1
|
Sarkar R, Graves LS, Taylor JR, Arachchige IU. Self-Supported Ag/Pt/Pd Alloy Aerogels as High-Performance Bifunctional and Durable Electrocatalysts for Methanol and Ethanol Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37903332 DOI: 10.1021/acsami.3c07740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Assembly of nanoparticles (NPs) into functional macrostructures is imperative for the development of NP-based devices. However, existing methods employ insulating organic ligands, polymers, and biomolecules as mediators for the NP assembly, which are detrimental for charge transport and interparticle coupling that impede the efficient integration of low-dimensional properties. Herein, we report a methodology for the direct self-supported assembly of Ag/Pt/Pd alloy NPs into high surface area (119.1 ± 3.9 to 140.1 ± 5.7 m2/g), mesoporous (19.7 ± 6.2 to 23.0 ± 1.6 nm), and conducting nanostructures (aerogels) that show superior electrocatalytic activity and stability in methanol (MOR) and ethanol (EOR) oxidation reactions. Ultrasmall (3.9 ± 1.3 nm) and quasi-spherical Ag/Pt/Pd alloy NPs were synthesized via stepwise galvanic replacement reaction (GRR) of glutathione (GSH)-coated Ag NPs. As-synthesized NPs were transformed into free-standing alloy hydrogels via chemical oxidation of the GSH ligands. The composition of alloy aerogels was tuned by varying the oxidant/thiolate molar ratio of the precursor NP sol that prompts Ag dealloying with in situ generated HNO3, selectively enriching the Pt and Pd catalytic sites on the aerogel surface. The highest-performing alloy aerogel (Ag0.449Pt0.480Pd0.071) demonstrates excellent mass activity for methanol (3179.5 mA/mg) and ethanol (2444.5 mA/mg) electro-oxidation reactions, which are ∼4-5 times higher than those of commercial Pt/C and Pd/C electrocatalysts. The aerogel also maintained high alcohol oxidation activity for 17 h at a constant potential of -0.3 V in an alkaline medium. The synergistic effects of noble metal alloying, high surface area and mesoporosity, and the pristine active surface of aerogels provide efficient interaction of analytes with the nanostructure surface, facilitating both MOR and EOR activity and improving tolerance for poisonous byproducts, enabling the Ag/Pt/Pd alloy aerogel a promising (electro)catalyst for a number of new technologies.
Collapse
Affiliation(s)
- Rajib Sarkar
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Lisa S Graves
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Jessie R Taylor
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Indika U Arachchige
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| |
Collapse
|
2
|
Kresse J, Georgi M, Hübner R, Eychmüller A. Structural investigations of Au-Ni aerogels: morphology and element distribution. NANOSCALE ADVANCES 2023; 5:5487-5498. [PMID: 37822903 PMCID: PMC10563840 DOI: 10.1039/d3na00359k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
The physical properties of nanomaterials are determined by their structural features, making accurate structural control indispensable. This carries over to future applications. In the case of metal aerogels, highly porous networks of aggregated metal nanoparticles, such precise tuning is still largely pending. Although recent improvements in controlling synthesis parameters like electrolytes, reductants, or mechanical stirring, the focus has always been on one particular morphology at a time. Meanwhile, complex factors, such as morphology and element distributions, are studied rather sparsely. We demonstrate the capabilities of precise morphology design by deploying Au-Ni, a novel element combination for metal aerogels in itself, as a model system to combine common aerogel morphologies under one system for the first time. Au-Ni aerogels were synthesized via modified one- and two-step gelation, partially combined with galvanic replacement, to obtain aerogels with alloyed, heterostructural (novel metal aerogel structure of interconnected nanoparticles and nanochains), and hollow spherical building blocks. These differences in morphology are directly reflected in the physisorption behavior, linking the isotherm shape and pore size distribution to the structural features of the aerogels, including a broad-ranging specific surface area (35-65 m2 g-1). The aerogels were optimized regarding metal concentration, destabilization, and composition, revealing some delicate structural trends regarding the ligament size and hollow sphere character. Hence, this work significantly improves the structural tailoring of metal aerogels and possible up-scaling. Lastly, preliminary ethanol oxidation tests demonstrated that morphology design extends to the catalytic performance. All in all, this work emphasizes the strengths of morphology design to obtain optimal structures, properties, and (performances) for any material application.
