1
|
Wang L, Wei Z, Xue C. Co-encapsulation of curcumin and fucoxanthin in solid-in-oil-in-water multilayer emulsions: Characterization, stability and programmed sequential release. Food Chem 2024; 456:139975. [PMID: 38852456 DOI: 10.1016/j.foodchem.2024.139975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
To enhance the bioavailability of bioactives with varying efficacy in the gastrointestinal tract (GIT), a co-delivery system of solid-in-oil-in-water (S/O/W) emulsion was designed for the co-encapsulation of two bioactives in this paper. S/O/W emulsions were fabricated utilizing fucoxanthin (FUC)-loaded nanoparticles (NPs) as the solid phase, coconut oil containing curcumin (Cur) as the oil phase, and carboxymethyl starch (CMS)/propylene glycol alginate (PGA) complex as the aqueous phase. The high entrapment efficiency of Cur (82.3-91.3%) and FUC (96.0-96.1%) was found in the CMS/PGA complex-stabilized S/O/W emulsions. Encapsulation of Cur and FUC within S/O/W emulsions enhanced their UV and thermal stabilities. In addition, S/O/W emulsions prepared with CMS/PGA complexes displayed good stability. More importantly, the formed S/O/W emulsion possessed programmed sequential release characteristics, delivering Cur and FUC to the small intestine and colon, respectively. These results contributed to designing co-delivery systems for the programmed sequential release of two hydrophobic nutrients in the GIT.
Collapse
Affiliation(s)
- Luhui Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
2
|
Huang L, Jiang G. Photothermal controlled-release microcapsule pesticide delivery systems constructed with sodium lignosulfonate and transition metal ions: construction, efficacy and on-demand pesticide delivery. PEST MANAGEMENT SCIENCE 2024; 80:2827-2838. [PMID: 38329149 DOI: 10.1002/ps.7991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Widespread application of controlled-release pesticide delivery systems is a feasible and effective method to improve the utilization efficiency of pesticides. However, owing to the high cost and complicated preparation technologies of controlled-release pesticide delivery systems, their applications in agricultural production have been seriously hindered. RESULTS This study aimed to construct inexpensive photothermally controlled-release pesticide delivery systems using chitosan (CS) and sodium lignosulfonate (LS) as the wall materials, and a coordination assembly strategy of LS with transition metal ions to encapsulate a model pesticide, avermectin (AVM). The resulting complex or nanoparticle photothermal layers in these systems effectively achieved photothermal conversions, and replaced the use of common photothermal agents. In the prepared pesticide-delivery systems, two systems had remarkable photothermal conversion performance and photothermal stabilities with a photothermal conversion efficiency (η) of 24.03% and 28.82%, respectively, under 808 nm, 2 W near-infrared irradiation. The slow-release and ultraviolet-shielding performance of these two systems were markedly enhanced compared with other formulations. The insecticidal activities of these two systems against Plutella xylostella under irradiation with light-emitting diode (LED)-simulated sunlight were also enhanced by 5.20- and 5.06-fold, respectively, compared with that without irradiation of LED-simulated sunlight. CONCLUSION Because of their convenient preparations, inexpensive and renewable raw materials, and excellent photothermally controlled-release performance, these on-demand pesticide delivery systems might have significant potential in improving the utilization efficiency of pesticides in modern agriculture. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lingling Huang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, P. R. China
| | - Guangqi Jiang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, P. R. China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| |
Collapse
|
3
|
Du J, Shi LL, Jiang WW, Liu XA, Wu XH, Huang XX, Huo MW, Shi LZ, Dong J, Jiang X, Huang R, Cao QR, Zhang W. Crafting Docetaxel-Loaded Albumin Nanoparticles Through a Novel Thermal-Driven Self-Assembly/Microfluidic Combination Technology: Formulation, Process Optimization, Stability, and Bioavailability. Int J Nanomedicine 2024; 19:5071-5094. [PMID: 38846644 PMCID: PMC11155381 DOI: 10.2147/ijn.s457482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
Background The commercial docetaxel (DTX) formulation causes severe side effects due to polysorbate 80 and ethanol. Novel surfactant-free nanoparticle (NP) systems are needed to improve bioavailability and reduce side effects. However, controlling the particle size and stability of NPs and improving the batch-to-batch variation are the major challenges. Methods DTX-loaded bovine serum albumin nanoparticles (DTX-BSA-NPs) were prepared by a novel thermal-driven self-assembly/microfluidic technology. Single-factor analysis and orthogonal test were conducted to obtain the optimal formulation of DTX-BSA-NPs in terms of particle size, encapsulation efficiency (EE), and drug loading (DL). The effects of oil/water flow rate and pump pressure on the particle size, EE, and DL were investigated to optimize the preparation process of DTX-BSA-NPs. The drug release, physicochemical properties, stability, and pharmacokinetics of NPs were evaluated. Results The optimized DTX-BSA-NPs were uniform, with a particle size of 118.30 nm, EE of 89.04%, and DL of 8.27%. They showed a sustained release of 70% over 96 hours and an increased stability. There were some interactions between the drug and excipients in DTX-BSA-NPs. The half-life, mean residence time, and area under the curve (AUC) of DTX-BSA-NPs increased, but plasma clearance decreased when compared with DTX. Conclusion The thermal-driven self-assembly/microfluidic combination method effectively produces BSA-based NPs that improve the bioavailability and stability of DTX, offering a promising alternative to traditional formulations.
Collapse
Affiliation(s)
- Juan Du
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People’s Republic of China
| | - Li-Li Shi
- College of Medicine, Jiaxing University, Jiaxing, People’s Republic of China
| | - Wei-Wei Jiang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Xue-Ai Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Xin-Hong Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Xiang-Xiang Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Ming-Wei Huo
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Ling-Zhi Shi
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Jingjian Dong
- College of Medicine, Jiaxing University, Jiaxing, People’s Republic of China
| | - Xiaohong Jiang
- College of Medicine, Jiaxing University, Jiaxing, People’s Republic of China
| | - Renyu Huang
- College of Social Science, Soochow University, Institute of Culture and Tourism Development, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Qing-Ri Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People’s Republic of China
| |
Collapse
|
4
|
Yandrapalli N. Complex Emulsions as an Innovative Pharmaceutical Dosage form in Addressing the Issues of Multi-Drug Therapy and Polypharmacy Challenges. Pharmaceutics 2024; 16:707. [PMID: 38931830 PMCID: PMC11206808 DOI: 10.3390/pharmaceutics16060707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
This review explores the intersection of microfluidic technology and complex emulsion development as a promising solution to the challenges of formulations in multi-drug therapy (MDT) and polypharmacy. The convergence of microfluidic technology and complex emulsion fabrication could herald a transformative era in multi-drug delivery systems, directly confronting the prevalent challenges of polypharmacy. Microfluidics, with its unparalleled precision in droplet formation, empowers the encapsulation of multiple drugs within singular emulsion particles. The ability to engineer emulsions with tailored properties-such as size, composition, and release kinetics-enables the creation of highly efficient drug delivery vehicles. Thus, this innovative approach not only simplifies medication regimens by significantly reducing the number of necessary doses but also minimizes the pill burden and associated treatment termination-issues associated with polypharmacy. It is important to bring forth the opportunities and challenges of this synergy between microfluidic-driven complex emulsions and multi-drug therapy poses. Together, they not only offer a sophisticated method for addressing the intricacies of delivering multiple drugs but also align with broader healthcare objectives of enhancing treatment outcomes, patient safety, and quality of life, underscoring the importance of dosage form innovations in tackling the multifaceted challenges of modern pharmacotherapy.
