1
|
Zahraee H, Mohammadi F, Parvaee E, Khoshbin Z, Arab SS. Reducing the assemblies of amyloid-beta multimers by sodium dodecyl sulfate surfactant at concentrations lower than critical micelle concentration: molecular dynamics simulation exploration. J Biomol Struct Dyn 2024; 42:8673-8687. [PMID: 37599504 DOI: 10.1080/07391102.2023.2247086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Amyloid-β peptide, the predominant proteinaceous component of senile plaques, is responsible for the incidence of Alzheimer's disease (AD), an age-associated neurodegenerative disorder. Specifically, the amyloid-β(1-42) (Aβ1-42) isoform, known for its high toxicity, is the predominant biomarker for the preliminary diagnosis of AD. The aggregation of the Aβ1-42 peptides can be affected by the components of the cellular medium through changing their structures and molecular interactions. In this study, we investigated the effect of sodium dodecyl sulfate (SDS) at much lower concentrations than the critical micelle concentration (CMC) on Aβ1-42 aggregation. For this purpose, we studied mono-, di-, tri- and tetramers of Aβ1-42 peptide in two different concentrations of SDS molecules (10 and 40 molecules) using a 300 ns molecular dynamics simulation for each system. The distance between the center of mass (COM) of Aβ1-42 peptides confirms that an increase in the number of SDS molecules decreases their aggregation probability due to greater interaction with SDS molecules. Besides, the less compactness parameter reveals the reduced aggregation probability of Aβ1-42 peptides. Based on the energetic FEL landscapes, SDS molecules with the concentration closer to the CMC are an effective inhibitory agent to prevent the formation of Aβ1-42 fibrils. Also, the aggregation direction of the peptide pairs can be predicted by determining the direction of the accumulation-deterrent forces.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hamed Zahraee
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mohammadi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Parvaee
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zahra Khoshbin
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Abbasi R, Hu X, Zhang A, Dummer I, Wachsmann-Hogiu S. Optical Image Sensors for Smart Analytical Chemiluminescence Biosensors. Bioengineering (Basel) 2024; 11:912. [PMID: 39329654 PMCID: PMC11428294 DOI: 10.3390/bioengineering11090912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Optical biosensors have emerged as a powerful tool in analytical biochemistry, offering high sensitivity and specificity in the detection of various biomolecules. This article explores the advancements in the integration of optical biosensors with microfluidic technologies, creating lab-on-a-chip (LOC) platforms that enable rapid, efficient, and miniaturized analysis at the point of need. These LOC platforms leverage optical phenomena such as chemiluminescence and electrochemiluminescence to achieve real-time detection and quantification of analytes, making them ideal for applications in medical diagnostics, environmental monitoring, and food safety. Various optical detectors used for detecting chemiluminescence are reviewed, including single-point detectors such as photomultiplier tubes (PMT) and avalanche photodiodes (APD), and pixelated detectors such as charge-coupled devices (CCD) and complementary metal-oxide-semiconductor (CMOS) sensors. A significant advancement discussed in this review is the integration of optical biosensors with pixelated image sensors, particularly CMOS image sensors. These sensors provide numerous advantages over traditional single-point detectors, including high-resolution imaging, spatially resolved measurements, and the ability to simultaneously detect multiple analytes. Their compact size, low power consumption, and cost-effectiveness further enhance their suitability for portable and point-of-care diagnostic devices. In the future, the integration of machine learning algorithms with these technologies promises to enhance data analysis and interpretation, driving the development of more sophisticated, efficient, and accessible diagnostic tools for diverse applications.
Collapse
Affiliation(s)
| | | | | | | | - Sebastian Wachsmann-Hogiu
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (R.A.); (X.H.); (A.Z.); (I.D.)
| |
Collapse
|
3
|
Lu Z, Gong Y, Shen C, Chen H, Zhu W, Liu T, Wu C, Sun M, Su G, Wang X, Wang Y, Ye J, Liu X, Rao H. Portable, intelligent MIECL sensing platform for ciprofloxacin detection using a fast convolutional neural networks-assisted Tb@Lu 2O 3 nanoemitter. Food Chem 2024; 444:138656. [PMID: 38325090 DOI: 10.1016/j.foodchem.2024.138656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Environmental pollution caused by ciprofloxacin is a major problem of global public health. A machine learning-assisted portable smartphone-based visualized molecularly imprinted electrochemiluminescence (MIECL) sensor was developed for the highly selective and sensitive detection of ciprofloxacin (CFX) in food. To boost the efficiency of electrochemiluminescence (ECL), oxygen vacancies (OVs) enrichment was introduced into the flower-like Tb@Lu2O3 nanoemitter. With the specific recognition reaction between MIP as capture probes and CFX as detection target, the ECL signal significantly decreased. According to, CFX analysis was determined by traditional ECL analyzer detector in the concentration range from 5 × 10-4 to 5 × 102 μmol L-1 with the detection limit (LOD) of 0.095 nmol L-1 (S/N = 3). Analysis of luminescence images using fast electrochemiluminescence judgment network (FEJ-Net) models, achieving portable and intelligent quick analysis of CFX. The proposed MIECL sensor was used for CFX analysis in real meat samples and satisfactory results, as well as efficient selectivity and good stability.
Collapse
Affiliation(s)
- Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Yonghui Gong
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Chengao Shen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Haoran Chen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Weiling Zhu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Xianxing Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Jianshan Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Xin Liu
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
4
|
Meng X, Pang X, Yang J, Zhang X, Dong H. Recent Advances in Electrochemiluminescence Biosensors for MicroRNA Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307701. [PMID: 38152970 DOI: 10.1002/smll.202307701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Electrochemiluminescence (ECL) as an analytical technology with a perfect combination of electrochemistry and spectroscopy has received considerable attention in bioanalysis due to its high sensitivity and broad dynamic range. Given the selectivity of bio-recognition elements and the high sensitivity of the ECL analysis technique, ECL biosensors are powerful platforms for the sensitive detection of biomarkers, achieving the accurate prognosis and diagnosis of diseases. MicroRNAs (miRNAs) are crucial biomarkers involved in a variety of physiological and pathological processes, whose aberrant expression is often related to serious diseases, especially cancers. ECL biosensors can fulfill the highly sensitive and selective requirements for accurate miRNA detection, prompting this review. The ECL mechanisms are initially introduced and subsequently categorize the ECL biosensors for miRNA detection in terms of the quenching agents. Furthermore, the work highlights the signal amplification strategies for enhancing ECL signal to improve the sensitivity of miRNA detection and finally concludes by looking at the challenges and opportunities in ECL biosensors for miRNA detection.
Collapse
Affiliation(s)
- Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Xuejiao Pang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Junyan Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, P. R. China
| |
Collapse
|
5
|
Pradhan SR, Pathinti RS, Kandimalla R, Chithari K, Veeramalla N MR, Vallamkondu J. Label-free detection of Aβ-42: a liquid crystal droplet approach for Alzheimer's disease diagnosis. RSC Adv 2024; 14:12107-12118. [PMID: 38628477 PMCID: PMC11019351 DOI: 10.1039/d4ra00615a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
This study introduces a biosensor based on liquid crystals (LC) designed to detect the Aβ-42 biomarker, commonly associated with Alzheimer's disease. The sensor utilizes LC droplets created using a PEI/Tween-20 surfactant mixture, arranged radially in an aqueous solution. These droplets are coated with the Aβ1-16 antibody, enabling the detection of the Aβ1-42 biomarker. The key advantage of this biosensor lies in its ability to directly translate the antigen-antibody interaction into a change in the molecular orientation of the LC droplets, simplifying the detection process by removing additional procedural steps. Specifically, this immunoassay induces a transformation in the nematic droplets orientation from radial to bipolar upon successful antigen binding. When only the Aβ1-16 antibody coated the LC droplets, no change in orientation was detected, confirming the reaction's specificity. The orientation shift in the LC droplets indicates the formation of an immunocomplex between the Aβ1-16 antibody and the Aβ1-42 antigen. The LC droplet immunoassay effectively detected Aβ1-42 antigen concentrations ranging from 45 to 112.5 μM, with the Aβ1-16 antibody immobilized on the droplets at a concentration of 1 μg mL-1. These findings suggest that the LC microdroplets' orientational behavior can be harnessed to develop a biosensor for the in vivo detection of various proteins or pathogens in a PBS aqueous medium. Owing to its label-free nature and distinct optical signaling, this LC droplet-based immunoassay holds promise for further development into a cost-effective, portable diagnostic tool.