Collapse
Affiliation(s)
- Johannes Kresse
- Physical Chemistry, TU Dresden Zellescher Weg 19 Dresden 01069 Germany
| | - Maximilian Georgi
- Physical Chemistry, TU Dresden Zellescher Weg 19 Dresden 01069 Germany
| | - René Hübner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V. Dresden 01328 Germany
| | | |
Collapse
|
3
|
Xue G, Li Y, Du R, Wang J, Hübner R, Gao M, Hu Y. Leveraging Ligand and Composition Effects: Morphology-Tailorable Pt-Bi Bimetallic Aerogels for Enhanced (Photo-)Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301288. [PMID: 37178409 DOI: 10.1002/smll.202301288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Metal aerogels (MAs) are emerging porous materials displaying unprecedented potential in catalysis, sensing, plasmonic technologies, etc. However, the lack of efficient regulation of their nano-building blocks (NBBs) remains a big hurdle that hampers the in-depth investigation and performance enhancement. Here, by harmonizing composition and ligand effects, Pt- and Bi-based single- and bimetallic aerogels bearing NBBs of controlled dimensions and shapes are obtained by facilely tuning the metal precursors and the applied ligands. Particularly, by further modulating the electronic and optic properties of the aerogels via adjusting the content of the catalytically active Pt component and the semiconducting Bi component, both the electrocatalytic and photoelectrocatalytic performance of the Pt-Bi aerogels can be manipulated. In this light, an impressive catalytic performance for electro-oxidation of methanol is acquired, marking a mass activity of 6.4-fold higher under UV irradiation than that for commercial Pt/C. This study not only sheds light on in situ manipulating NBBs of MAs, but also puts forward guidelines for crafting high-performance MAs-based electrocatalysts and photoelectrocatalysts toward energy-related electrochemical processes.
Collapse
Affiliation(s)
- Geng Xue
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
| | - Yueqi Li
- School of Materials Science and Engineering, Key Laboratory of High Energy Density Materials of the Ministry of Education, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ran Du
- School of Materials Science and Engineering, Key Laboratory of High Energy Density Materials of the Ministry of Education, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jinying Wang
- Network for Computational Nanotechnology, Purdue University, West Lafayette, IN, 47907, USA
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Meng Gao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
| | - Yue Hu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
| |
Collapse
|
4
|
Wang C, Herranz J, Hübner R, Schmidt TJ, Eychmüller A. Element Distributions in Bimetallic Aerogels. Acc Chem Res 2023; 56:237-247. [PMID: 36700845 DOI: 10.1021/acs.accounts.2c00491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
ConspectusMetal aerogels assembled from nanoparticles have captured grand attention because they combine the virtues of metals and aerogels and are regarded as ideal materials to address current environmental and energy issues. Among these aerogels, those composed of two metals not only display combinations (superpositions) of the properties of their individual metal components but also feature novel properties distinctly different from those of their monometallic relatives. Therefore, quite some effort has been invested in refining the synthetic methods, compositions, and structures of such bimetallic aerogels as to boost their performance for the envisaged application(s). One such use would be in the field of electrocatalysis, whereby it is also of utmost interest to unravel the element distributions of the (multi)metallic catalysts to achieve a ratio of their bottom-to-up design. Regarding the element distributions in bimetallic aerogels, advanced characterization techniques have identified alloys, core-shells, and structures in which the two metal particles are segregated (i.e., adjacent but without alloy or core-shell structure formation). While an almost infinite number of metal combinations to form bimetallic aerogels can be envisaged, the knowledge of their formation mechanisms and the corresponding element distributions is still in its infancy. The evolution of the observed musters is all but well understood, not to mention the positional changes of the elements observed in operando or in beginning- vs end-of-life comparisons (e.g., in fuel cell applications).With this motivation, in this Account we summarize the endeavors made in element distribution monitoring in bimetallic aerogels in terms of synthetic methods, expected structures, and their evolution during electrocatalysis. After an introductory chapter, we first describe briefly the two most important characterization techniques used for this, namely, scanning transmission electron microscopy (STEM) combined with element mapping (e.g., energy-dispersive X-ray spectroscopy (EDXS)) and X-ray absorption spectroscopy (XAS). We then explain the universal methods used to prepare bimetallic aerogels with different compositions. Those are divided into one-step methods in which gels formed from mixtures of the respective metal salts are coreduced and two-step approaches in which monometallic nanoparticles are mixed and gelated. Subsequently, we summarize the current state-of-knowledge on the element distributions unraveled using diverse characterization methods. This is extended to investigations of the element distributions being altered during electrochemical cycling or other loads. So far, a theoretical understanding of these processes is sparse, not to mention predictions of element distributions. The Account concludes with a series of remarks on current challenges in the field and an outlook on the gains that the field would earn from a solid understanding of the underlying processes and a predictive theoretical backing.
Collapse
Affiliation(s)
- Cui Wang
- Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Juan Herranz
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Thomas J Schmidt
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland.,Laboratory of Physical Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Alexander Eychmüller
- Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| |
Collapse
|
5
|
Flexible, Strong and Multifunctional Anf@Ag Nanocomposite Film for Human Physiology and Motion Monitoring. Processes (Basel) 2022. [DOI: 10.3390/pr10050961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To expand the application range of flexible pressure sensors, endowing them with multifunction capabilities becomes extremely important. Herein, a flexible, strong and multifunctional nanocomposite film was prepared by introducing silver nanoparticles (Ag NPs) into aramid nanofiber (ANF) film using a simple two-step vacuum filtration method. When the Ag content was 27.6 vol%, the electrical resistance of the resulting ANF@Ag nanocomposite film was as low as 1.63 Ω/cm2, and the water contact angle of the nanocomposite film reached 153.9 ± 1°. Compared to the ANF film, the tensile strength of the nanocomposite film increased from 55 MPa to 66.3 MPa with an increase of 20.5%. After being applied to the human body, the nanocomposite film served as a pressure sensor that was able to recognize different stimuli for healthcare monitoring. Based on the advantages, it may become a potential candidate for electronic skin, intelligent wearable devices and medical detection equipment.
Collapse
|
6
|
Zhu A, Ali S, Xu Y, Ouyang Q, Wang Z, Chen Q. SERS-based Au@Ag NPs Solid-phase substrate combined with chemometrics for rapid discrimination of multiple foodborne pathogens. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120814. [PMID: 34973615 DOI: 10.1016/j.saa.2021.120814] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
In this study, a surface enhanced Raman scattering (SERS) sensor based on Au@Ag NPs solid-phase substrate combined with chemometrics was constructed for the discrimination of three pathogenic bacteria (Staphylococcus aureus, Escherichia coli and Listeria monocytogenes). The Au@Ag NPs were synthesized and self-assembled on filter paper using the dip-coating method. The good absorbency of the filter paper immobilized the bacteria on the substrate, increased the interaction between the bacteria and the substrate, and enhanced the SERS signal of the bacteria. The main peaks of the bacterial spectra were close to each other, but the relative intensities of the vibrational peaks were significantly different, and each strain exhibited unique Raman peaks. The combination of partial least squared discriminant analysis (PLS-DA) method with bacterial SERS allowed the effective identification of the three bacteria. Moreover, the method was applied for the quantitative detection of Staphylococcus aureus with a minimum detection concentration of 104 cfu/mL.