Collapse
Affiliation(s)
- Naresh Yandrapalli
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
5
|
Payizila Z, Teng F, Huang X, Liu W, Wu T, Sun Q, Zhao S. Efficient Fabrication of Self-Assembled Polylactic Acid Colloidosomes for Pesticide Encapsulation. ACS OMEGA 2024; 9:3781-3792. [PMID: 38284048 PMCID: PMC10809374 DOI: 10.1021/acsomega.3c07802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
Colloidosomes are microcapsules whose shells are composed of cumulated or fused colloidal particles. When colloidosomes are used for in situ encapsulation, it is still a challenge to achieve a high encapsulation efficiency and controllable release by an effective fabrication method. Herein, we present a highly efficient route for the large-scale preparation of colloidosomes. The biodegradable polylactic acid (PLA) nanoparticles (NPs) as shell materials can be synthesized using an antisolvent precipitation method, and the possible formation mechanism was given through the molecular dynamics (MD) simulation. The theoretical values are basically consistent with the experimental results. Through the use of the modified and unmodified PLA NPs, the colloidosomes with controllable shell porosities can be easily constructed using spray drying technology. We also investigate the mechanism of colloidosomes successfully self-assembled by PLA NPs with various factors of inlet temperature, feed rate, and flow rates of compressed air. Furthermore, avermectin (AVM) was used as a model for in situ encapsulation and a controllable release. The spherical modified colloidosomes encapsulating AVM not only achieve a small mean diameter of 1.57 μm but also realize a high encapsulation efficiency of 89.7% and impermeability, which can be further verified by the MD simulation. AVM molecules gather around and clog the shell pores during the evaporation of water molecules. More importantly, the PLA colloidosomes also reveal excellent UV-shielding properties, which can protect AVM from photodegradation.
Collapse
Affiliation(s)
- Zulipiker Payizila
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Fuquan Teng
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xudong Huang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Wenbiao Liu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Tengfei Wu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qian Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| |
Collapse
|
6
|
Zhang D, Li Z, Yang L, Ma H, Chen H, Zeng X. Architecturally designed sequential-release hydrogels. Biomaterials 2023; 303:122388. [PMID: 37980822 DOI: 10.1016/j.biomaterials.2023.122388] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023]
Abstract
Drug synergy has made significant strides in clinical applications in recent decades. However, achieving a platform that enables "single administration, multi-stage release" by emulating the natural physiological processes of the human body poses a formidable challenge in the field of molecular pharmaceutics. Hydrogels, as the novel generation of drug delivery systems, have gained widespread utilization in drug platforms owing to their exceptional biocompatibility and modifiability. Sequential drug delivery hydrogels (SDDHs), which amalgamate the advantages of hydrogel and sequential release platforms, offer a promising solution for effectively navigating the intricate human environment and accomplishing drug sequential release. Inspired by architectural design, this review establishes connections between three pivotal factors in SDDHs construction, namely mechanisms, carrier spatial structure, and stimuli-responsiveness, and three aspects of architectural design, specifically building materials, house structures, and intelligent interactive furniture, aiming at providing insights into recent developments in SDDHs. Furthermore, the dual-drug collocation and cutting-edge hydrogel preparation technologies as well as the prevailing challenges in the field were elucidated.
Collapse
Affiliation(s)
- Dan Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zimu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Li Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Hualin Ma
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China.
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
7
|
Jia J, Liu RK, Sun Q, Wang JX. Efficient Construction of pH-Stimuli-Responsive Colloidosomes with High Encapsulation Efficiency. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38015806 DOI: 10.1021/acs.langmuir.3c02415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Intelligent responsive colloidosomes have attracted increasing attention for their potential to enhance the efficacy and decrease the side effects of drugs in biomedical applications. However, a low encapsulation efficiency and complicated preparation method greatly limit their development. Herein, we report an efficient approach for the construction of pH-stimuli-responsive colloidosomes with high encapsulation efficiency by a high-gravity technology. The conditions under which latex particles with different methacrylic acid contents can successfully self-assemble into colloidosomes are explored. During the preparation process, emulsions emulsified for only 10 min at 2500 rpm in a unique high-gravity shearing surroundings are clarified owing to the greatly enhanced micromixing, while the emulsions emulsified for 30 min by a traditional high-speed shear machine at 4000 rpm are still yellow-white. More importantly, regular spherical colloidosomes encapsulating an anticancer drug doxorubicin not only achieve a small mean diameter of 2.82 μm but also realize a high encapsulation efficiency of 76.5%. The release performance of doxorubicin has an obvious pH-stimuli-responsive regularity and follows the first-order model of sustained release. The construction of intelligent responsive colloidosomes as drug carriers provides a route for controlled drug release and biomedical applications.
Collapse
Affiliation(s)
- Jia Jia
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Rong-Kun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qian Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
8
|
van Loo B, Ten Den SA, Araújo-Gomes N, de Jong V, Snabel RR, Schot M, Rivera-Arbeláez JM, Veenstra GJC, Passier R, Kamperman T, Leijten J. Mass production of lumenogenic human embryoid bodies and functional cardiospheres using in-air-generated microcapsules. Nat Commun 2023; 14:6685. [PMID: 37865642 PMCID: PMC10590445 DOI: 10.1038/s41467-023-42297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/05/2023] [Indexed: 10/23/2023] Open
Abstract
Organoids are engineered 3D miniature tissues that are defined by their organ-like structures, which drive a fundamental understanding of human development. However, current organoid generation methods are associated with low production throughputs and poor control over size and function including due to organoid merging, which limits their clinical and industrial translation. Here, we present a microfluidic platform for the mass production of lumenogenic embryoid bodies and functional cardiospheres. Specifically, we apply triple-jet in-air microfluidics for the ultra-high-throughput generation of hollow, thin-shelled, hydrogel microcapsules that can act as spheroid-forming bioreactors in a cytocompatible, oil-free, surfactant-free, and size-controlled manner. Uniquely, we show that microcapsules generated by in-air microfluidics provide a lumenogenic microenvironment with near 100% efficient cavitation of spheroids. We demonstrate that upon chemical stimulation, human pluripotent stem cell-derived spheroids undergo cardiomyogenic differentiation, effectively resulting in the mass production of homogeneous and functional cardiospheres that are responsive to external electrical stimulation. These findings drive clinical and industrial adaption of stem cell technology in tissue engineering and drug testing.