Collapse
Affiliation(s)
| | | | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College Warangal 506007 India
| | | | | | | |
Collapse
|
6
|
Gao H, Chen J, Huang Y, Zhao R. Advances in targeted tracking and detection of soluble amyloid-β aggregates as a biomarker of Alzheimer's disease. Talanta 2024; 268:125311. [PMID: 37857110 DOI: 10.1016/j.talanta.2023.125311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Misfolding and aggregation of amyloid-β (Aβ) peptides are key hallmarks of Alzheimer's disease (AD). With accumulating evidence suggesting that different Aβ species have varied neurotoxicity and implications in AD development, the discovery of affinity ligands and analytical approaches to selective distinguish, detect, and monitor Aβ becomes an active research area. Remarkable advances have been achieved, which not only promote our understanding of the biophysical chemistry of the protein aggregation during neurodegeneration, but also provide promising tools for early detection of the disease. In view of this, we summarize the recent progress in selective and sensitive approaches for tracking and detection of Aβ species. Specific attentions are given to soluble Aβ oligomers, due to their crucial roles in AD development and occurrence at early stages. The design principle, performance of targeting units, and their cooperative effects with signal reporters for Aβ analysis are discussed. The applications of the novel targeting probes and sensing systems for dynamic monitoring oligomerization, measuring Aβ in biosamples and in vivo imaging in brain are summarized. Finally, the perspective and challenges are discussed regarding the future development of Aβ-targeting analytical tools to explore the unknown field to contribute to the early diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Zheng K, Pan J, Yu Z, Yi C, Li MJ. A smartphone-assisted electrochemiluminescent detection of miRNA-21 in situ using Ru(bpy) 32+@MOF. Talanta 2024; 268:125310. [PMID: 37866303 DOI: 10.1016/j.talanta.2023.125310] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
We have proposed a signal dual-amplification electrochemiluminescence (ECL) strategy based on tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)32+) as chromophores confined with three-dimensional (3D) zinc oxalate metal-organic frameworks (Ru(bpy)32+@MOFs) for the detection of miRNA-21. The three-dimensional chromophore connectivity in zinc oxalate MOFs provided a network among Ru(bpy)32+ units, shielding the chromophores from solvent molecules and resulting in high Ru(II) complex emission efficiency. Additionally, we discovered that magnetic beads (MBs) used as carrier for enriched signals contribute to enhanced ECL intensity of the chromophore. To evaluate its clinical application, we applied this method to determine the concentration of miRNA-21 solutions ranging from 1.56 to 100 nM, obtaining a calibration curve of ECL intensity versus logarithm of concentration (logC) of miRNA-21 with a high correlation coefficient. This work demonstrates the construction of a signal amplification strategy ECL biosensor for miRNA using Ru(bpy)32+@MOF systems and its application in ECL detection for analyte methodology.
Collapse
Affiliation(s)
- Kai Zheng
- Key Laboratory of Analysis and Detection Technology for Food Safety (Ministry of Education and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, China
| | - Jiangfei Pan
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zipei Yu
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Changqing Yi
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
| | - Mei-Jin Li
- Key Laboratory of Analysis and Detection Technology for Food Safety (Ministry of Education and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, China.
| |
Collapse
|
8
|
Peng L, Min W, Chen R, Zhang L, Shen B, Xu W, Liu C. PdPtB Electrochemiluminescence Nanoenhancer and SiC@Au-PEDOT Nanowires-Based Detection of β-Amyloid Oligomers in Alzheimer's Disease. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59189-59198. [PMID: 38091553 DOI: 10.1021/acsami.3c14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
β-Amyloid oligomers (AβOs) are promising biomarkers for the diagnosis of Alzheimer's disease (AD). The present research introduces a novel electrochemiluminescence (ECL) immunosensor based on PdPtB nanoenhancer and SiC@Au-PEDOT nanowires (NWs) for the specific and ultrasensitive detection of AβOs. The PdPtB nanoenhancer exhibited excellent oxidase-like catalytic activity with in situ generation of reactive oxygen species (ROS) to enhance luminol ECL in neutral media. In addition, SiC@Au-PEDOT NWs were utilized as a biocompatible and conductive substrate for the modification of the glassy carbon electrode (GCE). With this design, the ECL immunosensor showed outstanding AβOs analytical performance without exogenous coreactant. The ECL immunosensor demonstrated a favorable linear range of 20 pM to 20 nM and a detection limit of 10 pM under optimized conditions with potential straightforward clinical application. In general, the developed ECL immunosensor provides a promising strategy for the early diagnosis of AD.
Collapse
Affiliation(s)
- Lingshuang Peng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Weiziyang Min
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Queen Mary School, Nanchang University, Nanchang 330036, China
| | - Rui Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lu Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Bo Shen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wenchun Xu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Changjin Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
9
|
Lu Z, Qin J, Wu C, Yin J, Sun M, Su G, Wang X, Wang Y, Ye J, Liu T, Rao H, Feng L. Dual-channel MIRECL portable devices with impedance effect coupled smartphone and machine learning system for tyramine identification and quantification. Food Chem 2023; 429:136920. [PMID: 37487397 DOI: 10.1016/j.foodchem.2023.136920] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/04/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
We designed a novel, portable, and visual dual-potential molecularly imprinted ratiometric electrochemiluminescence (MIRECL) sensor for tyramine (TYM) detection based on smartphone and deep learning-assisted optical devices. Molecularly imprinted polymer-Ce2Sn2O7 (MIP-Ce2Sn2O7) layers were fabricated by in-situ electropolymerization method as the capture and signal amplification probe. Oxygen vacancies in Ce2Sn2O7 not only enhance the electrochemical redox capability but also accelerate the energy transfer, thereby enhancing the luminescence of cathode ECL. Under optimal conditions, the ECL signals of MIP-Ce2Sn2O7 at the cathode and the anode response of Ru(bpy)32+ was reduced, thus a wide linear range from 0.01 μM to 1000 μM with the detection limit as low as 0.005 μM. Interestingly, combined with an artificial intelligence image recognition algorithm and the principle of optical signal reading by smartphone, the developed MIRECL sensor has been applied to the portable and visual determination of TYM in aquatic samples, and its practicability has been satisfactorily verified.
Collapse
Affiliation(s)
- Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Jun Qin
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Jiajian Yin
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Xianxing Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Jianshan Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, PR China.
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Lin Feng
- Animal Nutrition Institute, Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
10
|
Zheng G, Hu S, Qin D, Nong C, Yang L, Deng B. Aggregation-induced electrochemiluminescence enhancement of Ag-MOG for amyloid β 42 sensing. Anal Chim Acta 2023; 1281:341898. [PMID: 38783738 DOI: 10.1016/j.aca.2023.341898] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 05/25/2024]
Abstract
This study aimed to introduce an immunosensor for measuring amyloid β 42 (Aβ42) levels by aggregation-induced enhanced electrochemiluminescence (ECL). Metal-organic gels (MOGs) are novel soft materials with advantages such as high gel stability, good light-emitting properties, and easy preparation. This study used silver nanoparticle metal-organic gel (Ag-MOG) as a substrate to connect Aβ42-Ab2 and the cathodoluminescent probe. Potassium persulfate was used as a co-reactant that could emit a high ECL signal. CuS@Au had the benefits of a relatively large surface area with excellent carrier function; therefore, it was used as a substrate to load a large amount of Aβ42-Ab1, significantly improving the immunosensor sensitivity. The ECL intensity of Aβ42 was linear in the range of 0.01 pg/mL to 250 ng/mL with a detection limit of 2.2 fg/mL (S/N = 3) under optimized detection conditions. This ECL immunosensor has been successfully applied to detect Aβ42 in human serum with the advantages of excellent stability and high selectivity. This method not only expands the potential applications of ECL immunosensors based on biological testing and clinical diagnosis but also provides a viable approach to basic clinical testing.
Collapse
Affiliation(s)
- Guiyue Zheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shenglan Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Dongmiao Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Chunlian Nong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Lijuan Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Biyang Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
11
|
Chen S, Huang Y, Gao L, Zhang S, Chen Y, Zeng B, Dai H. Versatile MXene composite probe-mediated homogeneous electrochemiluminescence biosensor with integrated signal transduction and near-infrared modulation strategy for concanavalin A detection. Mikrochim Acta 2023; 190:372. [PMID: 37648806 DOI: 10.1007/s00604-023-05941-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Based on the highly specific interaction between concanavalin A (Con A) and glucose (Glu), a competitive electrochemiluminescence (ECL) biosensor was constructed for ultrasensitive detection of Con A. Nanocomposites with excellent electrocatalytic and photothermal properties were obtained by covalently bonding zinc oxide quantum dots (ZnO QDs) to vanadium carbide MXene (V2C MXene) surfaces. The modification of ZnO QDs hinders the aggregation of V2C MXene and increases the catalytic activity of oxygen reduction reaction, thus amplifying the luminol cathodic emission. In addition, the excellent photothermal performance of the V2C MXene-ZnO QDs can convert light energy into heat energy under the irradiation of 808 nm near infrared laser, thus increasing the temperature of the reaction system and accelerating the electron transfer process to realize the synergistic amplified homogeneous ECL system. This innovative work not only enriches the fundamental research on multifunctional MXene nanomaterials for biosensing, but also provides an effective strategy for ECL signal amplification.
