1
|
Yin C, Sun J, Guo W, Xue Y, Zhang H, Mao X. High-Yield Synthesis of Phosphatidylserine in a Well-Designed Mixed Micellar System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:504-515. [PMID: 38060812 DOI: 10.1021/acs.jafc.3c06584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
A sustainable enzymatic system is essential for efficient phosphatidylserine (PS) synthesis in industrial production. Conventional biphasic systems face challenges such as excessive organic solvent usage, enzyme-intensive processes, and increased costs. This study introduces a novel approach using chitin nanofibrils (ChNFs) as an immobilization material for phospholipase D (PLD) in a mixed micellar system stabilized by the food-grade emulsifier sodium deoxycholate (SDC). The immobilized enzyme, ChNF-chiA1, was quickly prepared in a one-step process, eliminating the need for purification. By optimizing the reaction conditions, including l-Ser concentration (1.0 M), SDC concentration (10 mM), reaction time (8 h), and enzyme dosage (1.0 U), a remarkable PS yield of 96.74% was achieved in the solvent-free mixed micellar system. The catalytic efficiency of ChNF-chiA1 surpassed that of the free PLD-chiA1 biphasic system by 6.0-fold. This innovative and green biocatalytic technology offers a reusable solution for the high-value enzymatic synthesis of phospholipids, providing a promising avenue for industrial applications.
Collapse
Affiliation(s)
- Chengmei Yin
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Jianan Sun
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Weilong Guo
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yong Xue
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Haiyang Zhang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404 Qingdao, China
| |
Collapse
|
2
|
Xu X, Ma J, Zheng Y, Wang S, Wang A, Zheng N. Secondary Structure in Overcoming Photosensitizers' Aggregation: α-Helical Polypeptides for Enhanced Photodynamic Therapy. Adv Healthc Mater 2023; 12:e2203386. [PMID: 37016763 DOI: 10.1002/adhm.202203386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/03/2023] [Indexed: 04/06/2023]
Abstract
Aggregation caused quenching (ACQ) effect can severely inhibit the application of hydrophobic photosensitizers (PSs) bearing planar and rigid structures. Most of the reported cases utilized random-coiled polymers for the in vivo delivery of PSs, which would inevitably aggravate ACQ effect due to the flexible chains. In this work, the role of polymers' secondary structures (especially α-helical conformation) in overcoming the PSs' aggregation is systemically investigated based on the design of α-helical polypeptides bearing tetraphenylporphyrin (TPP) side chains. Atomistic molecular dynamics simulation, fluorescence quantum yield, and reactive oxygen species (ROS) generation yield are evaluated to demonstrate that α-helical polypeptide backbones can significantly boost both fluorescence quantum yield and ROS by suppressing the π-π stacking interaction between TPP units. The enhanced in vitro and in vivo phototoxicity for helical polypeptides also reveal functions of secondary structures in inhibiting ACQ and improving the membrane activity. Successful in vivo photodynamic therapy (PDT) results in mice bearing H22 tumors showed great potentials for further clinical applications.
Collapse
Affiliation(s)
- Xiang Xu
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jinjuan Ma
- Department of Comparative Medicine Laboratory Animal Center, Dalian Medical University Dalian, Dalian, 116000, China
| | - Yubin Zheng
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Dalian University of Technology Corporation of Changshu Research Institution, Suzhou, 215500, China
| | - Shaolei Wang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital&Institute, Department of Radiology Intervention, Shenyang, China
| | - Aiguo Wang
- Department of Comparative Medicine Laboratory Animal Center, Dalian Medical University Dalian, Dalian, 116000, China
| | - Nan Zheng
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Dalian University of Technology Corporation of Changshu Research Institution, Suzhou, 215500, China
| |
Collapse
|
3
|
The in vivo fate of polymeric micelles. Adv Drug Deliv Rev 2022; 188:114463. [PMID: 35905947 DOI: 10.1016/j.addr.2022.114463] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022]
Abstract
This review aims to provide a systemic analysis of the in vivo, as well as subcellular, fate of polymeric micelles (PMs), starting from the entry of PMs into the body. Few PMs are able to cross the biological barriers intact and reach the circulation. In the blood, PMs demonstrate fairly good stability mainly owing to formation of protein corona despite controversial results reported by different groups. Although the exterior hydrophilic shells render PMs "long-circulating", the biodistribution of PMs into the mononuclear phagocyte systems (MPS) is dominant as compared with non-MPS organs and tissues. Evidence emerges to support that the copolymer poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) is first broken down into pieces of PEG and PLA and then remnants to be eliminated from the body finally. At the cellular level, PMs tend to be internalized via endocytosis due to their particulate nature and disassembled and degraded within the cell. Recent findings on the effect of particle size, surface characteristics and shape are also reviewed. It is envisaged that unraveling the in vivo and subcellular fate sheds light on the performing mechanisms and gears up the clinical translation of PMs.