Collapse
Affiliation(s)
- Bas van Loo
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
| | - Simone A Ten Den
- University of Twente, TechMed Centre, Department of Applied Stem Cell Technology, Enschede, The Netherlands
| | - Nuno Araújo-Gomes
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
| | - Vincent de Jong
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
| | - Rebecca R Snabel
- Radboud University, Radboud Institute for Molecular Life Sciences, Faculty of Science, Department of Molecular Developmental Biology, Nijmegen, The Netherlands
| | - Maik Schot
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
| | - José M Rivera-Arbeláez
- University of Twente, TechMed Centre, Department of Applied Stem Cell Technology, Enschede, The Netherlands
- University of Twente, TechMed Centre, Max Planck Center for Complex Fluid Dynamics, BIOS Lab-on-a-Chip Group, Enschede, The Netherlands
| | - Gert Jan C Veenstra
- Radboud University, Radboud Institute for Molecular Life Sciences, Faculty of Science, Department of Molecular Developmental Biology, Nijmegen, The Netherlands
| | - Robert Passier
- University of Twente, TechMed Centre, Department of Applied Stem Cell Technology, Enschede, The Netherlands
- Leiden University Medical Centre, Department of Anatomy and Embryology, Leiden, Netherlands
| | - Tom Kamperman
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
- IamFluidics B.V., De Veldmaat 17, 7522NM, Enschede, The Netherlands
| | - Jeroen Leijten
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands.
| |
Collapse
|
9
|
Long F, Guo Y, Zhang Z, Wang J, Ren Y, Cheng Y, Xu G. Recent Progress of Droplet Microfluidic Emulsification Based Synthesis of Functional Microparticles. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300063. [PMID: 37745820 PMCID: PMC10517312 DOI: 10.1002/gch2.202300063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/28/2023] [Indexed: 09/26/2023]
Abstract
The remarkable control function over the functional material formation process enabled by droplet microfluidic emulsification approaches can lead to the efficient and one-step encapsulation of active substances in microparticles, with the microparticle characteristics well regulated. In comparison to the conventional fabrication methods, droplet microfluidic technology can not only construct microparticles with various shapes, but also provide excellent templates, which enrich and expand the application fields of microparticles. For instance, intersection with disciplines in pharmacy, life sciences, and others, modifying the structure of microspheres and appending functional materials can be completed in the preparation of microparticles. The as-prepared polymer particles have great potential in a wide range of applications for chemical analysis, heavy metal adsorption, and detection. This review systematically introduces the devices and basic principles of particle preparation using droplet microfluidic technology and discusses the research of functional microparticle formation with high monodispersity, involving a plethora of types including spherical, nonspherical, and Janus type, as well as core-shell, hole-shell, and controllable multicompartment particles. Moreover, this review paper also exhibits a critical analysis of the current status and existing challenges, and outlook of the future development in the emerging fields has been discussed.
Collapse
Affiliation(s)
- Fei Long
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingbo315040P. R. China
| | - Yanhong Guo
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Zhiyu Zhang
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingbo315040P. R. China
| | - Jing Wang
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingbo315040P. R. China
- Department of Electrical and Electronic EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Yong Ren
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingbo315040P. R. China
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang ProvinceUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Yuchuan Cheng
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Gaojie Xu
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| |
Collapse
|
10
|
Chen C, Cai QW, Zhan CZ, Wang BC, Li PF, Xie R, Ju XJ, Liu Z, Wang W, Chu LY. Controllable Fabrication of Highly Uniform Sub-10 nm Nanoparticles from Spontaneous Confined Nanoemulsification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300801. [PMID: 37072877 DOI: 10.1002/smll.202300801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Sub-10 nm nanoparticles are known to exhibit extraordinary size-dependent properties for wide applications. Many approaches have been developed for synthesizing sub-10 nm inorganic nanoparticles, but the fabrication of sub-10 nm polymeric nanoparticles is still challenging. Here, a scalable, spontaneous confined nanoemulsification strategy that produces uniform sub-10 nm nanodroplets for template synthesis of sub-10 nm polymeric nanoparticles is proposed. This strategy introduces a high-concentration interfacial reaction to create overpopulated surfactants that are insoluble at the droplet surface. These overpopulated surfactants act as barriers, resulting in highly accumulated surfactants inside the droplet via a confined reaction. These surfactants exhibit significantly changed packing geometry, solubility, and interfacial activity to enhance the molecular-level impact on interfacial instability for creating sub-10 nm nanoemulsions via self-burst nanoemulsification. Using the nanodroplets as templates, the fabrication of uniform sub-10 nm polymeric nanoparticles, as small as 3.5 nm, made from biocompatible polymers and capable of efficient drug encapsulation is demonstrated. This work opens up brand-new opportunities to easily create sub-10 nm nanoemulsions and advanced ultrasmall functional nanoparticles.
Collapse
Affiliation(s)
- Chen Chen
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Department of Chemical Engineering, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Quan-Wei Cai
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Cai-Zhen Zhan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Bi-Cong Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ping-Fan Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
11
|
Xiao M. Development of chitosan-based hydrogels for healthcare: A review. Int J Biol Macromol 2023:125333. [PMID: 37307979 DOI: 10.1016/j.ijbiomac.2023.125333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Chitosan-based hydrogels (CSH) are promising materials for healthcare. Based on the relationship among structure, property and application, researches reported within last decade are chosen to elucidate the developing approaches and potential applications of target CSH. The applications of CSH are classified into the conventional biomedical fields, such as drug controlled release, tissue repair and monitoring, and the essential ones including food safety, water purification and air cleaning. The approaches focused on in this article are the reversible chemical and physical ones. Apart from describing the current status of the development, suggestions are presented as well.
Collapse
Affiliation(s)
- Mo Xiao
- Quanzhou Medical College, 362021, China.
| |
Collapse
|
12
|
Qu Q, Yang A, Wang J, Xie M, Zhang X, Huang D, Xiong R, Pei D, Huang C. Responsive and biocompatible chitosan-phytate microparticles with various morphology for antibacterial activity based on gas-shearing microfluidics. J Colloid Interface Sci 2023; 649:68-75. [PMID: 37336155 DOI: 10.1016/j.jcis.2023.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/17/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Chitosan microparticles are frequently used for the encapsulation of ingredients, owing to their pH-responsive, renewable, biocompatible and antimicrobial properties. Herein, pH-responsive antibacterial encapsulation carriers in chitosan-phytate (CS-PA) microparticles with various morphologies were prepared by gas-shearing microfluidics. Microparticles sizes were tuned by gas flow rate in production, and the CS and PA concentration significantly dominated the morphology of microparticles. Additionally, microparticles exhibit great storage stability, lyophilizing rehydration performance, pH-responsive behavior, as well as antibacterial and biocompatible effect, indicating that CS-PA microparticles are expected to become an ideal carrier for the actives encapsulation in pharmaceutical, food and cosmetic industries.