Collapse
Affiliation(s)
- Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
| | - Zhen Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China; College of Food and Biological Engineering, Jimei University, Ximen 361021, PR China.
| |
Collapse
|
7
|
Li Y, Peng CK, Hu H, Chen SY, Choi JH, Lin YG, Lee JM. Interstitial boron-triggered electron-deficient Os aerogels for enhanced pH-universal hydrogen evolution. Nat Commun 2022; 13:1143. [PMID: 35241652 PMCID: PMC8894469 DOI: 10.1038/s41467-022-28805-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
Developing high-performance electrocatalysts for hydrogen evolution reaction (HER) is crucial for sustainable hydrogen production, yet still challenging. Here, we report boron-modulated osmium (B-Os) aerogels with rich defects and ultra-fine diameter as a pH-universal HER electrocatalyst. The catalyst shows the small overpotentials of 12, 19, and 33 mV at a current density of 10 mA cm−2 in acidic, alkaline, and neutral electrolytes, respectively, as well as excellent stability, surpassing commercial Pt/C. Operando X-ray absorption spectroscopy shows that interventional interstitial B atoms can optimize the electron structure of B-Os aerogels and stabilize Os as active sites in an electron-deficient state under realistic working conditions, and simultaneously reveals the HER catalytic mechanisms of B-Os aerogels in pH-universal electrolytes. The density functional theory calculations also indicate introducing B atoms can tailor the electronic structure of Os, resulting in the reduced water dissociation energy and the improved adsorption/desorption behavior of hydrogen, which synergistically accelerate HER. While noble metals can be active electrocatalysts for producing renewable H2, there are relatively few works examining osmium materials. Here, the authors prepare boron-doped osmium aerogels for H2 evolution electrocatalysis plus examine the mechanism using computational and in situ characterization.
Collapse
Affiliation(s)
- Yinghao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Chun-Kuo Peng
- Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Huimin Hu
- Soochow Institute for Energy and Materials Innovations & Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, China
| | - San-Yuan Chen
- Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Jin-Ho Choi
- Soochow Institute for Energy and Materials Innovations & Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, China.
| | - Yan-Gu Lin
- Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| |
Collapse
|
8
|
García-González CA, Sosnik A, Kalmár J, De Marco I, Erkey C, Concheiro A, Alvarez-Lorenzo C. Aerogels in drug delivery: From design to application. J Control Release 2021; 332:40-63. [PMID: 33600880 DOI: 10.1016/j.jconrel.2021.02.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/28/2022]
Abstract
Aerogels are the lightest processed solid materials on Earth and with the largest empty volume fraction in their structure. Composition versatility, modularity, and feasibility of industrial scale manufacturing are behind the fast emergence of aerogels in the drug delivery field. Compared to other 3D materials, the high porosity (interconnected mesopores) and high specific surface area of aerogels may allow faster loading of small-molecule drugs, less constrained access to inner regions of the matrix, and more efficient interactions of the biological milieu with the polymer matrix. Processing in supercritical CO2 medium for both aerogel production (drying) and drug loading (impregnation) has remarkable advantages such as absence of an oxidizing environment, clean manufacture, and easiness for the scale-up under good manufacturing practices. The aerogel solid skeleton dictates the chemical affinity to the different drugs, which in turn determines the loading efficiency and the release pattern. Aerogels can be used to increase the solubility of BCS Class II and IV drugs because the drug can be deposited in amorphous state onto the large surface area of the skeleton, which facilitates a rapid contact with the body fluids, dissolution, and release. Conversely, tuning the aerogel structure by functionalization with drug-binding moieties or stimuli-responsive components, application of coatings and incorporation of drug-loaded aerogels into other matrices may enable site-specific, stimuli-responsive, or prolonged drug release. The present review deals with last decade advances in aerogels for drug delivery. An special focus is paid first on the loading efficiency of active ingredients and release kinetics under biorelevant conditions. Subsequent sections deal with aerogels intended to address specific therapeutic demands. In addition to oral delivery, the physical properties of the aerogels appear to be very advantageous for mucosal administration routes, such as pulmonary, nasal, or transdermal. A specific section devoted to recent achievements in gene therapy and theranostics is also included. In the last section, scale up strategies and life cycle assessment are comprehensively addressed.