Collapse
Affiliation(s)
- Sisi Chen
- College of Chemistry and Material, Fujian Normal University, Fuzhou, 350108, Fujian, China
| | - Yitian Huang
- College of Chemistry and Material, Fujian Normal University, Fuzhou, 350108, Fujian, China
| | - Lihong Gao
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China.
| | - Shupei Zhang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China
| | - Yanjie Chen
- College of Chemistry and Material, Fujian Normal University, Fuzhou, 350108, Fujian, China
| | - Baoshan Zeng
- College of Chemistry and Material, Fujian Normal University, Fuzhou, 350108, Fujian, China.
| | - Hong Dai
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China.
| |
Collapse
|
12
|
Zhao Y, Wang R, Wang Y, Jie G, Zhou H. Dual-channel molecularly imprinted sensor based on dual-potential electrochemiluminescence of Zn-MOFs for double detection of trace chloramphenicol. Food Chem 2023; 413:135627. [PMID: 36773365 DOI: 10.1016/j.foodchem.2023.135627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Functionalized metal organometallic frameworks (MOFs) offer unique advantages in the field of sensing due to their versatility and tunable optical properties. In this work, a new dual-potential electrochemiluminescence (ECL) molecularly imprinted sensor using single Zn-MOF signal probe was designed for double detection of trace chloramphenicol (CAP). As dual-signal ECL emitters, Zn-MOFs were firstly modified on the electrode, showing excellent ECL emission in both cathodic and anodic potential. Then the molecularly imprinted polymer (MIP) was electrochemically prepared using o-phenylenediamine (O-PD) and CAP as a template molecule on the Zn-MOFs/electrode. After CAP as a molecular recognition element was eluted and removed from the Zn-MOFs/MIP/electrode, a new ECL sensor was developed for CAP detection by re-adsorption of CAP on the MIP, resulting in "off" of ECL signal. Compared with the conventional single-signal luminophores, Zn-MOFs show more stable and excellent dual ECL signals, which greatly improve the discriminability and accuracy of CAP trace detection. Under the optimal conditions, the linear range of CAP detection was 1 × 10-14-1 × 10-8 M, and the minimum limits of detection (LOD) were 2.1 fM and 2.5 fM for cathode and anode ECL, respectively. This is the first time that Zn-MOFs are used as dual-ECL emitters for molecular sensing systems, and the proposed dual-channel sensing system is flexibly applicable to sensitive detection of other antibiotics, which has broad practical application in food safety.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Runze Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuehui Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
13
|
Montero-Arevalo B, Seufert BI, Hossain MS, Bernardin E, Takshi A, Saddow SE, Schettini N. SiC Electrochemical Sensor Validation for Alzheimer Aβ 42 Antigen Detection. MICROMACHINES 2023; 14:1262. [PMID: 37374847 DOI: 10.3390/mi14061262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with only late-stage detection; thus, diagnosis is made when it is no longer possible to treat the disease, only its symptoms. Consequently, this often leads to caregivers who are the patient's relatives, which adversely impacts the workforce along with severely diminishing the quality of life for all involved. It is, therefore, highly desirable to develop a fast, effective and reliable sensor to enable early-stage detection in an attempt to reverse disease progression. This research validates the detection of amyloid-beta 42 (Aβ42) using a Silicon Carbide (SiC) electrode, a fact that is unprecedented in the literature. Aβ42 is considered a reliable biomarker for AD detection, as reported in previous studies. To validate the detection with a SiC-based electrochemical sensor, a gold (Au) electrode-based electrochemical sensor was used as a control. The same cleaning, functionalization and Aβ1-28 antibody immobilization steps were used on both electrodes. Sensor validation was carried out by means of Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) aiming to detect an 0.5 µg·mL-1 Aβ42 concentration in 0.1 M buffer solution as a proof of concept. A repeatable peak directly related to the presence of Aβ42 was observed, indicating that a fast SiC-based electrochemical sensor was constructed and may prove to be a useful approach for the early detection of AD.
Collapse
Affiliation(s)
- Brayan Montero-Arevalo
- Department of Electrical and Electronic Engineering, Universidad del Norte, Barranquilla 081007, Colombia
| | - Bianca I Seufert
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Mohammad S Hossain
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Evans Bernardin
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Arash Takshi
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Stephen E Saddow
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Norelli Schettini
- Department of Electrical and Electronic Engineering, Universidad del Norte, Barranquilla 081007, Colombia
| |
Collapse
|
14
|
An electrochemiluminescence aptasensor for amyloid-β protein with signal enhancement from AuNPs/Fe-MOFs nanocomposite. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
15
|
Nawaz H, Chen S, Zhang X, Li X, You T, Zhang J, Xu F. Cellulose-Based Fluorescent Material for Extreme pH Sensing and Smart Printing Applications. ACS NANO 2023; 17:3996-4008. [PMID: 36786234 DOI: 10.1021/acsnano.2c12846] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Environment-responsive fluorescence materials are being widely investigated for instrument-free determination of various environmental factors. However, developing an eco-friendly cellulose-based fluorescent pH sensor for sensing extreme acidity and alkalinity is still challenging. Herein, a highly fluorescent and multifunctional material is developed from biopolymer-based cellulose acetate. A biopolymer-based structure containing responsive functional groups such as -C═O and -NH is constructed by chemically bonding 5-amino-2,3-dihydrophthalazine-1,4-dione (luminol) onto cellulose acetate using 4,4'-diphenylmethane diisocyanate (MDI) as a cross-linking agent. The prepared material (Lum-MDI-CA) is characterized by UV-vis, Fourier transform infrared, 1H NMR, 13C NMR spectroscopies, and fluorescence techniques. The material exhibits excellent aqua blue fluorescence and demonstrates extreme pH sensing applications. Interesting results are further revealed after adding a pH-unresponsive dye such as MTPP as the reference to develop the ratiometric method. The ratiometric system clearly differentiates the extreme acidic pH 1 from pH 2 and extreme alkaline pH 12, 13, and 14 by visual and fluorescence color change response under a narrow pH range. In addition, the material is fabricated into transparent flexible fluorescent films which demonstrate an outstanding UV shielding, security printing, and haze properties for smart food packaging and printing applications.
Collapse
Affiliation(s)
- Haq Nawaz
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Sheng Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xun Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xin Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Tingting You
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jun Zhang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
16
|
Wang C, Liu S, Ju H. Electrochemiluminescence nanoemitters for immunoassay of protein biomarkers. Bioelectrochemistry 2023; 149:108281. [PMID: 36283193 DOI: 10.1016/j.bioelechem.2022.108281] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022]
Abstract
The family of electrochemiluminescent luminophores has witnessed quick development since the electrochemiluminescence (ECL) phenomenon of silicon nanoparticles was first reported in 2002. Moreover, these developed ECL nanoemitters have extensively been applied in sensitive detection of protein biomarker by combining with immunological recognition. This review firstly summarized the origin and development of various ECL nanoemitters including inorganic and organic nanomaterials, with an emphasis on metal-organic frameworks (MOFs)-based ECL nanoemitters. Several effective strategies to amplify the ECL response of nanoemitters and improve the sensitivity of immunosensing were discussed. The application of ECL nanoemitters in immunoassay of protein biomarkers for diagnosis of cancers and other diseases, especially lung cancer and heart diseases, was comprehensively presented. The recent development of ECL imaging with the nanoemitters as ECL tags for detection of multiplex protein biomarkers on single cell membrane also attracted attention. Finally, the future opportunities and challenges in the ECL biosensing field were highlighted.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
17
|
Meng S, Qin D, Wu Y, Mo G, Jiang X, Deng B. Electrochemiluminescence resonance energy transfer of MnCO 3 for ultrasensitive amyloid-β protein detection. Talanta 2023; 253:123993. [PMID: 36228558 DOI: 10.1016/j.talanta.2022.123993] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/27/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
Abstract
A composite material MnCO3/poly(diallyl dimethyl ammonium chloride) (PDDA)/Ag with excellent electrochemiluminescence (ECL) performance and high biocompatibility was prepared by adding MnCO3 and PDDA to silver nanoparticles (AgNPs). MnCO3/PDDA/Ag and Au@SiO2NPs were used as ECL donors and acceptors, respectively. Thus, an effective ECL-resonance energy transfer (RET) sensing platform was established. In a potassium persulfate (K2S2O8) medium, MnCO3 exhibited ECL emission with an ECL band appearing at 500-600 nm. In addition, Au@SiO2 nanoparticles showed a UV-visible absorption at 450-650 nm. The ECL emission spectra of MnCO3 overlapped with the absorption spectra of Au@SiO2NPs. The effective ECL quenching resulted in a good response to the concentration of Aβ42 in serum samples. The linear range was 5 fg ⋅ mL-1 to 100 ng ⋅ mL-1, and the detection limit was 2 fg ⋅ mL-1. The recovery ranged from 97.7% to 104%. The high-efficiency ECL-RET immunosensor has potential application in detecting human serum Aβ42 and other biomarkers, and can be used for the early screening of diseases.