Collapse
Affiliation(s)
- Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, PR China
| | - Anquan Yang
- Zhejiang OSM Group Co., Ltd, Huzhou 313000, PR China
| | - Jing Wang
- Zhejiang OSM Group Co., Ltd, Huzhou 313000, PR China
| | - Min Xie
- Zhejiang OSM Group Co., Ltd, Huzhou 313000, PR China
| | - Xiaoli Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China
| | - Dan Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China
| | - Dong Pei
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, PR China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China.
| |
Collapse
|
13
|
Han X, Ma P, Shen M, Wen H, Xie J. Modified porous starches loading curcumin and improving the free radical scavenging ability and release properties of curcumin. Food Res Int 2023; 168:112770. [PMID: 37120221 DOI: 10.1016/j.foodres.2023.112770] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Maize porous starch-curcumin microspheres were prepared by encapsulating curcumin into cross-linked porous starch and oxidized porous starch to investigate the effect of modified porous starch in embedding and protecting curcumin. The morphology and physicochemical properties of microspheres were analyzed using scanning electron microscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction, Zeta/DLS, Thermal stability, and antioxidant activity; the release of curcumin was evaluated with a simulated gastric-intestine model. The FT-IR results revealed that curcumin was amorphously encapsulated in the composite and hydrogen bond formation between starch and curcumin was one of the major driving forces for encapsulation. Microspheres increased the initial decomposition temperature of curcumin, which has a protective effect on curcumin. Modification improved the encapsulation efficiency and the scavenging free radical ability of porous starch. The release mechanism of curcumin from microspheres fits first-order and Higuchi models well in gastric and intestinal models, respectively, indicating that encapsulation of curcumin within different porous starches microspheres enables controlled release of curcumin. To recapitulate, two different modified porous starch microspheres improved the drug loading, slow release and free radical scavenging effects of curcumin. Among them, the cross-linked porous starch microspheres had higher encapsulation and slow release ability for curcumin than the oxidized porous starch microspheres. It provides theoretical significance and data basis for the encapsulation of active substances by modified porous starch.
Collapse
Affiliation(s)
- Xiuying Han
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ping Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
14
|
Weng J, Durand A, Desobry S. Chitosan-Based Particulate Carriers: Structure, Production and Corresponding Controlled Release. Pharmaceutics 2023; 15:1455. [PMID: 37242694 PMCID: PMC10221392 DOI: 10.3390/pharmaceutics15051455] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The state of the art in the use of chitosan (CS) for preparing particulate carriers for drug delivery applications is reviewed. After evidencing the scientific and commercial potentials of CS, the links between targeted controlled activity, the preparation process and the kinetics of release are detailed, focusing on two types of particulate carriers: matrix particles and capsules. More precisely, the relationship between the size/structure of CS-based particles as multifunctional delivery systems and drug release kinetics (models) is emphasized. The preparation method and conditions greatly influence particle structure and size, which affect release properties. Various techniques available for characterizing particle structural properties and size distribution are reviewed. CS particulate carriers with different structures can achieve various release patterns, including zero-order, multi-pulsed, and pulse-triggered. Mathematical models have an unavoidable role in understanding release mechanisms and their interrelationships. Moreover, models help identify the key structural characteristics, thus saving experimental time. Furthermore, by investigating the close relation between preparation process parameters and particulate structural characteristics as well as their effect on release properties, a novel "on-demand" strategy for the design of drug delivery devices may be developed. This reverse strategy involves designing the production process and the related particles' structure based on the targeted release pattern.
Collapse
Affiliation(s)
- Jiaqi Weng
- Université de Lorraine, LIBio, F-54000 Nancy, France;
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France;
| | - Alain Durand
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France;
| | | |
Collapse
|
15
|
Fabrication of self-assembled core-sheath microfibers via formulation of alginate-based bioinks. Carbohydr Polym 2023; 305:120557. [PMID: 36737203 DOI: 10.1016/j.carbpol.2023.120557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Core-sheath microfibrous structures are widely used in various tissue engineering applications and drug delivery systems. However, the fabrication of the various core-sheath structures using a 3D printing process supplemented with a coaxial nozzle has been challenging due to the center positioning of the core nozzle enclosed in the bigger shell nozzle. In this work, we developed a new 3D printing process using an alginate-based bioink (a mixture of photo-crosslinkable hydrogel and alginate) and its in situ crosslinking process within a single glass nozzle of the 3D printer. By manipulating the alginate weight fraction, UV intensity, flow rate, and nozzle moving speed, we could fabricate various self-assembled core-sheath structures (straight, wavy, and crimped microfibers in the core region of the structure) in which the photocrosslinked hydrogel resided in the core, and alginate was positioned in the sheath region, like a virtual coaxial nozzle.
Collapse
|
16
|
Luo J, Gu Y, Yuan Y, Wu W, Jin Y, Jiang B. Lignin-induced sacrificial conjoined-network enabled strong and tough chitosan membrane for food preservation. Carbohydr Polym 2023; 313:120876. [PMID: 37182966 DOI: 10.1016/j.carbpol.2023.120876] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
As a natural green polymer, chitosan is a promising material for plastic replacement. However, the mutually exclusive strength and toughness severely limit its commercial application, and the improved strength of chitosan-based materials is typically achieved at the expense of elongation or toughness. Herein, inspired by the existed multiple non-covalent interactions in biosynthesized fibers, we successfully fabricated a high-performance lignin/chitosan composite film by constructing sacrificial conjoined-network (hydrogen bonds, electrostatic interaction, etc.), which results in an impressive enhancement in tensile strength (50.2 MPa), elongation (73.6 %), and toughness (2.7 MJ/m3) simultaneously, much superior to the pure chitosan film. In addition, the composite film also demonstrates excellent UV resistance, thermal stability, low oxygen permeability (3.9 cm3/(m2·24h‧0.1 MPa)) and food preservation (with no negligible change for grape, apple, and cherry tomato after 5-10 days). Such developed lignin/chitosan with both components from biomass represents a promising alternative for plastic replacement.