Collapse
Affiliation(s)
- Carlos A García-González
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - József Kalmár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Can Erkey
- Chemical and Biological Engineering Department, Koç University, 34450 Sarıyer, Istanbul, Turkey
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Wang H, Fang Q, Gu W, Du D, Lin Y, Zhu C. Noble Metal Aerogels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52234-52250. [PMID: 33174718 DOI: 10.1021/acsami.0c14007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Noble metal-based nanomaterials have been a hot research topic during the past few decades. Particularly, self-assembled porous architectures have triggered tremendous interest. At the forefront of porous nanostructures, there exists a research endeavor of noble metal aerogels (NMAs), which are unique in terms of macroscopic assembly systems and three-dimensional (3D) porous network nanostructures. Combining excellent features of noble metals and the unique structural traits of porous nanostructures, NMAs are of high interest in diverse fields, such as catalysis, sensors, and self-propulsion devices. Regardless of these achievements, it is still challenging to rationally design well-tailored NMAs in terms of ligament sizes, morphologies, and compositions and profoundly investigate the underlying gelation mechanisms. Herein, an elaborate overview of the recent progress on NMAs is given. First, a simple description of typical synthetic methods and some advanced design engineering are provided, and then, the gelation mechanism models of NMAs are discussed in detail. Furthermore, promising applications particularly focusing on electrocatalysis and biosensors are highlighted. In the final section, brief conclusions and an outlook on the existing challenges and future chances of NMAs are also proposed.
Collapse
Affiliation(s)
- Hengjia Wang
- College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Qie Fang
- College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wenling Gu
- College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
10
|
Fan X, Zerebecki S, Du R, Hübner R, Marzum G, Jiang G, Hu Y, Barcikowki S, Reichenberger S, Eychmüller A. Promoting the Electrocatalytic Performance of Noble Metal Aerogels by Ligand‐Directed Modulation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xuelin Fan
- Physical Chemistry Technische Universität Dresden Bergstr. 66b 01069 Dresden Germany
| | - Swen Zerebecki
- Technical Chemistry and Center for Nanointegration Duisburg-Essen University of Duisburg-Essen 47057 Duisburg Germany
| | - Ran Du
- Physical Chemistry Technische Universität Dresden Bergstr. 66b 01069 Dresden Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf Institute of Ion Beam Physics and Materials Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Galina Marzum
- Technical Chemistry and Center for Nanointegration Duisburg-Essen University of Duisburg-Essen 47057 Duisburg Germany
| | - Guocan Jiang
- Physical Chemistry Technische Universität Dresden Bergstr. 66b 01069 Dresden Germany
| | - Yue Hu
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325000 China
| | - Stephan Barcikowki
- Technical Chemistry and Center for Nanointegration Duisburg-Essen University of Duisburg-Essen 47057 Duisburg Germany
| | - Sven Reichenberger
- Technical Chemistry and Center for Nanointegration Duisburg-Essen University of Duisburg-Essen 47057 Duisburg Germany
| | - Alexander Eychmüller
- Physical Chemistry Technische Universität Dresden Bergstr. 66b 01069 Dresden Germany
| |
Collapse
|
11
|
Fan X, Zerebecki S, Du R, Hübner R, Marzum G, Jiang G, Hu Y, Barcikowki S, Reichenberger S, Eychmüller A. Promoting the Electrocatalytic Performance of Noble Metal Aerogels by Ligand-Directed Modulation. Angew Chem Int Ed Engl 2020; 59:5706-5711. [PMID: 31990450 PMCID: PMC7154742 DOI: 10.1002/anie.201913079] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Indexed: 12/11/2022]
Abstract
Noble metal aerogels (NMAs) are an emerging class of porous materials. Embracing nano-sized highly-active noble metals and porous structures, they display unprecedented performance in diverse electrocatalytic processes. However, various impurities, particularly organic ligands, are often involved in the synthesis and remain in the corresponding products, hindering the investigation of the intrinsic electrocatalytic properties of NMAs. Here, starting from laser-generated inorganic-salt-stabilized metal nanoparticles, various impurity-free NMAs (Au, Pd, and Au-Pd aerogels) were fabricated. In this light, we demonstrate not only the intrinsic electrocatalytic properties of NMAs, but also the prominent roles played by ligands in tuning electrocatalysis through modulating the electron density of catalysts. These findings may offer a new dimension to engineer and optimize the electrocatalytic performance for various NMAs and beyond.