Collapse
Affiliation(s)
- Shuo Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Dongmiao Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yusheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Guichun Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xiaohua Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Biyang Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
18
|
Wang B, He B, Xie L, Cao X, Liang Z, Wei M, Jin H, Ren W, Suo Z, Xu Y. A novel detection strategy for nitrofuran metabolite residues: Dual-mode competitive-type electrochemical immunosensor based on polyethyleneimine reduced graphene oxide/gold nanorods nanocomposite and silica-based multifunctional immunoprobe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158676. [PMID: 36096228 DOI: 10.1016/j.scitotenv.2022.158676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Excessive residues of semicarbazide (SEM) can accumulate in animals after the original drug has been abused, posing a risk to human health. Herein, based on multifunctional silica-initiated dual mode signal response, a novel competitive-type immunosensor was constructed for ultrasensitive detection of SEM. As a preliminary signal amplification platform for immunosensors, polyethyleneimine reduced graphene oxide composite gold nanorods (PEI-rGO/AuNRs) modified gold electrodes (AuE) provide a high specific surface area and high electrical conductivity. The thionine-aminated silica nanospheres-AuPt (thi-SiO2@AuPt) were synthesized by a racile coprecipitation method for enzyme immobilization and redox species loading. The multifunctional silica nanosphere conjugated with labeling antibodies (Ab2) was employed as an immunoprobe. The per unit concentration target of SEM can be determined by differential pulse voltammetry (DPV) to detect the thi loaded on the immunoprobe, which can also be determined by square wave voltammetry (SWV) to detect the current generated by the reaction system of H2O2 and hydroquinone (HQ) catalyzed by the immunoprobe with peroxidase. Under optimal conditions, the proposed immunosensor displayed a wide linear range from 1 μg-0.01 ng/mL and low detection limits (S/N = 3) of 0.488 pg/mL and 0.0157 ng/mL, respectively. Ultimately, the developed method exhibits excellent performance in practical applications, providing promising probabilities for SEM detection.
Collapse
Affiliation(s)
- Botao Wang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Lingling Xie
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xiaoyu Cao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Zhengyong Liang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
19
|
Huang J, Wei F, Cui Y, Hou L, Lin T. Fluorescence immunosensor based on functional nanomaterials and its application in tumor biomarker detection. RSC Adv 2022; 12:31369-31379. [PMID: 36349017 PMCID: PMC9624183 DOI: 10.1039/d2ra04989a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2022] [Indexed: 09/29/2023] Open
Abstract
An immunosensor is defined as an analytical device that detects the binding of an antigen to its specific antibody by coupling an immunochemical reaction to the surface of a device called a transducer. Fluorescence immunosensing is one of the most promising immunoassays at present, and has the advantages of simple operation, fast response and high stability. A traditional fluorescence immunosensor often uses an enzyme-labelled antibody as a recognition unit and an organic dye as a fluorescence probe, so it is easily affected by environmental factors with low sensitivity. Nanomaterials have unique photostability, catalytic properties and biocompatibility, which open up a new path for the construction of stable and sensitive fluorescence immunosensors. This paper briefly introduces different kinds of immunosensors and the role of nanomaterials in the construction of immunosensors. The significance of fluorescent immunosensors constructed from functional nanomaterials to detect tumor biomarkers was analyzed, and the strategies to further improve the performance of fluorescent immunosensors and their future development trend were summarized.
Collapse
Affiliation(s)
- Juanjuan Huang
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 P. R. China
| | - Fenghuang Wei
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 P. R. China
| | - Yuling Cui
- Jinan Center for Food and Drug Control Jinan 250102 Shandong China
| | - Li Hou
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 P. R. China
| | - Tianran Lin
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
20
|
Gai Z, Li F, Yang X. Electrochemiluinescence monitoring the interaction between human serum albumin and amyloid-β peptide. Bioelectrochemistry 2022; 149:108315. [DOI: 10.1016/j.bioelechem.2022.108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022]
|
21
|
The role of doping strategy in nanoparticle-based electrochemiluminescence biosensing. Bioelectrochemistry 2022; 148:108249. [PMID: 36029761 DOI: 10.1016/j.bioelechem.2022.108249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022]
Abstract
Doping plays a crucial role in electrochemiluminescence (ECL) due to the followings: (1) Modulation of electronic structure, alteration of the surface state of nanoparticles (NPs), providing effective protection from the surrounding environment, thereby leading to ECL emitters with exceptional properties including tunable spectra, high luminescence efficiency, low excitation potential, and good stability. (2) Employment of doped NPs as promising coreactant alternatives due to the presence of functional groups such as amines induced by NP doping. (3) Serving as novel co-reaction accelerators (CRAs) for ECL through doping induced high catalytic properties. (4) Behaving as excellent carriers to load ECL emitters, recognition elements, and catalysts due to doping-induced larger surface area, higher conductivity and better biocompatibility of NPs. As a consequence, doped NPs have aroused broad interest and found wide applications in various ECL sensing platforms. In this review, the current promising improvements, concepts, and excellent applications of doped NPs for ECL biosensing are addressed. We aim to bring to light the physicochemical characteristics of various doped NPs that endow them with appealing ECL performance, leading to diverse applications in biosensing.
Collapse
|
22
|
Cao Q, Jiang D, Xu F, Wen J, Wang W, Shiigi H, Chen Z. Au-doped MOFs catalyzed electrochemiluminescence platform coupled with target-induced self-enrichment for detection of synthetic cannabinoid RCS-4. Mikrochim Acta 2022; 189:313. [PMID: 35922727 DOI: 10.1007/s00604-022-05397-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
A ternary composite material with Au, Co-based organic frameworks (ZIF-67) and perylene derivatives (PTCD-cys) has been synthesized for identification of synthetic cannabinoids. Through contact with Au-S, Au-ZIF-67 increased electrochemiluminescence (ECL) sensitivity and stability and efficiently catalyzed the ECL of PTCD-cys. Compared with the ECL response of PTCD-cys monomer, the ECL signal value of the composite material was significantly increased, and the onset potential of Au-ZIF-67/PTCD-cys favorably shifted more than that of PTCD-cys/GCE. When the target cannabinoid molecule RCS-4 appeared, Au-ZIF-67 captured and immobilized it on the sensor surface by adsorption to achieve target-induced self-enrichment of RCS-4. Under optimal conditions, the ECL sensor was found to be linearly related to the logarithm of the RCS-4 concentration ranging from 3.1 × 10-15 to 3.1 × 10-9 mol/L with a detection limit (LOD) of 6.0 × 10-16 mol/L (S/N = 3). The approach had the advantages of being simple to use, having a high sensitivity, a wide detection range, and good stability, making it a novel platform for RSC-4 detection in public health safety monitoring.
Collapse
Affiliation(s)
- Qianying Cao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Fangmin Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Jing Wen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Hiroshi Shiigi
- Department of Applied Chemistry, Osaka Prefecture University, Naka Ku, 1-2 Gakuen, Sakai, Osaka, 5998570, Japan
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
23
|
Natesan M, Subramaniyan P, Chen TW, Chen SM, Ajmal Ali M, Al-Zaqri N. Ceria-doped zinc oxide nanorods assembled into microflower architectures as electrocatalysts for sensing of piroxicam in urine sample. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Application of Zinc Oxide nanoflowers in Environmental and Biomedical Science. BBA ADVANCES 2022; 2:100051. [PMID: 37082596 PMCID: PMC10074957 DOI: 10.1016/j.bbadva.2022.100051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/08/2021] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Zinc oxide (ZnO) nanostructures can be synthesized in nanoforms of spheres, rods, flowers, disks, walls, etc., among which nanoflowers have gained special attention due to their versatile biomedical and pollutant remedial applications in waste water and air. ZnO nanoflowers have an ultrasmall size with a huge surface area to volume ratio due to their hexagonal petal structures which render them superior compared to the nanoparticles of other shapes. The ZnO nanoflowers have bandgap energy equivalent to a semiconductor that makes them have unique photophysical properties. We have used the appropriate keywords in Google Scholar and PubMed to obtain the recent publications related to our topic. We have selected the relevant papers and utilized them to write this review. The different methods of synthesis of ZnO nanoflowers are chemical vapor deposition, facile hydrothermal, thermal evaporation, chemical reduction, bio route of synthesis, and solvothermal method, etc. which are mentioned in this review. ZnO nanoparticles are used in paints, cosmetics, and other products due to their high photocatalytic activity. The different applications of ZnO nanoflowers in the diagnosis of disease biomarkers, biosensors, catalysts, and the therapeutic process along with wastewater remediation and gas sensing applications will be discussed in this review.