Collapse
|
17
|
Su YY, Pan DW, Deng CF, Yang SH, Faraj Y, Xie R, Ju XJ, Liu Z, Wang W, Chu LY. Facile and Scalable Rotation-Based Microfluidics for Controllable Production of Emulsions, Microparticles, and Microfibers. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Yao-Yao Su
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Da-Wei Pan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chuan-Fu Deng
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shi-Hao Yang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yousef Faraj
- Department of Chemical Engineering, University of Chester, Chester CH1 4BJ, United Kingdom
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
18
|
Li L, Cen J, Huang L, Luo L, Jiang G. Fabrication of a dual pH-responsive and photothermal microcapsule pesticide delivery system for controlled release of pesticides. PEST MANAGEMENT SCIENCE 2023; 79:969-979. [PMID: 36309964 DOI: 10.1002/ps.7265] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/15/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The development of stimulus-responsive and photothermally controlled-release microcapsule pesticide delivery systems is a promising solution to enhance the effective utilization and minimize the excessive use of pesticides in agriculture. RESULTS In this study, an AVM@CS@TA-Fe microcapsule pesticide delivery system was developed using avermectin as the model drug, chitosan and tannic acid as the wall materials, and tannic acid-Fe complex layer as the photothermal agent. The optical microscope, scanning electron microscope, transmission electron microscope, and Fourier-transform infrared spectroscope were used to characterize the prepared microcapsule. The slow-release, UV-shielding, photothermal performance, and nematicidal activity of the microcapsule were systematically investigated. The results showed that the system exhibited excellent pH-responsive and photothermal-sensitive performances. In addition, the UV-shielding performance of the delivery system was improved. The photothermal conversion efficiency (η) of the system under the irradiation of near-infrared (NIR) light was determined to be 14.18%. Moreover, the nematicidal activities of the system against pine wood nematode and Aphelenchoides besseyi were greatly increased under the irradiation of light-emitting diode (LED) simulated sunlight. CONCLUSION The release of the pesticide-active substances in such a pesticide delivery system could be effectively regulated with the irradiation of NIR light or LED-simulated sunlight. Thus, the developed pesticide delivery system may have broad application prospects in modern agriculture fields. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linhuai Li
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, P. R. China
| | - Jun Cen
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, P. R. China
| | - Lingling Huang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, P. R. China
| | - Ling Luo
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Guangqi Jiang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, P. R. China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| |
Collapse
|
19
|
Rücker VB, Balbinot GDS, Collares FM, de Araújo Neto VG, Giannini M, Leitune VCB. Synthesis of silver core-shell nanoparticles and their influence on an experimental resin endodontic sealer: An in vitro analysis. Int Endod J 2023; 56:289-303. [PMID: 36314859 DOI: 10.1111/iej.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
Abstract
AIM To avoid root canal recontamination and endodontic treatment failure, endodontic sealers with antibacterial activity could be an alternative. Silver nanoparticles have antibacterial activity and this study aimed to synthesize Ag@SiO2 nanoparticles, incorporate them into an experimental endodontic resin sealer and evaluate their influence on physicochemical and biological properties. METHODOLOGY Ag@SiO2 nanoparticles were produced using the sol-gel process, based on the Stöber method. The particles were characterized in terms of their chemical structure by Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV-Vis spectral analysis, scanning electron microscopy, and transmission electron microscopy, where the particle morphology and diameter were analysed. A dual-cured experimental endodontic resin sealer was formulated using 70 wt% UDMA, 15 wt% GDMA, and 15 wt% BisEMA. The photoinitiators were added separately in two pastes. The Ag@SiO2 nanoparticles were incorporated into the endodontic sealer at the concentrations of 2.5 wt%, 5 wt%, and 10 wt%, and a control group without nanoparticles was also formulated. The endodontic sealers were evaluated for their flow, film thickness, degree of conversion, softening in solvent, radiopacity, cytotoxicity and antibacterial activity immediately and after 9 months in water storage. RESULTS Silver was detected in the chemical characterization of Ag@SiO2 that presented a spheric regular shape and average 683.51 nm ± 93.58 diameter. Sealers presented adequate flow and film thickness while radiopacity values were below the ones required by ISO 6876. All groups underwent softening after immersion in a solvent. The 10 wt% groups showed a higher loss of subsurface hardness (∆KHN%). No reduction in cell viability was observed. Enterococcus faecalis viability in biofilm was reduced in 10 wt% groups after 24 h and 9 months. CONCLUSION The addition of 10 wt% Ag@SiO2 reduced E. faecalis viability at immediate and longitudinal analysis while maintaining the physicochemical properties of developed sealers.
Collapse
Affiliation(s)
- Victória Britz Rücker
- Dental Materials Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriela de Souza Balbinot
- Dental Materials Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabrício Mezzomo Collares
- Dental Materials Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vitaliano Gomes de Araújo Neto
- Operative Dentistry Division, Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Campinas, Brazil
| | - Marcelo Giannini
- Operative Dentistry Division, Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Campinas, Brazil
| | | |
Collapse
|
20
|
Sun TC, Bai XH, Cheng GT, Ding YN, Zhou ZY, Wang BC, Xu L, Ramakrishna S, Zhang J, Long YZ. Icy core-shell composite nanofibers with cooling, antibacterial and healing properties for outdoor burns. J Colloid Interface Sci 2023; 629:206-216. [PMID: 36152577 DOI: 10.1016/j.jcis.2022.09.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 11/22/2022]
Abstract
Burns are usually difficult to treat because their susceptibe to bacterial infections. When burns is accompanied by hyperthermia, the heat accumulated on the skin will causes extensive tissue damage. Most dressings focus on the treatment process, while ignoring the first-aid treatment to remove hyperthermia. To make matters worse, when outdoors, it is hard to find clean water to wash and cool the burned area. A dressing which can simultaneously realize first-time cooling and repairing treatment of the burned area can shorten treatment time, and is especially beneficial for outdoor use. In this study, a handheld coaxial electrospinning device is developed for preparing platelet-rich plasma @Polycaprolactone-epsilon polylysine (PRP@PCL/ε-PL) core-shell nanofibers. The nanofibers can be synchronously transformed into ice fibers during the spinning process, and directly deposited on the skin. The whole process is convenient to use outdoor. Via dual cooling mechanisms, first aid can take away the excessive heat in the burn area by nanofibers. These core-shell nanofibers also show its excellent antimicrobial and tissue regeneration-promoting properties. Therefore, it achieves first-time cooling and repair treatment of the burned area at the same time. Moreover, due to direct in-situ deposition of this handheld coaxial electrospinning, better antimicrobial properties, and faster healing performance are achieved. By using this integrated strategy that combines cooling, antibacterial and healing promotion, the burn recovery time is shortened from 21 days to 14 days.
Collapse
Affiliation(s)
- Tian-Cai Sun
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Xiao-Han Bai
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Guo-Ting Cheng
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Yi-Ning Ding
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Zi-Yi Zhou
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Bing-Chang Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Lei Xu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China.