Collapse
|
4
|
Wang X, Shi Z, Chen H, Huang F. Nanoscale integration of porphyrin in GroEL protein cage: Photophysical and photochemical investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118596. [PMID: 32599481 DOI: 10.1016/j.saa.2020.118596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we introduce a new type of functional, supramolecular porphyrin conjugate created using the bacterial GroEL protein cage based on non-specific hydrophobic interaction. The synthesis, structure and property of the porphyrin conjugate were characterized by dynamic light scattering, UV-vis spectroscopy and fluorescence spectroscopy. We observed that the model zinc-tetraphenylporphyrin (Zn-TPP) with high hydrophobicity can be well-dispersed in aqueous solutions with the aid of GroEL open chamber, which is known to be a favorable nanocompartment for aggregation-prone molecules. The maximal encapsulation efficiency of Zn-TPP in GroEL was determined to be ~98%. It is further seen that the constructed double Zn-TPP-GroEL complex exhibited good photocatalytic activity in the model reactions of the production of singlet oxygen and the reduction of methyl viologen under illumination with visible light. Moreover, we found that GroEL can significantly improve the photostability of Zn-TPP molecules as a result of nanoscale assembly within its hydrophobic chamber. Hence enhanced water solubility and photostability of Zn-TPP, which are considered as the first two hurdles for the wide usage of porphyrins, were achieved simultaneously by the development of GroEL cage as a building block. Supramolecular nanostructures formed from porphyrins (or related molecules) and GroEL for photocatalysis would greatly simplify applications of such structures.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, PR China.
| | - Zhuang Shi
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, PR China
| | - Han Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, PR China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, PR China.
| |
Collapse
|
5
|
Tian J, Huang B, Nawaz MH, Zhang W. Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213410] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Wang JJ, Qian Y, Qian C, Yao JY, Bi XL. Paclitaxel-loaded cyclodextrin-cored unimolecular micelles and their in vivo behavior. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Kubát P, Henke P, Raya RK, Štěpánek M, Mosinger J. Polystyrene and Poly(ethylene glycol)- b-Poly(ε-caprolactone) Nanoparticles with Porphyrins: Structure, Size, and Photooxidation Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:302-310. [PMID: 31829603 DOI: 10.1021/acs.langmuir.9b03468] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The transport of a photosensitizer to target biological structures followed by the release of singlet oxygen is a critical step in photodynamic therapy. We compared the (photo)physical properties of polystyrene nanoparticles (TPP@PS) of different sizes and self-assembled poly(ethylene glycol)-b-poly(ε-caprolactone) core/shell nanoparticles (TPP@PEG-PCL) with different lengths of copolymer blocks, both suitable for the transport of the tetraphenylporphyrin (TPP) photosensitizer. The singlet oxygen was formed inside both nanoparticles after irradiation with visible light. Its kinetics was controlled by the size of TPP@PS; its lifetime (τΔ) increased with increasing nanoparticle size (from 6.5 to 16 μs) because of hindered diffusion into the external aqueous environment, where it was quickly deactivated. Accordingly, the prolongation of the singlet oxygen-sensitized delayed fluorescence kinetics was found for TPP@PS of high size. The TPP@PEG-PCL self-assemblies allowed for enhanced oxygen diffusion, and the estimated low values of τΔ ≈ 3.7 μs were independent of the size of building blocks. The delayed fluorescence in oxygen-free conditions originating from triplet-triplet annihilation indicated a high mobility of TPP in the PCL core in comparison with fixed molecules in the PS matrix. Photooxidation of uric acid revealed the highest efficacy for TPP@PS of small sizes, whereas the largest TPP@PS exhibited the lowest activity, and the efficacy of TPP@PEG-PCL remained independent of the sizes of the building blocks.