Collapse
|
25
|
Ma H, Liu Z, Koshy P, Sorrell CC, Hart JN. Density Functional Theory Investigation of the Biocatalytic Mechanisms of pH-Driven Biomimetic Behavior in CeO 2. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11937-11949. [PMID: 35229603 DOI: 10.1021/acsami.1c24686] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is considerable interest in the pH-dependent, switchable, biocatalytic properties of cerium oxide (CeO2) nanoparticles in biomedicine, where these materials exhibit beneficial antioxidant activity against reactive oxygen species (ROS) at a basic physiological pH but cytotoxic prooxidant activity in an acidic cancer cell pH microenvironment. While the general characteristics of the role of oxygen vacancies are known, the mechanism of their action at the atomic scale under different pH conditions has yet to be elucidated. The present work applies density functional theory (DFT) calculations to interpret, at the atomic scale, the pH-induced behavior of the stable {111} surface of CeO2 containing oxygen vacancies. Analysis of the surface-adsorbed media species reveals the critical role of pH on the interaction between ROS (•O2- and H2O2) and the defective CeO2 {111} surface. Under basic conditions, the superoxide dismutase (SOD) and catalase (CAT) biomimetic reactions can be performed cyclically, scavenging and decomposing ROS to harmless products, making CeO2 an excellent antioxidant. However, under acidic conditions, the CAT biomimetic reaction is hindered owing to the limited reversibility of Ce3+ ↔ Ce4+ and formation ↔ annihilation of oxygen vacancies. A Fenton biomimetic reaction (H2O2 + Ce3+ → Ce4+ + OH- + •OH) is predicted to occur simultaneously with the SOD and CAT biomimetic reactions, resulting in the formation of hydroxyl radicals, making CeO2 a cytotoxic prooxidant.
Collapse
Affiliation(s)
- Hongyang Ma
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales2052, Australia
| | - Zhao Liu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai519082, China
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales2052, Australia
| | - Judy N Hart
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales2052, Australia
| |
Collapse
|
26
|
Zamanian J, Khoshbin Z, Abnous K, Taghdisi SM, Hosseinzadeh H, Danesh NM. Current progress in aptamer-based sensing tools for ultra-low level monitoring of Alzheimer's disease biomarkers. Biosens Bioelectron 2022; 197:113789. [PMID: 34798498 DOI: 10.1016/j.bios.2021.113789] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/14/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) as common late-life dementia is pathologically associated with the irreversible and progressive disorder, misfolding, deposition, and accumulation of the brain proteins. Especially, the formation of fibrous amyloid plaques by aggregation of amyloid-β peptides is the pathological cause of this neurologic disorder disease. Besides, tau protein isoforms destabilize the microtubule filaments through post-translational modifications and induce nerve cells' death. Amyloid-β peptides and tau proteins are considered as the critical symptom and reliable molecular biomarkers for the early diagnosis of AD. AD is characterized by impaired thinking proficiencies, cognitive decline, memory loss, and behavioral disability. Since there is no efficacious therapy for AD at present, the development of precise sensing tools for the early diagnosis of this disease is essential and crucial. Aptamer-based biosensors (aptasensors) have acquired utmost importance in the field of AD healthcare, due to excellent sensitivity and specificity, ease-of-use, cost-effectiveness, portability, and rapid assay time. Here, we highlight the recent developments and novel perspectives in the field of aptasensor design to quantitatively monitor the AD biomarkers. Finally, some results are represented to achieve a promising viewpoint for introducing the novel aptasensor test kits in the future.
Collapse
Affiliation(s)
- Javad Zamanian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Islamic, Iran
| | - Noor Mohammd Danesh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Passive Defense, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
27
|
Huang L, Qiu S, Liu Z, Wu S, Tang Q, Liao X, Gao F. Proximity hybridization induced DNA assembly for label-free surface-enhanced Raman spectroscopic detection of carcinoembryonic antigen. Anal Chim Acta 2022; 1191:339314. [PMID: 35033249 DOI: 10.1016/j.aca.2021.339314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 11/17/2022]
Abstract
In our research, label-free and surface-enhanced Raman dyes-free Raman spectroscopy which was used to detect carcinoembryonic antigen (CEA) according to poly adenine (Poly A)-regulated self-assembly methods was developed and studied. CEA induced partial hybridization of Ab-H2 and Ab-H1, and Ab-H1-CEA-Ab-H2 (a sandwich proximity CEA-DNA complex) was formed, which unfolded molecular beacon 1 (MB1) and modified the substrate. Subsequently, MB2-AuNPs were hybridized with MB1, and Ab-H1-CEA-Ab-H2 was released via toehold regulated displacements of DNA strands. Therefore, hybridization processes of MB2 and MB1 were induced and promoted by CEA-DNA complexes which worked as catalysts. The misplaced target then induced a next round of strand exchange, and the signals for determination of CEA were amplified by AuNPs absorbed on the substrate. It was indicated that the spectral characteristics of adenine at 736 cm-1 were consistent with the SERS spectrum of DNA. Adenine acted as an internal marker for label-free SERS detection of CEA. Moreover, satisfactory stability and reproducibility were found. Meanwhile, the antibody could specifically recognize the corresponding antigen. Since adenine was dominant in SERS spectra, which was also proximal to Au surface, the sensitivity of the novel method was high without modifications. The analytical performance of this method in determining serum CEA was satisfactory.
Collapse
Affiliation(s)
- Longjian Huang
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Shang Qiu
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Zhao Liu
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Shengyue Wu
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Qianli Tang
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China.
| | - Fenglei Gao
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
28
|
Wang B, Wang C, Li Y, Liu X, Wu D, Wei Q. Electrochemiluminescence biosensor for cardiac troponin I with signal amplification based on a MoS 2@Cu 2O–Ag-modified electrode and Ce:ZnO-NGQDs. Analyst 2022; 147:4768-4776. [DOI: 10.1039/d2an01341j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive sandwiched electrochemiluminescence (ECL) immunosensor was built for the detection of cTnI. The ECL immunosensor had a low detection limit (2.90 fg mL−1) and wide detection range (10 pg mL−1 to 100 ng mL−1).
Collapse
Affiliation(s)
- Beibei Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Chao Wang
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Yuyang Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xuejing Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
29
|
Mohammad Beigia S, Mesgari F, Hossein M, Dastan D, Xu G. Electrochemiluminescence Sensors based on Lanthanide Nanomaterials as
Modifiers. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999200816123009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: The rapid and increasing use of the nanomaterials in the development of
electrochemiluminescence (ECL) sensors is a significant area of study for its massive potential in the
practical application of nanosensor fabrication. Recently, nanomaterials (NMs) have been widely applied
in vast majority of ECL studies to remarkably amplify signals owing to their excellent conductivity,
large surface area and sometimes catalytic activity. Lanthanides, as f-block-based elements,
possess remarkable chemical and physical properties. This review covers the use of lanthanide NMs,
focusing on their use in ECL for signal amplification in sensing applications.
<p>
Methods: We present the recent advances in ECL nanomaterials including lanthanides NMs with a
particular emphasis on Ce, Sm, Eu and Yb. We introduce their properties along with applications in
different ECL sensors. A major focus is placed upon numerous research strategies for addressing the
signal amplification with lanthanide NMs in ECL.
<p>
Results: Lanthanide NMs as the amplification element can provide an ideal ECL platform for enhancing
the signal of a sensor due to their chemical and physical properties. Function of lanthanide
NMs on signal amplification remarkably depend on their large surface area to load sufficient signal
molecules, high conductivity to promote electron-transfer reaction.
<p>
Conclusion: ECL as a powerful analytical technique has been widely used in various aspects. As the
development of the nanotechnology and nanoscience, lanthanide nanomaterials have shown the remarkable
advantages in analytical applications due to their significant physical and chemical properties.
We predict that in the future, the demand for ECL sensors will be high due to their potential in a
diverse range of applications. Also, we expect the research in nanomaterial-based sensors will still
continue intensively and eventually become effectively routine analysis tools that could meet various
challenges.
Collapse
Affiliation(s)
- Sepideh Mohammad Beigia
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran,Iran
| | - Fazeleh Mesgari
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran,Iran
| | - Morteza Hossein
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran,Iran
| | - Davoud Dastan
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia-30332,United States
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022,China
| |
Collapse
|
30
|
Bharti K, Sadhu KK. Syntheses of metal oxide-gold nanocomposites for biological applications. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
31
|
Deepa S, Ramu A, Kumar KR. Natural catalyst for Luminol chemiluminesence - Application to validate peroxide levels in commercial hair dyes. LUMINESCENCE 2021; 37:558-568. [PMID: 34967114 DOI: 10.1002/bio.4182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/07/2022]
Abstract
Herein, we report hydrothermally treated green leaves (Moringa Oleifera) extract exploited as an efficient and highly-sensitive catalyst to catalyse the Chemiluminescence (CL) reaction of luminol. In the absence of enhancer, this green and hydrothermally treated catalyst (GHT) was found to significantly enhance the CL intensity about 3.5 fold as compared to the traditionally used K3 Fe(CN)6 catalyst. The structure and surface morphology of the catalyst was elucidated by XPS, SEM, XRD and Raman spectroscopy. The synergistic effect of the catalyst in the CL reaction was systematically investigated in the presence of hydrogen peroxide using UV Visible and chemiluminesence spectroscopy. Studies show that the sensitivity of the catalyst could be amplified by adjusting several parameters such as pH of the medium, concentrations of the base and luminol. The sensitivity of the novel-type catalyst was examined through the validation of hydrogen peroxide levels in the commercial hair dye samples. Remarkably, the catalyst displayed ultra-sensitivity to hydrogen peroxide as the limit of detection (LOD) of H2 O2 using this catalyst is determined to be 0.02 μM under optimized conditions. In general, the proposed inexpensive, eco-friendly, and non-toxic catalyst could enable the determination of the hydrogen peroxide for diverse analytical applications.