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
21
|
Meng Q, Zhong S, Wang J, Gao Y, Cui X. Advances in chitosan-based microcapsules and their applications. Carbohydr Polym 2023; 300:120265. [DOI: 10.1016/j.carbpol.2022.120265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022]
|
22
|
Liu Z, Xu Z, Wang X, Zhang Y, Wu Y, Jiang D, Jia R. Preparation and Biocompatibility of Core-Shell Microspheres for Sequential, Sustained Release of BMP-2 and VEGF. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4072975. [PMID: 36467885 PMCID: PMC9718627 DOI: 10.1155/2022/4072975] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 08/26/2023]
Abstract
Bone defect repair remains a challenge in orthopedics. This study describes the development and potential effectiveness of vascular endothelial growth factor (VEGF)/bone morphogenetic protein-2 (BMP-2) shell-core microspheres for promoting bone regeneration. Poly(L-lactic acid)/polylactic-co-glycolic acid (PLLA/PLGA) core-shell microspheres loaded with VEGF and BMP-2 were prepared by a coaxial electrospray technique, and their surface morphology, core-shell distribution, and particle size were examined. Different groups of microspheres were prepared with different placement of the growth factors, and the encapsulation efficiency and in vitro release curves were measured. Additionally, the effects of the different groups of microspheres on the proliferation and differentiation of osteoblasts and vascular endothelial cells were investigated. The prepared microspheres had a core-shell structure with good homogeneity and dispersion, a clear boundary, and a smooth surface. On scanning electron microscopy, the mean diameter of the microspheres was similar for all six preparations (P > 0.05). During in vitro release, growth factor was initially released via a brief burst release from the outer shell of the microsphere followed by a slower sustained release. The release of growth factors from the inner core remained relatively slow and sustained. Sequential release of different growth factors was achieved through the inconsistent release rates from the microsphere shell and inner core. All groups of microspheres showed no cytotoxicity, good biocompatibility, and the ability to promote osteoblast proliferation. The microspheres loaded with BMP-2 also promoted osteoblast differentiation, and VEGF-loaded microspheres promoted the proliferation and differentiation of vascular endothelial cells. The BMP-2 (core)/VEGF (shell) microsphere group best promoted osteoblast differentiation. The microspheres prepared in this study exhibited slow sequential release of BMP-2 and VEGF and showed good biocompatibility along with the ability to promote osteoblast differentiation and vascular endothelial cell proliferation.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Orthopedics, Hunan Children's Hospital, 86# Ziyuan Road, Changsha, Hunan 410007, China
| | - Zhenchao Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, 87# Xiangya Road, Changsha, Hunan 410008, China
| | - Xiyang Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, 87# Xiangya Road, Changsha, Hunan 410008, China
| | - Yilu Zhang
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, 87# Xiangya Road, Changsha, Hunan 410008, China
| | - Yunqi Wu
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, 87# Xiangya Road, Changsha, Hunan 410008, China
| | - Dingyu Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, 87# Xiangya Road, Changsha, Hunan 410008, China
| | - Runze Jia
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, 87# Xiangya Road, Changsha, Hunan 410008, China
| |
Collapse
|
23
|
Yang D, Yang S, Mu M, Liu X, Zhao L, Xu Z, Mu C, Li D, Ge L. Multifunctional β-Cyclodextrin-Poly(ethylene glycol)-Cholesterol Nanomicelle for Anticancer Drug Delivery. ACS APPLIED BIO MATERIALS 2022; 5:5418-5431. [PMID: 36326507 DOI: 10.1021/acsabm.2c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nanoparticle drug delivery systems have drawn considerable attention worldwide due to their unique characteristics and advantages in anticancer drug delivery. Herein, the curcumin (Cur) loaded nanomicelles with two-stage drug release behavior were developed. β-Cyclodextrin (β-CD) and cholesterol were conjugated onto both ends of the poly(ethylene glycol) (PEG) chain to obtain an amphiphilic β-CD-PEG-Chol. The Cur was loaded into the cavities of β-CD and nanomicelle when the β-CD-PEG-Chol self-assembled to the Cur@β-CD-PEG-Chol nanomicelles (Cur@CPC NMs). These Cur@CPC NMs are spherical particles with a particle size of 120.9 nm. The Cur drug loading capacity of Cur@CPC NMs are 61.6 ± 6.9 mg/g. The release behavior of Cur from Cur@CPC NMs conformed to a two-stage mode of "burst-release followed by sustained-release". The prepared Cur@CPC NMs possess high storage stability and excellent hemocompatibility. Moreover, these Cur@CPC NMs exhibit satisfactory antioxidant activity and anticancer activity, resulting in significant reduction in intracellular H2O2-induced ROS and a nearly 50% lethality rate of HepG-2 cells. Meanwhile, the Cur@CPC NMs show good anti-inflammatory activity, by which the secretion of inflammatory factors of IL-6 and TNF-α are inhibited. Overall, the developed Cur@CPC NMs show application prospects in anticancer drug delivery systems.
Collapse
Affiliation(s)
- Die Yang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Shilong Yang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Mingze Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Xueping Liu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Lei Zhao
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu610041, P. R. China
| | - Zhilang Xu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu610065, P. R. China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu610065, P. R. China
| |
Collapse
|
24
|
Mu R, Bu N, Pang J, Wang L, Zhang Y. Recent Trends of Microfluidics in Food Science and Technology: Fabrications and Applications. Foods 2022; 11:3727. [PMID: 36429319 PMCID: PMC9689895 DOI: 10.3390/foods11223727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The development of novel materials with microstructures is now a trend in food science and technology. These microscale materials may be applied across all steps in food manufacturing, from raw materials to the final food products, as well as in the packaging, transport, and storage processes. Microfluidics is an advanced technology for controlling fluids in a microscale channel (1~100 μm), which integrates engineering, physics, chemistry, nanotechnology, etc. This technology allows unit operations to occur in devices that are closer in size to the expected structural elements. Therefore, microfluidics is considered a promising technology to develop micro/nanostructures for delivery purposes to improve the quality and safety of foods. This review concentrates on the recent developments of microfluidic systems and their novel applications in food science and technology, including microfibers/films via microfluidic spinning technology for food packaging, droplet microfluidics for food micro-/nanoemulsifications and encapsulations, etc.
Collapse
Affiliation(s)
- Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Lin Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
25
|
Yin WH, Zhou CH, Ju XJ, Deng Y, Zhang L, Xie R, Wang W, Liu Z, Chu LY. Dual-functional polyetheretherketone surface with programmed sequential drug release coating. Colloids Surf B Biointerfaces 2022; 219:112806. [PMID: 36088828 DOI: 10.1016/j.colsurfb.2022.112806] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 10/31/2022]
Abstract
The poor bacteriostasis and osseointegration properties of bioinert polyetheretherketone (PEEK) hinder its clinical application. This work reports a simple and versatile strategy for fabricating dual-functional coating with programmed sequential drug release properties on porous PEEK surfaces. The dual-drug-loaded composite coating composed of drug-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles and drug-loaded polyvinyl alcohol (PVA) gel can be immobilized on the surface of sulfonated PEEK by a cyclic freeze-thaw method. Based on the swelling of PVA and the slow degradation of PLGA, the composite coating can realize rapid release of antibacterial drugs and sustained release of osteogenic drugs. The in vitro antibacterial evaluations show that the porous PEEK modified with drug-loaded composite gel coating exhibits an early effective fight against Staphylococcus aureus (S.aureus). The results of in vitro cell experiments show that the PEEK materials modified by the composite gel coating can well support the normal growth, adhesion and proliferation of cells. In addition, the PEEK material coated with the drug-loaded composite gel is found to have positive effects on the osteogenic differentiation of cells in detections of alkaline phosphatase (ALP) activity of cells and the amount of calcium deposition on the surface of the material. The results demonstrate that the proposed porous PEEK modified with dual-drug-loaded composite gel coating simultaneously exhibits excellent osseointegration and exerts early effective antibacterial activity. This dual-functional PEEK material has great application potential in clinical bone tissue repair.
Collapse
Affiliation(s)
- Wei-Hong Yin
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chang-Hai Zhou
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lu Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
26
|
Wang W, Li PF, Xie R, Ju XJ, Liu Z, Chu LY. Designable Micro-/Nano-Structured Smart Polymeric Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107877. [PMID: 34897843 DOI: 10.1002/adma.202107877] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/28/2021] [Indexed: 06/14/2023]
Abstract
Smart polymeric materials with dynamically tunable physico-chemical characteristics in response to changes of environmental stimuli, have received considerable attention in myriad fields. The diverse combination of their micro-/nano-structural and molecular designs creates promising and exciting opportunities for exploiting advanced smart polymeric materials. Engineering micro-/nano-structures into smart polymeric materials with elaborate molecular design enables intricate coordination between their structures and molecular-level response to cooperatively realize smart functions for practical applications. In this review, recent progresses of smart polymeric materials that combine micro-/nano-structures and molecular design to achieve designed advanced functions are highlighted. Smart hydrogels, gating membranes, gratings, milli-particles, micro-particles and microvalves are employed as typical examples to introduce their design and fabrication strategies. Meanwhile, the key roles of interplay between their micro-/nano-structures and responsive properties to realize the desired functions for their applications are emphasized. Finally, perspectives on the current challenges and opportunities of micro-/nano-structured smart polymeric materials for their future development are presented.