Collapse
Affiliation(s)
- Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , v.v.i., Dolejškova 3 , 182 23 Prague 8 , Czech Republic
| | - Petr Henke
- Department of Inorganic Chemistry, Faculty of Science , Charles University , 2030 Hlavova , 128 43 Prague 2 , Czech Republic
| | - Rahul Kumar Raya
- Department of Inorganic Chemistry, Faculty of Science , Charles University , 2030 Hlavova , 128 43 Prague 2 , Czech Republic
| | - Miroslav Štěpánek
- Department of Inorganic Chemistry, Faculty of Science , Charles University , 2030 Hlavova , 128 43 Prague 2 , Czech Republic
| | - Jiří Mosinger
- Department of Inorganic Chemistry, Faculty of Science , Charles University , 2030 Hlavova , 128 43 Prague 2 , Czech Republic
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , v.v.i., Husinec-Řež 1001 , 250 68 Řež , Czech Republic
| |
Collapse
|
8
|
Joothamongkon J, Asawapirom U, Thiramanas R, Jangpatarapongsa K, Polpanich D. Near-infrared polyfluorene encapsulated in poly(ε-caprolactone) nanoparticles with remarkable large Stokes shift. RSC Adv 2020; 10:33279-33287. [PMID: 35515050 PMCID: PMC9056670 DOI: 10.1039/d0ra05809b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/01/2020] [Indexed: 01/01/2023] Open
Abstract
Near-infrared (NIR) fluorescent dyes have attracted increasing attention as fluorescent probes in biomedical applications due to their low biological autofluorescence as well as high tissue penetration depth. However, their being hydrophobic in nature limits their clinical use as they are prone to aggregate in the physiological environment. Herein, we have designed and synthesized a novel polymeric NIR fluorescent dye and then encapsulated it into a poly(ε-caprolactone) (PCL) matrix by way of an emulsion–diffusion technique. The effect of the structure of the surfactant on the nanoparticle properties is investigated. Results show that polymeric surfactant, Kolliphor® P188, allows the formation of a high fluorescence intensity of the nanoparticles with the highest level homogeneity and stability. The synthesized nanoparticles show significant advantages in terms of a remarkable large stokes shift (276 nm) in the aqueous solution and excellent biocompatibility. The fabrication process is not limited to encapsulation of polymeric fluorescent dye. The synthesized NIR polymeric nanoparticles would be potentially applicable for biomedical applications. A near-infrared dye encapsulated in poly(ε-caprolactone) nanoparticles have been synthesized. Using Kolliphor® P188 as a surfactant, the stable nanoparticles exhibit strong fluorescence intensity and remarkable large Stokes shift.![]()
Collapse
Affiliation(s)
- Jaruwan Joothamongkon
- National Nanotechnology Center
- National Science and Technology Development Agency (NSTDA)
- Thailand
| | - Udom Asawapirom
- National Nanotechnology Center
- National Science and Technology Development Agency (NSTDA)
- Thailand
| | - Raweewan Thiramanas
- National Nanotechnology Center
- National Science and Technology Development Agency (NSTDA)
- Thailand
| | - Kulachart Jangpatarapongsa
- Center for Innovation Development and Technology Transfer
- Faculty of Medical Technology
- Mahidol University
- Bangkok 10700
- Thailand
| | - Duangporn Polpanich
- National Nanotechnology Center
- National Science and Technology Development Agency (NSTDA)
- Thailand
| |
Collapse
|
9
|
Du C, Liang Y, Ma Q, Sun Q, Qi J, Cao J, Han S, Liang M, Song B, Sun Y. Intracellular tracking of drug release from pH-sensitive polymeric nanoparticles via FRET for synergistic chemo-photodynamic therapy. J Nanobiotechnology 2019; 17:113. [PMID: 31699100 PMCID: PMC6839248 DOI: 10.1186/s12951-019-0547-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/30/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Synergistic therapy of tumor is a promising way in curing cancer and in order to achieve effective tumor therapy with real-time drug release monitoring, dynamic cellular imaging and antitumor activity. RESULTS In this work, a polymeric nanoparticle with Forster resonance energy transfer (FRET) effect and chemo-photodynamic properties was fabricated as the drug vehicle. An amphiphilic polymer of cyclo(RGDfCSH) (cRGD)-poly(ethylene glycol) (PEG)-Poly(L-histidine) (PH)-poly(ε-caprolactone) (PCL)-Protoporphyrin (Por)-acting as both a photosensitizer for photodynamic therapy (PDT) and absorption of acceptor in FRET was synthesized and self-assembled into polymeric nanoparticles with epirubicin (EPI)-acting as an antitumor drug for chemotherapy and fluorescence of donor in FRET. Spherical EPI-loaded nanoparticles with the average size of 150 ± 2.4 nm was procured with negatively charged surface, pH sensitivity and high drug loading content (14.9 ± 1.5%). The cellular uptake of EPI-loaded cRGD-PEG-PH-PCL-Por was monitored in real time by the FRET effect between EPI and cRGD-PEG-PH-PCL-Por. The polymeric nanoparticles combined PDT and chemotherapy showed significant anticancer activity both in vitro (IC50 = 0.47 μg/mL) and better therapeutic efficacy than that of free EPI in vivo. CONCLUSIONS This work provided a versatile strategy to fabricate nanoassemblies for intracellular tracking of drug release and synergistic chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Chen Du
