula Kampouri
- Laboratory of Molecular Simulation (LSMO), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL Valais), Rue de l’industrie 17, 1951 Sion, Switzerland
| | - Kyriakos C. Stylianou
- Laboratory of Molecular Simulation (LSMO), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL Valais), Rue de l’industrie 17, 1951 Sion, Switzerland
| |
Collapse
|
4
|
Chandrasekaran S, Yao L, Deng L, Bowen C, Zhang Y, Chen S, Lin Z, Peng F, Zhang P. Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem Soc Rev 2019; 48:4178-4280. [DOI: 10.1039/c8cs00664d] [Citation(s) in RCA: 540] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review describes an in-depth overview and knowledge on the variety of synthetic strategies for forming metal sulfides and their potential use to achieve effective hydrogen generation and beyond.
Collapse
Affiliation(s)
| | - Lei Yao
- Shenzhen Key Laboratory of Special Functional Materials
- Guangdong Research Center for Interfacial Engineering of Functional Materials
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen 518060
| | - Libo Deng
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- China
| | - Chris Bowen
- Department of Mechanical Engineering
- University of Bath
- Bath
- UK
| | - Yan Zhang
- Department of Mechanical Engineering
- University of Bath
- Bath
- UK
| | - Sanming Chen
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- China
| | - Zhiqun Lin
- School of Materials Science and Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Feng Peng
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou
- China
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- China
| |
Collapse
|
5
|
Ma Z, Zhang M, Guo J, Liu W, Tong M. Facile synthesis of ZrO 2 coated BiOCl 0.5I 0.5 for photocatalytic oxidation-adsorption of As(III) under visible light irradiation. CHEMOSPHERE 2018; 211:934-942. [PMID: 30119025 DOI: 10.1016/j.chemosphere.2018.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
ZrO2 modified BiOCl0.5I0.5 composites (ZBCI), synthesized via a facile precipitation method at room temperature, were utilized to photocatalytically oxidize and adsorb arsenite from water under visible light irradiation. The composites were well characterized by using various techniques. With visible light irradiation, 5 mg L-1 of As(III) could be completely removed by ZBCI (0.25 g L-1) in 90 min. Particularly, we found that ZBCI composites not only could oxidize As(III) into As(V) with visible light irradiation, but also could effectively capture the generated As(V), leading to the negligible residual As(III) or As(V) in aqueous solutions after 90 min treatment. In the fabricated composites, ZrO2 acted as the main adsorption sites while BiOCl0.5I0.5 served as the primary photocatalysis center. Because of the heterostructure of ZBCI, e- generated by BiOCl0.5I0.5 would be transferred to ZrO2 and inhibited e--h+ recombination rate, contributing to the improved photocatalytic efficiency. ZBCI could effectively remove As(III) over a broad range of pH from 3 to 11. Chloride and nitrate did not obviously affect the photocatalytic As(III) removal, while sulfate and phosphate yet reduced the capture of As(III). Moreover, ZBCI composites exhibited high photocatalytic As(III) removal efficiency during the fourth reused cycles. The facile synthesized ZBCI could be employed to capture and oxidize As(III) from water.
Collapse
Affiliation(s)
- Zhiyao Ma
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Mengya Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Jingyuan Guo
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
6
|
Jeon TH, Koo MS, Kim H, Choi W. Dual-Functional Photocatalytic and Photoelectrocatalytic Systems for Energy- and Resource-Recovering Water Treatment. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03521] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tae Hwa Jeon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Min Seok Koo
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Hyejin Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Wonyong Choi
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|
7
|
Lu H, Zhu Z, Zhang H, Zhu J, Qiu Y, Zhu L, Küppers S. Fenton-Like Catalysis and Oxidation/Adsorption Performances of Acetaminophen and Arsenic Pollutants in Water on a Multimetal Cu-Zn-Fe-LDH. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25343-52. [PMID: 27588429 DOI: 10.1021/acsami.6b08933] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Acetaminophen can increase the risk of arsenic-mediated hepatic oxidative damage; therefore, the decontamination of water polluted with coexisting acetaminophen and arsenic gives rise to new challenges for the purification of drinking water. In this work, a three-metal layered double hydroxide, namely, Cu-Zn-Fe-LDH, was synthesized and applied as a heterogeneous Fenton-like oxidation catalyst and adsorbent to simultaneously remove acetaminophen (Paracetamol, PR) and arsenic. The results showed that the degradation of acetaminophen was accelerated with decreasing pH or increasing H2O2 concentrations. Under the conditions of a catalyst dosage of 0.5 g·L(-1) and a H2O2 concentration of 30 mmol·L(-1), the acetaminophen in a water sample was completely degraded within 24 h by a Fenton-like reaction. The synthesized Cu-Zn-Fe-LDH also exhibited a high efficiency for arsenate removal from aqueous solutions, with a calculated maximum adsorption capacity of 126.13 mg·g(-1). In the presence of hydrogen peroxide, the more toxic arsenite can be gradually oxidized into arsenate and adsorbed at the same time by Cu-Zn-Fe-LDH. For simulated water samples with coexisting arsenic and acetaminophen pollutants, after treatment with Cu-Zn-Fe-LDH and H2O2, the residual arsenic concentration in water was less than 10 μg·L(-1), and acetaminophen was not detected in the solution. These results indicate that the obtained Cu-Zn-Fe-LDH is an efficient material for the decontamination of combined acetaminophen and arsenic pollution.
Collapse
Affiliation(s)
| | | | | | | | | | - Linyan Zhu
- ZEA-3, Research Center Jülich , Jülich 52425, Germany
| | | |
Collapse
|