Collapse
Affiliation(s)
- Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ping-Fan Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
27
|
Jia F, Gao Y, Wang H. Recent Advances in Drug Delivery System Fabricated by Microfluidics for Disease Therapy. Bioengineering (Basel) 2022; 9:625. [PMID: 36354536 PMCID: PMC9687342 DOI: 10.3390/bioengineering9110625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 09/08/2024] Open
Abstract
Traditional drug therapy faces challenges such as drug distribution throughout the body, rapid degradation and excretion, and extensive adverse reactions. In contrast, micro/nanoparticles can controllably deliver drugs to target sites to improve drug efficacy. Unlike traditional large-scale synthetic systems, microfluidics allows manipulation of fluids at the microscale and shows great potential in drug delivery and precision medicine. Well-designed microfluidic devices have been used to fabricate multifunctional drug carriers using stimuli-responsive materials. In this review, we first introduce the selection of materials and processing techniques for microfluidic devices. Then, various well-designed microfluidic chips are shown for the fabrication of multifunctional micro/nanoparticles as drug delivery vehicles. Finally, we describe the interaction of drugs with lymphatic vessels that are neglected in organs-on-chips. Overall, the accelerated development of microfluidics holds great potential for the clinical translation of micro/nanoparticle drug delivery systems for disease treatment.
Collapse
Affiliation(s)
- Fuhao Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbing Gao
- Troop 96901 of the Chinese People’s Liberation Army, Beijing 100094, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Liu Z, Xu Z, Wang X, Zhang Y, Wu Y, Jiang D, Jia R. Construction and osteogenic effects of 3D-printed porous titanium alloy loaded with VEGF/BMP-2 shell-core microspheres in a sustained-release system. Front Bioeng Biotechnol 2022; 10:1028278. [PMID: 36338136 PMCID: PMC9634119 DOI: 10.3389/fbioe.2022.1028278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
The repair and reconstruction of bone defects remain a challenge in orthopedics. The present study offers a solution to this problem by developing a vascular endothelial growth factor (VEGF)/bone morphogenetic protein 2 (BMP-2) shell-core microspheres loaded on 3D-printed porous titanium alloy via gelatin coating to prepare a titanium-alloy microsphere scaffold release system. The composite scaffold was characterized via scanning electron microscope (SEM) and energy disperse spectroscopy (EDS), and the effect of the composite scaffold on the adhesion, proliferation, and differentiation of osteoblasts were determined in vitro. Furthermore, a rabbit femoral defect model was established to verify the effect of the composite scaffold on osteogenesis and bone formation in vivo. The results demonstrated that the composite scaffold could release VEGF and BMP-2 sequentially. Meanwhile, the composite scaffold significantly promoted osteoblast adhesion, proliferation, and differentiation (p < 0.05) compared to pure titanium alloy scaffolds in vitro. Furthermore, the composite scaffold can exhibit significant osteogenic differentiation (p < 0.05) than gelatin-coated titanium alloy scaffolds. The in vivo X-rays demonstrated that the implanted scaffolds were in a good position, without inflammation and infection. Micro-CT and quantitative results of new bone growth illustrated that the amount of new bone in the composite scaffold is significantly higher than that of the gelatin-coated and pure titanium alloy scaffolds (p < 0.05). Similarly, the fluorescence labeling and V-G staining of hard tissue sections indicated that the bone integration capacity of the composite scaffold was significantly higher than the other two groups (p < 0.05). This research suggests that VEGF/BMP-2 shell-core microspheres loaded on 3D-printed titanium alloy porous scaffold through gelatin hydrogel coating achieved the sequential release of VEGF and BMP-2. Most importantly, the in vitro and in vivo study findings have proven that the system could effectively promote osteogenic differentiation and osseointegration.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Zhenchao Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Zhenchao Xu, ; Yunqi Wu,
| | - Xiyang Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yilu Zhang
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunqi Wu
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Zhenchao Xu, ; Yunqi Wu,
| | - Dingyu Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Runze Jia
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
29
|
Owh C, Ow V, Lin Q, Wong JHM, Ho D, Loh XJ, Xue K. Bottom-up design of hydrogels for programmable drug release. BIOMATERIALS ADVANCES 2022; 141:213100. [PMID: 36096077 DOI: 10.1016/j.bioadv.2022.213100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Hydrogels are a promising drug delivery system for biomedical applications due to their biocompatibility and similarity to native tissue. Programming the release rate from hydrogels is critical to ensure release of desired dosage over specified durations, particularly with the advent of more complicated medical regimens such as combinatorial drug therapy. While it is known how hydrogel structure affects release, the parameters that can be explicitly controlled to modulate release ab initio could be useful for hydrogel design. In this review, we first survey common physical models of hydrogel release. We then extensively go through the various input parameters that we can exercise direct control over, at the levels of synthesis, formulation, fabrication and environment. We also illustrate some examples where hydrogels can be programmed with the input parameters for temporally and spatially defined release. Finally, we discuss the exciting potential and challenges for programming release, and potential implications with the advent of machine learning.
Collapse
Affiliation(s)
- Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (NUS), 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
| | - Valerie Ow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (NUS), 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
| | - Joey Hui Min Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Dean Ho
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, Singapore 117583, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, #01-30 General Office, Block N4.1, Singapore 639798, Singapore.
| | - Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore.
| |
Collapse
|
30
|
Preparation and characterization of long-term antibacterial and pH-responsive Polylactic acid/Octenyl succinic anhydride-chitosan @ tea tree oil microcapsules. Int J Biol Macromol 2022; 220:1318-1328. [PMID: 36089085 DOI: 10.1016/j.ijbiomac.2022.09.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/20/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
Encapsulation technology can increase the stability and maintain the volatile active substances of plant essential oils. In the present study, tree essential oil (TTO) was encapsulated with polylactic acid (PLA) modified by octenyl succinic anhydride chitosan (OSA-CS) as shell materials to form long-term antibacterial and pH-responsive microcapsules. The PLA/OSA-CS@TTO microcapsules were characterized by high performance liquid chromatography (HPLC), scanning electron microscopy (SEM) and antibacterial performance testing. The results showed that the average particle size of microcapsules was 10 μm, and the encapsulation efficiency and drug loading efficiency of TTO reached 81.5 % and 60.3 %. After 4800 min of release in media at different pH (5 and 7) still sequestered 55.32 % and 56.74 % of TTO which approved the shell of microcapsules responded to different pH values. The microcapsules remained stable for 80 days after drying, and preserving 39.7 % of the core material. The morphology of PLA/OSA-CS@TTO microcapsules revealed that the PLA/OSA-CS@TTO microcapsules presented smooth and firm structure. Antibacterial test for staphylococcus aureus of those microcapsules implied that the bacteriostatic rate reached 100 % after 72 h. Bio-based macromolecular modification strategies can provide inspiration for the development of green microcapsules.