Collapse
Affiliation(s)
- Xuelin Fan
- Physical Chemistry, Technische Universität Dresden, Bergstr. 66b, 01069, Dresden, Germany
| | - Swen Zerebecki
- Technical Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, 47057, Duisburg, Germany
| | - Ran Du
- Physical Chemistry, Technische Universität Dresden, Bergstr. 66b, 01069, Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Galina Marzum
- Technical Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, 47057, Duisburg, Germany
| | - Guocan Jiang
- Physical Chemistry, Technische Universität Dresden, Bergstr. 66b, 01069, Dresden, Germany
| | - Yue Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, China
| | - Stephan Barcikowki
- Technical Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, 47057, Duisburg, Germany
| | - Sven Reichenberger
- Technical Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, 47057, Duisburg, Germany
| | - Alexander Eychmüller
- Physical Chemistry, Technische Universität Dresden, Bergstr. 66b, 01069, Dresden, Germany
| |
Collapse
|
12
|
Bartolowits M, Xin M, Petrov DP, Tague TJ, Davisson VJ. Multimeric Rhodamine Dye-Induced Aggregation of Silver Nanoparticles for Surface-Enhanced Raman Scattering. ACS OMEGA 2019; 4:140-145. [PMID: 30729221 PMCID: PMC6356857 DOI: 10.1021/acsomega.8b02970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/18/2018] [Indexed: 05/17/2023]
Abstract
Isotopic variants of Rhodamine 6G (R6G) have previously been used as a method of multiplexed detection for Surface Enhanced Raman Spectroscopy (SERS), including protein detection and quantification. Challenges exist, however, with producing long-term stable SERS signals with exposure to silver or gold metal surfaces without the use of additional protective coatings of nanomaterials. Here, novel rhodamine "dimers" and "trimers" have been created that demonstrate a higher avidity for metal nanoparticles and induce aggregation to create plasmonic "hotspots" as indicated by enhanced Raman scattering in situ. These aggregates can be formed in a colloid, on surfaces, or membrane substrates such as poly(vinylidene fluoride) for applications in biosciences. The integrity of the materials and Raman signals are maintained for months of time on different substrates. These dye materials should provide avenues for simplified in situ generation of sensors for Raman-based assays especially in settings requiring highly robust performance.