Collapse
Affiliation(s)
- Simon Deepa
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology Chennai, Tamilnadu, India
| | - Arumugam Ramu
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology Chennai, Tamilnadu, India
| | - Kannapiran Rajendra Kumar
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology Chennai, Tamilnadu, India
| |
Collapse
|
32
|
An electrochemical immunosensor for the detection of carcinoembryonic antigen based on Au/g-C 3N 4 NSs-modified electrode and CuCo/CNC as signal tag. Mikrochim Acta 2021; 188:408. [PMID: 34738160 DOI: 10.1007/s00604-021-05013-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/30/2021] [Indexed: 01/20/2023]
Abstract
Carcinoembryonic antigen levels in the human body reflect the conditions associated with a variety of tumors and can be used for the identification, development, monitoring, and prognosis of lung cancer, colorectal cancer, and breast cancer. In this study, an amperometric immunosensor with CuCo/carbon nanocubes (CuCo/CNC) as the signal label is constructed. The bimetal-doped carbon skeleton structure has a high specific surface area and exhibits good electrocatalytic activity. In addition, Au/g-C3N4 nanosheets (Au/g-C3N4 NSs) are used to modify the substrate platform, facilitating the loading of more capture antibodies. The reaction mechanism was explored through electrochemical methods, X-ray powder diffraction, X-ray photoelectron spectroscopy, and other methods. Kinetic studies have shown that CuCo/CNC have good peroxidase-like activity. In addition, the electrocatalytic reduction ability of CuCo/CNC on hydrogen peroxide can be monitored using amperometric i-t curve (- 0.2 V, vs. SCE), and the response current value is positively correlated with the CEA antigen concentration. The prepared electrochemical immunosensor has good selectivity, precision, and stability. The dynamic range of the sensor was 0.0001-80 ng/mL, and the detection limit was 0.031 pg/mL. In addition, the recovery and relative standard deviation in real serum samples were 97.7-103 % and 3.25-4.13 %, respectively. The results show that the sensor has good analytical capabilities and can provide a new method for the clinical monitoring of CEA.
Collapse
|
33
|
Shao X, Song X, Liu X, Yan L, Liu L, Fan D, Wei Q, Ju H. A dual signal-amplified electrochemiluminescence immunosensor based on core-shell CeO 2-Au@Pt nanosphere for procalcitonin detection. Mikrochim Acta 2021; 188:344. [PMID: 34528141 DOI: 10.1007/s00604-021-04988-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/14/2021] [Indexed: 11/25/2022]
Abstract
A dual signal-amplified sandwich electrochemiluminescence (ECL) immunosensor was fabricated for trace detection of procalcitonin (PCT). CeO2-Au@Pt composed of sea urchin-like Au@Pt nanoparticles coated on CeO2 hollow nanospheres was immobilized on electrode surface to electrochemically catalyze H2O2 to produce a large number of superoxide anion (O2•-). The immunosensor was prepared by linking the capture antibody on immobilized CeO2-Au@Pt with heptapeptide (HWRGWVC), which could maintain the activity of the antibody. The prepared Au star@BSA was used to bind abundant luminol for labeling the secondary antibody (Ab2). Upon the sandwich-typed immunoreactions, the O2•- could react with the introduced luminol on the immunosensor surface to produce strong ECL intensity. With an outstanding linear detection range and a low detection limit of 17 fg/mL, the ECL immunosensor permitted ultrasensitive detection of PCT at a low H2O2 concentration and demonstrated its high application potential in the clinical assay.
Collapse
Affiliation(s)
- Xinrong Shao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xianzhen Song
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xin Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Liangguo Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Lei Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Dawei Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
34
|
Moreira FTC, Correia BP, Sousa MP, Sales GF. Colorimetric cellulose-based test-strip for rapid detection of amyloid β-42. Mikrochim Acta 2021; 188:334. [PMID: 34498145 DOI: 10.1007/s00604-021-04996-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022]
Abstract
An innovative sensing assay is described for point-of-care (PoC) quantification of a biomarker of Alzheimer's disease, amyloid β-42 (Aβ-42). This device is based on a cellulose paper-dye test strip platform in which the corresponding detection layer is integrated by applying a molecularly imprinted polymer (MIP) to the cellulose paper surface. Briefly, the cellulose paper is chemically modified with a silane to subsequently apply the MIP detection layer. The imprinting process is confirmed by the parallel preparation of a control material, namely a non-imprinted polymer (NIP). The chemical changes of the surface were evaluated by Fourier transform infrared spectroscopy (FTIR), contact angle, and thermogravimetric analysis (TG). Proteins and peptides can be quantified by conventional staining methods. For this purpose, Coomassie blue (CB) was used as a staining dye for the detection and quantification of Aβ-42. Quantitative determination is made possible by taking a photograph and applying an appropriate mathematical treatment to the color coordinates provided by the ImageJ program. The MIP shows a linear range between 1.0 ng/mL and 10 μg/mL and a detection limit of 0.71 ng/mL. Overall, this cellulose-based assay is suitable for the detection of peptides or proteins in a sample by visual comparison of color change. The test strip provides a simple, instrument-free, and cost-effective method with high chemical stability, capable of detecting very small amounts of peptides or proteins in a sample, and can be used for the detection of any (bio)molecule of interest.
Collapse
Affiliation(s)
- Felismina T C Moreira
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal. .,CEB, Centre of Biological Engineering, Minho University, Braga, Portugal.
| | - Barbara P Correia
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.,CEB, Centre of Biological Engineering, Minho University, Braga, Portugal
| | - Mariana P Sousa
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.,CEB, Centre of Biological Engineering, Minho University, Braga, Portugal
| | - Goreti F Sales
- CEB, Centre of Biological Engineering, Minho University, Braga, Portugal.,BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, R. Sílvio Lima, pólo II, 3030-790, Coimbra, Portugal
| |
Collapse
|
35
|
Rozhin P, Melchionna M, Fornasiero P, Marchesan S. Nanostructured Ceria: Biomolecular Templates and (Bio)applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2259. [PMID: 34578575 PMCID: PMC8467784 DOI: 10.3390/nano11092259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022]
Abstract
Ceria (CeO2) nanostructures are well-known in catalysis for energy and environmental preservation and remediation. Recently, they have also been gaining momentum for biological applications in virtue of their unique redox properties that make them antioxidant or pro-oxidant, depending on the experimental conditions and ceria nanomorphology. In particular, interest has grown in the use of biotemplates to exert control over ceria morphology and reactivity. However, only a handful of reports exist on the use of specific biomolecules to template ceria nucleation and growth into defined nanostructures. This review focusses on the latest advancements in the area of biomolecular templates for ceria nanostructures and existing opportunities for their (bio)applications.
Collapse
Affiliation(s)
- Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
| | - Michele Melchionna
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| | - Paolo Fornasiero
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| |
Collapse
|
36
|
Liu K, Su J, Liang J, Wu Y. Mesoporous MnFe 2O 4 magnetic nanoparticles as a peroxidase mimic for the colorimetric detection of urine glucose. RSC Adv 2021; 11:28375-28380. [PMID: 35480730 PMCID: PMC9038020 DOI: 10.1039/d1ra05396e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/04/2021] [Indexed: 01/23/2023] Open
Abstract
Mesoporous MnFe2O4 magnetic nanoparticles (mMnFe2O4 MNPs) were prepared with a one-step synthesis method and characterized to possess intrinsic peroxidase-like activity, and had obvious advantages over other peroxidase nanozymes in terms of high catalytic affinity, high stability, mono-dispersion, easy preparation, and quick separation. The mMnFe2O4 MNPs were used as a colorimetric sensor for indirect sensing of urine glucose based on the sensing principle that H2O2 can be produced from glucose oxidation catalyzed by glucose oxidase (GOx), and under the catalysis of the mMnFe2O4 MNPs nanozyme, H2O2 can oxidize 3,3′,5,5′-tetramethylbenzidine (TMB) to produce a blue color in a few minutes. This sensor is simple, cheap, sensitive, and specific to glucose detection with a detection limit of 0.7 μM, suggesting its potential for on-site glucose detection. Schematic illustration of glucose detection with glucose oxidase (GOx) and mMnFe2O4 MNPs-catalyzed system.![]()
Collapse
Affiliation(s)
- Ke Liu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University Wuhan 430070 China +86-27-8728-2133 +86-27-8728-3712
| | - Jiaxing Su
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University Wuhan 430070 China +86-27-8728-2133 +86-27-8728-3712
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University Wuhan 430070 China +86-27-8728-2133 +86-27-8728-3712
| | - Yuan Wu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University Wuhan 430070 China +86-27-8728-2133 +86-27-8728-3712
| |
Collapse
|
37
|
Song X, Zhao L, Luo C, Ren X, Yang L, Wei Q. Peptide-Based Biosensor with a Luminescent Copper-Based Metal-Organic Framework as an Electrochemiluminescence Emitter for Trypsin Assay. Anal Chem 2021; 93:9704-9710. [PMID: 34242018 DOI: 10.1021/acs.analchem.1c00850] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A copper-based metal-organic framework (JUC-1000) has emerged as a promising electrochemiluminescence (ECL) emitter in the domains of bioanalysis and immunoassay. Herein, a highly efficient signal "on-off" peptide-based biosensor was constructed for trypsin (TPN) assay. JUC-1000 synthesized using an organic ligand of H4BDPO was functionalized as the ECL emitter, whose cathodic ECL behavior in aqueous media was first investigated using potassium persulfate (K2S2O8) as the coreactant. To further amplify the ECL signal, highly catalytic Ag@CeO2 nanoparticles were fabricated as both a substrate and an coreaction accelerator, which can efficiently catalyze the reduction of S2O82- to generate more sulfate anion radicals (SO4•-) for ECL enhancement, thereby generating strong and stable ECL signals in a "signal on" state. The functionalized JUC-1000 emitter was connected to the Ag@CeO2 sensing layer though a heptapeptide (HWRGWVC, HGC), and TPN as the target can specifically cleave the carboxyl side of arginine residues in HGC, leading to the release of emitters in a "signal off" state. Based on the efficient signal-switching, the biosensor exhibited linear ECL responses to the added TPN concentration, realizing sensitive detection of TPN in 10 fg/mL to 100 ng/mL with a limit of detection of 3.46 fg/mL. This work proposed an attractive orientation for the fundamental research of applying transition metal-organic frameworks as ECL emitters in bioanalysis and immunoassay.