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021 China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021 China
| | - Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021 China
| | - Qianwen Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021 China
| | - Jinghui Qi
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021 China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021 China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021 China
| | - Mingtao Liang
- Department of Pharmaceutics, School of Biomedical Science and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Bo Song
- Department of Neurology, The Second Subsidiary Hospital of Qingdao University, Qingdao, 266042 China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021 China
| |
Collapse
|
10
|
Tian J, Zhang W. Synthesis, self-assembly and applications of functional polymers based on porphyrins. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Heydari-turkmani A, Zakavi S. The first solid state porphyrin-weak acid molecular complex: A novel metal free, nanosized and porous photocatalyst for large scale aerobic oxidations in water. J Catal 2018. [DOI: 10.1016/j.jcat.2018.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Xu L, Yang Y, Zhao M, Gao W, Zhang H, Li S, He B, Pu Y. A reactive oxygen species–responsive prodrug micelle with efficient cellular uptake and excellent bioavailability. J Mater Chem B 2018; 6:1076-1084. [DOI: 10.1039/c7tb02479g] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stimuli-responsive polymeric drug delivery systems are of great interest in anticancer research. Here, a reactive oxygen species (ROS)–responsive prodrug was prepared by thioketal linkage of poly(ethylene glycol) (PEG) and the anticancer drug doxorubicin (DOX).
Collapse
Affiliation(s)
- Long Xu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yidi Yang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Mingying Zhao
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325027
- China
| | - Hai Zhang
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Sai Li
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Bin He
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
13
|
Mojarrad AG, Zakavi S. Photocatalytic Activity of the Molecular Complexes of meso
-Tetraarylporphyrins with Lewis Acids for the Oxidation of Olefins: Significant Effects of Lewis Acids and meso
Substituents. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Aida G. Mojarrad
- Institute for Advanced Studies in Basic Sciences (IASBS); 45137-66731 Zanjan Iran
| | - Saeed Zakavi
- Institute for Advanced Studies in Basic Sciences (IASBS); 45137-66731 Zanjan Iran
| |
Collapse
|
14
|
Pucelik B, Arnaut LG, Stochel G, Dąbrowski JM. Design of Pluronic-Based Formulation for Enhanced Redaporfin-Photodynamic Therapy against Pigmented Melanoma. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22039-55. [PMID: 27492026 DOI: 10.1021/acsami.6b07031] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The therapeutic outcome of photodynamic therapy (PDT) with redaporfin (a fluorinated sulfonamide bacteriochlorin, F2BMet or LUZ11) was improved using Pluronic-based (P123, F127) formulations. Neither redaporfin encapsulated in Pluronic nor micelles alone exhibited cytotoxicity in a broad concentration range. Comprehensive in vitro studies against B16F10 melanoma cells showed that redaporfin-P123 micelles enhanced cellular uptake and increased oxidative stress compared with redaporfin-F127 or photosensitizer alone after short incubation times. ROS-sensitive fluorescent probes showed that the increased oxidative stress is due, at least in part, to a more efficient formation of hydroxyl radicals, and causes strong light-dose dependent apoptosis and necrosis. Tissue distribution and pharmacokinetic studies in tumor-bearing mice show that the Pluronic P123 formulation of redaporfin increases its bioavailability as well as the tumor-to-muscle and tumor-to-skin ratios, in comparison with Cremophor EL and Pluronic F127 formulations. Redaporfin in P123 was most successful in the PDT of C57BL/6J mice bearing subcutaneously implanted B16F10 melanoma tumors. Vascular-targeted PDT combining 1.5 mg kg(-1) redaporfin in P123 with a light dose of 74 J cm(-2) led to 100% complete cures (i.e., no tumor regrowth over one year post-treatment). This remarkable result reveals that modification of redaporfin with Pluronic block copolymers overcomes the resistance of melanoma cells to PDT possibly via increased tumor selectivity and enhanced ROS generation.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University , 30-060 Kraków, Poland
| | - Luis G Arnaut
- CQC, Chemistry Department, University of Coimbra , Rua Larga, 3004-535 Coimbra, Portugal
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University , 30-060 Kraków, Poland
| | | |
Collapse
|