Collapse
Affiliation(s)
- Matthew
D. Bartolowits
- Amplified
Sciences, LLC, 1281 Win
Hentschel Blvd., West Lafayette, Indiana 47906, United
States
| | - Meiguo Xin
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dino P. Petrov
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Thomas J. Tague
- Bruker
Optics, Inc., 19 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Vincent Jo Davisson
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- E-mail:
| |
Collapse
|
13
|
Ziegler C, Wolf A, Liu W, Herrmann AK, Gaponik N, Eychmüller A. Moderne Anorganische Aerogele. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christoph Ziegler
- Physical Chemistry; Technische Universität Dresden; Bergstraße 66b 01062 Dresden Deutschland
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 639798 Singapur
| | - André Wolf
- Physical Chemistry; Technische Universität Dresden; Bergstraße 66b 01062 Dresden Deutschland
| | - Wei Liu
- Physical Chemistry; Technische Universität Dresden; Bergstraße 66b 01062 Dresden Deutschland
| | - Anne-Kristin Herrmann
- Physical Chemistry; Technische Universität Dresden; Bergstraße 66b 01062 Dresden Deutschland
| | - Nikolai Gaponik
- Physical Chemistry; Technische Universität Dresden; Bergstraße 66b 01062 Dresden Deutschland
| | - Alexander Eychmüller
- Physical Chemistry; Technische Universität Dresden; Bergstraße 66b 01062 Dresden Deutschland
| |
Collapse
|
14
|
Ziegler C, Wolf A, Liu W, Herrmann AK, Gaponik N, Eychmüller A. Modern Inorganic Aerogels. Angew Chem Int Ed Engl 2017; 56:13200-13221. [DOI: 10.1002/anie.201611552] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Christoph Ziegler
- Physical Chemistry; Technische Universität Dresden; Bergstrasse 66b 01062 Dresden Germany
- Present address: LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 639798 Singapore
| | - André Wolf
- Physical Chemistry; Technische Universität Dresden; Bergstrasse 66b 01062 Dresden Germany
| | - Wei Liu
- Physical Chemistry; Technische Universität Dresden; Bergstrasse 66b 01062 Dresden Germany
| | - Anne-Kristin Herrmann
- Physical Chemistry; Technische Universität Dresden; Bergstrasse 66b 01062 Dresden Germany
| | - Nikolai Gaponik
- Physical Chemistry; Technische Universität Dresden; Bergstrasse 66b 01062 Dresden Germany
| | - Alexander Eychmüller
- Physical Chemistry; Technische Universität Dresden; Bergstrasse 66b 01062 Dresden Germany
| |
Collapse
|
15
|
Kim W, Lee JC, Lee GJ, Park HK, Lee A, Choi S. Low-Cost Label-Free Biosensing Bimetallic Cellulose Strip with SILAR-Synthesized Silver Core–Gold Shell Nanoparticle Structures. Anal Chem 2017; 89:6448-6454. [DOI: 10.1021/acs.analchem.7b00300] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wansun Kim
- Department
of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Chul Lee
- Department
of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gi-Ja Lee
- Department
of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hun-Kuk Park
- Department
of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Anbok Lee
- Department
of Surgery, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Samjin Choi
- Department
of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
16
|
Wang J, Xu H, Li S, Yan B, Shi Y, Wang C, Du Y. Plasmonic and photo-electrochemical enhancements of the AuAg@Au/RGO–C3N4 nanocomposite for the detection of DA. Analyst 2017; 142:4852-4861. [DOI: 10.1039/c7an01561e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Plasmonic photocatalyst has attracted significant attention due to its valuable theoretical study and promising practical applications in solar cells, functional composites, and sensors.
Collapse
Affiliation(s)
- Jin Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| | - Hui Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| | - Shumin Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| | - Bo Yan
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| | - Yuting Shi
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| | - Caiqin Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| | - Yukou Du
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| |
Collapse
|
17
|
Wen D, Eychmüller A. 3D assembly of preformed colloidal nanoparticles into gels and aerogels: function-led design. Chem Commun (Camb) 2017; 53:12608-12621. [DOI: 10.1039/c7cc03862c] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanoparticle-based aerogels combine the properties of traditional aerogels with those of nanoparticles, and hold promise for various applications following a function-led design.
Collapse
Affiliation(s)
- Dan Wen
- Center for Nano Energy Materials
- School of Materials Science and Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | | |
Collapse
|