Collapse
Affiliation(s)
- Xianzhen Song
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Lu Zhao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Chuannan Luo
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Lei Yang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| |
Collapse
|
38
|
Gao H, Zhang J, Wei X, Zhu Q, Wei T. Enhanced electrochemiluminescence cytosensing based on abundant oxygen vacancies contained 2D nanosheets emitter coupled with DNA device cycle-amplification. Talanta 2021; 228:122230. [DOI: 10.1016/j.talanta.2021.122230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 11/28/2022]
|
39
|
Lou F, Xie X, Li Q, Wang Y, Li Q. One-pot synthesis of Au nanoparticle/polyluminol/glucose oxidase bifunctional nanospheres for solid-state electrochemiluminescent sensor. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Karki HP, Jang Y, Jung J, Oh J. Advances in the development paradigm of biosample-based biosensors for early ultrasensitive detection of alzheimer's disease. J Nanobiotechnology 2021; 19:72. [PMID: 33750392 PMCID: PMC7945670 DOI: 10.1186/s12951-021-00814-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
This review highlights current developments, challenges, and future directions for the use of invasive and noninvasive biosample-based small biosensors for early diagnosis of Alzheimer's disease (AD) with biomarkers to incite a conceptual idea from a broad number of readers in this field. We provide the most promising concept about biosensors on the basis of detection scale (from femto to micro) using invasive and noninvasive biosamples such as cerebrospinal fluid (CSF), blood, urine, sweat, and tear. It also summarizes sensor types and detailed analyzing techniques for ultrasensitive detection of multiple target biomarkers (i.e., amyloid beta (Aβ) peptide, tau protein, Acetylcholine (Ach), microRNA137, etc.) of AD in terms of detection ranges and limit of detections (LODs). As the most significant disadvantage of CSF and blood-based detection of AD is associated with the invasiveness of sample collection which limits future strategy with home-based early screening of AD, we extensively reviewed the future trend of new noninvasive detection techniques (such as optical screening and bio-imaging process). To overcome the limitation of non-invasive biosamples with low concentrations of AD biomarkers, current efforts to enhance the sensitivity of biosensors and discover new types of biomarkers using non-invasive body fluids are presented. We also introduced future trends facing an infection point in early diagnosis of AD with simultaneous emergence of addressable innovative technologies.
Collapse
Affiliation(s)
- Hem Prakash Karki
- Department of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Yeongseok Jang
- Department of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Jinmu Jung
- Department of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
- Department of Nano-bio Mechanical System Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - Jonghyun Oh
- Department of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
- Department of Nano-bio Mechanical System Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
41
|
Ai Z, Zhao M, Han D, Chen K, Xiong D, Tang H. An "on-off" electrochemiluminescence immunosensor for PIVKA-II detection based on the dual quenching of CeO 2-Au-g-C 3N 4 hybrids by Ag nanocubes-VB 2. Biosens Bioelectron 2021; 179:113059. [PMID: 33561664 DOI: 10.1016/j.bios.2021.113059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023]
Abstract
Herein, we report a novel dual-quenching electrochemiluminescence (ECL) immunosensor for detecting protein induced by vitamin K absence or antagonist-II (PIVKA-II) based on ECL resonance energy transfer (ECL-RET). In this protocol, self-accelerated ECL hybrids of CeO2 and Au nanoparticles functionalized g-C3N4 nanosheets (CeO2-Au-g-C3N4) were prepared, which exhibited high ECL emission in the presence of S2O82- as a coreactant for "signal on" state. Concretely, CeO2 with a reproducible redox couple of Ce3+ and Ce4+ could act as an efficient co-reaction accelerator to generate more oxidizing intermediate (SO4•-) to significantly self-promote the ECL emission of g-C3N4 NSs/S2O82- ECL system. Besides, Au nanoparticles not only accelerated electron transfer in the ECL process, but also provided massive active sites for biomolecules immobilization. The dual quenching labels of Ag nanocubes modified with vitamin B2 (AgNCs-VB2) were firstly proposed towards g-C3N4 NSs/S2O82- ECL system by ECL-RET, resulting in the remarkable ECL decrease for "signal off" state. Based on the sandwich immunoreaction, the "on-off" PIVKA-II ECL immunosensor gratifyingly possessed excellent detection sensitivity with the linear range of 0.4 pg mL-1-10 ng mL-1 and the low detection limit of 28.46 fg mL-1 (S/N = 3). This presented strategy might provide a potential alternative tool for PIVKA-II detection in medical research and early clinical diagnostics of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhujun Ai
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Min Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Daobin Han
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ke Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Dongmei Xiong
- Nursing Department, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
42
|
Lv X, Xu X, Miao T, Zang X, Geng C, Li Y, Cui B, Fang Y. Aggregation-Induced Electrochemiluminescence Immunosensor Based on 9,10-Diphenylanthracene Cubic Nanoparticles for Ultrasensitive Detection of Aflatoxin B 1. ACS APPLIED BIO MATERIALS 2020; 3:8933-8942. [PMID: 35019569 DOI: 10.1021/acsabm.0c01201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
9,10-Diphenylanthracene cubic nanoparticles (DPA CNPs) with aggregation-induced emission characteristic (AIEgens) were synthesized through a facile reprecipitation method; then, a bright and stable electrochemiluminescence (ECL) signal can be observed when the DPA CNPs were modified at the glassy carbon electrode (GCE) in the presence of Tri-n-propylamine (TPA). This phenomenon is ascribed to the molecules with restricted movement that greatly blocked the energy leakage during the relaxation of the excited state, which facilitated the emission of energy in the form of photons. In addition, the size confinement effect of DPA CNPs in the aggregated state effectively enhanced the ECL emission. The application of DPA CNPs with AIE characteristics in an electrochemiluminescence immunosensor has not been reported. In this contribution, a free-label aggregation-induced electrochemiluminescence immunosensor based on DPA CNPs was fabricated and a simple strategy for ultrasensitive detection of aflatoxin B1 (AFB1) was proposed. The ECL signal is quenched linearly in the range of 0.01 pg/mL to 100 ng/mL for AFB1, and the detection limit is 3 fg/mL. In summary, the prepared sensor exhibits high sensitivity, acceptable accuracy, good anti-interference ability and stability, and satisfactory detection toward AFB1 in walnut samples. Therefore, the fabricated immunosensor will have significant applications in the fields of food, medicine, and so on.
Collapse
Affiliation(s)
- Xiaoyi Lv
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaoyun Xu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Tian Miao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xufeng Zang
- College of Science, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Chao Geng
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yanping Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
43
|
Wang L, Xing B, Wang H, Hu L, Kuang X, Liang H, Wu D, Wei Q. Electrochemiluminescence immunosensor based on the quenching effect of CuO@GO on m-CNNS for cTnI detection. Anal Biochem 2020; 612:114012. [PMID: 33189703 DOI: 10.1016/j.ab.2020.114012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
A sandwich-type electrochemiluminescence (ECL) immunosensor based on the resonance energy transfer (RET) was proposed for ultrasensitive detection of cardiac troponin I (cTnI). The RET behavior could be generated between graphite carbon nitride nanosheets (m-CNNS) as donor and copper oxide@graphene oxide (CuO@GO) as acceptor, achieving the quenching effect of CuO@GO on m-CNNS for cTnI detection. The m-CNNS synthesized by mechanical grinding of the graphite carbon nitride (CN) not only has better dispersion and higher specific surface area, but also has high luminous efficiency and stable chemical properties. Therefore, m-CNNS was used as the matrix material and luminophore. As the acceptor, CuO@GO prepared by in-situ chemical synthesis of CuO NPs onto GO sheets also has a high specific surface area, which could be used as a label of secondary antibody (Ab2). Under optimal conditions, cTnI could be determined within the linear range of 0.1 pg mL-1 to 100 ng mL-1 and had a low detection limit (0.028 pg mL-1, S/N = 3). Meanwhile, the prepared ECL immunosensor possessed great stability, specificity and reproducibility, providing a new method for detecting cTnI and other biomarkers.
Collapse
Affiliation(s)
- Luxiao Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Bin Xing
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Lihua Hu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xuan Kuang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Huixin Liang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs (ICAMA), PR China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
44
|
Gan X, Han D, Wang J, Liu P, Li X, Zheng Q, Yan Y. A highly sensitive electrochemiluminescence immunosensor for h-FABP determination based on self-enhanced luminophore coupled with ultrathin 2D nickel metal-organic framework nanosheets. Biosens Bioelectron 2020; 171:112735. [PMID: 33075723 DOI: 10.1016/j.bios.2020.112735] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/26/2020] [Accepted: 10/13/2020] [Indexed: 01/20/2023]
Abstract
In this work, a novel ECL immunosensor based on self-enhanced luminophore and ultrathin 2D nickel MOF nanosheets was fabricated for sensitive and specific detection of h-FABP. Initially, the porous ultrathin Ni-TCPP (Fe) nanosheets with high specific surface area and plentiful active sites were newly synthesized, which could enhance ECL signal of luminol by the superior peroxidase mimics activity towards H2O2 decomposition. Then, PEI and luminol were simultaneously immobilized on Ni-TCPP (Fe) nanosheets to construct self-enhanced solid state luminophore (Ni-TCPP (Fe)-PEI-Lum), possessing desirable stability and high ECL efficiency. Furthermore, poly (indole-5-carboxylic acid) (PICA) worked as substrate with outstanding conductivity and abundant binding sites to improve sensitivity. Under optimal conditions, the designed ECL immunosensor exhibited a wide dynamic range from 100 fg mL-1 to 100 ng mL-1 and a low detection limit of 44.5 fg mL-1. In addition, the ECL immunosensor behaved excellent specificity and was successfully applied to detect target h-FABP protein in complex physiological matrix. Therefore, this work may provide an alternative method for biomarker detection in clinical diagnosis and expand the application potential of 2D MOF nanosheets in ECL technique.
Collapse
Affiliation(s)
- Xiufeng Gan
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Daobin Han
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jianmin Wang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ping Liu
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xingrong Li
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Qingyuan Zheng
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
45
|
Palla G, Malecka K, Dehaen W, Radecki J, Radecka H. Immunosensor incorporating half-antibody fragment for electrochemical monitoring of amyloid-β fibrils in artificial blood plasma. Bioelectrochemistry 2020; 137:107643. [PMID: 32891964 DOI: 10.1016/j.bioelechem.2020.107643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
In this report, an electrochemical immunosensor for the selective and sensitive monitoring of Aβ1-42 fibrils is presented. The sensing platform was prepared by the formation of a 4,4'-thiobisbenzenethiol (TBBT) self-assembled monolayer on a clean gold surface followed by the covalent entrapment of gold nanoparticles (AuNPs). The half-antibody fragments of the Anti-Amyloid Fibrils antibody were immobilized on AuNPs via S-Au covalent bonds. Each step of immunosensor fabrication was characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The biosensor was successfully used for the sensing of Aβ1-42 fibrils in both phosphate saline buffer (PBS) and artificial blood plasma (ABP). The immunosensor sensitivity estimated based on calibration slopes was better in the presence of APP in the comparison to PBS. The LOD values obtained for both measuring media were of 0.6 pM level. The moderate response towards Aβ1-42 oligomers demonstrated the immunosensor selectivity.
Collapse
Affiliation(s)
- Gopal Palla
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland
| | - Kamila Malecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland
| | - Wim Dehaen
- University of Leuven, Department of Chemistry, Celestijnenlaan 200f - box 2404, 3001 Leuven, Belgium
| | - Jerzy Radecki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland
| | - Hanna Radecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
46
|
A sandwich electrochemiluminescent assay for determination of concanavalin A with triple signal amplification based on MoS2NF@MWCNTs modified electrode and Zn-MOF encapsulated luminol. Mikrochim Acta 2020; 187:523. [DOI: 10.1007/s00604-020-04472-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022]
|
47
|
Cajigas S, Orozco J. Nanobioconjugates for Signal Amplification in Electrochemical Biosensing. Molecules 2020; 25:molecules25153542. [PMID: 32756410 PMCID: PMC7436128 DOI: 10.3390/molecules25153542] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Nanobioconjugates are hybrid materials that result from the coalescence of biomolecules and nanomaterials. They have emerged as a strategy to amplify the signal response in the biosensor field with the potential to enhance the sensitivity and detection limits of analytical assays. This critical review collects a myriad of strategies for the development of nanobioconjugates based on the conjugation of proteins, antibodies, carbohydrates, and DNA/RNA with noble metals, quantum dots, carbon- and magnetic-based nanomaterials, polymers, and complexes. It first discusses nanobioconjugates assembly and characterization to focus on the strategies to amplify a biorecognition event in biosensing, including molecular-, enzymatic-, and electroactive complex-based approaches. It provides some examples, current challenges, and future perspectives of nanobioconjugates for the amplification of signals in electrochemical biosensing.
Collapse
|
48
|
Wei YP, Zhang YW, Chen JS, Mao CJ, Jin BK. An electrochemiluminescence biosensor for p53 antibody based on Zn-MOF/GO nanocomposite and Ag +-DNA amplification. Mikrochim Acta 2020; 187:455. [PMID: 32683571 DOI: 10.1007/s00604-020-04425-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/30/2020] [Indexed: 01/22/2023]
Abstract
An ultrasensitive electrochemiluminescence biosensor was established based on the Zn-MOF/GO nanocomposite. Ag(I)-embedded DNA complexes were used as a signal amplification reagent. In this work, 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP) and Zn2+ were integrated into a porphyrin paddlewheel framework (Zn-MOF) by a hydrothermal method. The synthesized Zn-MOF material has electrochemiluminescence property, and the luminescence intensity is improved after being composited with graphene oxide (GO). Based on the composite material, we constructed an ultrasensitive ECL biosensor for the p53 antibody detection. The composite material acted as an admirable substrate and then loaded plenty of p53 antigens to recognize the target (p53 antibody) accurately. Because of the bridging effect of streptavidin and biotin-conjugated goat anti-rabbit IgG (bio-ab2), the rich-C DNA with positive correlation with the target was modified on the electrode and then captured the co-reactant accelerator Ag+ to amplify the signal. Therefore, the ECL biosensor response increases with increasing p53 antibody concentration. In the range 0.1 fg/mL-0.01 ng/mL, the response signal of the biosensor has a good linear relationship with the p53 antibody concentration. The detection limit is 0.03 fg/mL (S/N = 3). Impressively, the biosensor not only featured high sensitivity, good stability, and excellent specificity for the detection of p53 antibody, but also provides a new way for early detection of cancer. Graphical abstract Schematic representation of the electrochemiluminescence sensor based on a Zn-MOF/GO nanocomposite, which can be applied to the determination of p53 antibody.
Collapse
Affiliation(s)
- Yu-Ping Wei
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Yi-Wen Zhang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Jing-Shuai Chen
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
| | - Chang-Jie Mao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
| | - Bao-Kang Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| |
Collapse
|
49
|
Zhou J, Li Y, Wang W, Tan X, Lu Z, Han H. Metal-organic frameworks-based sensitive electrochemiluminescence biosensing. Biosens Bioelectron 2020; 164:112332. [PMID: 32553355 DOI: 10.1016/j.bios.2020.112332] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 11/29/2022]
Abstract
Metal-organic frameworks (MOFs) as porous materials have attracted much attention in various fields such as gas storage, catalysis, separation, and nanomedical engineering. However, their applications in electrochemiluminescence (ECL) biosensing are limited due to the poor conductivity, lack of modification sites, low stability and specificity, and weak biocompatibility. Integrating the functional materials into MOF structures endows MOF composites with improved conductivity and stability and facilitates the design of ECL sensors with multifunctional MOFs, which are potentially advantageous over their individual components. This review summarizes the strategies for designing ECL-active MOF composites including using luminophore as a ligand, in situ encapsulation of luminophore within the framework, and post-synthetic modification. As-prepared MOF composites can serve as innovative emitters, luminophore carriers, electrode modification materials and co-reaction accelerators in ECL biosensors. The sensing applications of ECl-active MOF composites in the past five years are highlighted including immunoassays, genosensors, and small molecule detection. Finally, the prospects and challenges associated with MOF composites and their related materials for ECL biosensing are tentatively proposed.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Li
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuecai Tan
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530008, China
| | - Zhicheng Lu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
50
|
A sandwich-type ECL immunosensor based on signal amplification using a ZnO nanorods-L-cysteine-luminol nanocomposite for ultrasensitive detection of prostate specific antigen. Anal Chim Acta 2020; 1109:98-106. [DOI: 10.1016/j.aca.2020.02.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
|