Collapse
|
31
|
Yang Q, Yang J, Sun S, Zhao J, Liang S, Feng Y, Liu M, Zhang J. Rhodojaponin III-Loaded Chitosan Derivatives-Modified Solid Lipid Nanoparticles for Multimodal Antinociceptive Effects in vivo. Int J Nanomedicine 2022; 17:3633-3653. [PMID: 35996527 PMCID: PMC9392492 DOI: 10.2147/ijn.s362443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/04/2022] [Indexed: 12/28/2022] Open
Abstract
Background Rhodojaponin III (RJ-III) is a bioactive diterpenoid, which is mainly found in Rhododendron molle G. Don (Ericaceae), a potent analgesia in traditional Chinese medicine with several years of clinical applications in the country. However, its clinical use is limited by its acute toxicity and poor pharmacokinetic profiles. To reduce such limitations, the current study incorporated RJ-III into the colloidal drug delivery system of hydroxypropyl trimethyl ammonium chloride chitosan (HACC)-modified solid lipid nanoparticles (SLNs) to improve its sustained release and antinociceptive effects in vivo for oral delivery. Results The optimized RJ-III@HACC-SLNs were close to spherical, approximately 134 nm in size, and with a positive zeta potential. In vitro experiments showed that RJ-III@HACC-SLNs were stable in the simulated gastric fluid and had a prolonged release in PBS (pH = 6.8). Pharmacokinetic results showed that after intragastric administration in mice, the relative bioavailability of RJ-III@HACC-SLNs was 87.9%. Further, it was evident that the peak time, half-time, and mean retention time of RJ-III@HACC-SLNs were improved than RJ-III after the administration. In addition, pharmacodynamic studies revealed that RJ-III@HACC-SLNs markedly reduced the acetic acid, hot, and formalin-induced nociceptive responses in mice (P < 0.001), and notably increased the analgesic time (P < 0.01). Moreover, RJ-III@HACC-SLNs not only showed good biocompatibility with Caco-2 cells in vitro but its LD50 value was also increased by 1.8-fold as compared with that of RJ-III in vivo. Conclusion These results demonstrated that RJ-III@HACC-SLNs improved the pharmacokinetic characteristics of the RJ-III, thereby exhibiting toxicity-attenuating potential and antinociceptive enhancing properties. Consequently, HACC-SLNs loaded with RJ-III could become a promising oral formulation for pain management that deserves further investigation in the future.
Collapse
Affiliation(s)
- Qingyun Yang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jian Yang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Shuigen Sun
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jingyi Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Shuang Liang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Minchen Liu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jiquan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| |
Collapse
|
32
|
Kim JW, Han SH, Choi YH, Hamonangan WM, Oh Y, Kim SH. Recent advances in the microfluidic production of functional microcapsules by multiple-emulsion templating. LAB ON A CHIP 2022; 22:2259-2291. [PMID: 35608122 DOI: 10.1039/d2lc00196a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiple-emulsion drops serve as versatile templates to design functional microcapsules due to their core-shell geometry and multiple compartments. Microfluidics has been used for the elaborate production of multiple-emulsion drops with a controlled composition, order, and dimensions, elevating the value of multiple-emulsion templates. Moreover, recent advances in the microfluidic control of the emulsification and parallelization of drop-making junctions significantly enhance the production throughput for practical use. Metastable multiple-emulsion drops are converted into stable microcapsules through the solidification of selected phases, among which solid shells are designed to function in a programmed manner. Functional microcapsules are used for the storage and release of active materials as drug carriers. Beyond their conventional uses, microcapsules can serve as microcompartments responsible for transmembrane communication, which is promising for their application in advanced microreactors, artificial cells, and microsensors. Given that post-processing provides additional control over the composition and construction of multiple-emulsion drops, they are excellent confining geometries to study the self-assembly of colloids and liquid crystals and produce miniaturized photonic devices. This review article presents the recent progress and current state of the art in the microfluidic production of multiple-emulsion drops, functionalization of solid shells, and applications of microcapsules.
Collapse
Affiliation(s)
- Ji-Won Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Sang Hoon Han
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Ye Hun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Wahyu Martumpal Hamonangan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Yoonjin Oh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
33
|
Smart membranes for biomedical applications. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Jia J, Liu RK, Gu YH, Sun Q, Wang JX, Chen JF. High-gravity-assisted Fabrication of Self-assembled Colloidosomes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jia Jia
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Rong-Kun Liu
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yu-Hang Gu
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qian Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Jie-Xin Wang
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jian-Feng Chen
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
35
|
Maeki M, Uno S, Niwa A, Okada Y, Tokeshi M. Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery. J Control Release 2022; 344:80-96. [PMID: 35183654 PMCID: PMC8851889 DOI: 10.1016/j.jconrel.2022.02.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/29/2022]
Abstract
In 2021, mRNA vaccines against COVID-19 were approved by the Food and Drug Administration. mRNA vaccines are important for preventing severe COVID-19 and returning to normal life. The development of RNA-delivery technology, including mRNA vaccines, has been investigated worldwide for ~30 years. Lipid nanoparticles (LNPs) are a breakthrough technology that stably delivers RNA to target organs, and RNA-loaded LNP-based nanomedicines have been studied for the development of vaccines and nanomedicines for RNA-, gene-, and cell-based therapies. Recently, microfluidic devices and technologies have attracted attention for the production of LNPs, particularly RNA-loaded LNPs. Microfluidics provides many advantages for RNA-loaded LNP production, including precise LNP size controllability, high reproducibility, high-throughput optimization of LNP formulation, and continuous LNP-production processes. In this review, we summarize microfluidic-based RNA-loaded LNP production and its applications in RNA-based therapy and genome editing.
Collapse
Affiliation(s)
- Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan; JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Shuya Uno
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Ayuka Niwa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Yuto Okada
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| |
Collapse
|
36
|
Lv M, Li H, Cao H, Wang T, He C, Liang Y, Mao X, Wang Z. Assembling Alkaline-Responsive Chitosan@Giant Liposomes through an Ultrasound-Integrated Microfluidic Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3223-3233. [PMID: 35245076 DOI: 10.1021/acs.langmuir.1c03304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper presents the fabrication of an alkaline-responsive drug carrier, chitosan@giant liposome (CS-GL), by using an ultrasound-integrated microfluidic approach. On the microfluidic chip, water/oil/water droplets are first prepared and then move through an area of ultrasonic radiation to improve the regional saturation of organic solvent and accelerate its removal. At the same time, phospholipid molecules in the oil phase of the droplets are efficiently self-assembled into giant liposomes (GLs). Subsequently, microfluidic channels combined with an up-down separated structure can help in the fabrication and purification of the GLs. Due to the electrostatic interaction between the amino group of chitosan and the phosphate group of phospholipids, the GLs and chitosan are assembled into CS-GLs. The change of ζ potential after this operation indicates that chitosan is coated on the surface of GLs. The formed CS-GLs are monodispersed with a 54.1 ± 0.7 μm diameter and high drug encapsulation efficiency (∼96%), and the structural integrity can be kept without leakage of contents for more than a week in an acid medium (pH = 1.2). When this structure is placed in an aqueous solution of pH = 7.8, chitosan precipitates gradually and detaches from the GL, causing its rupture. The drug encapsulated in a single CS-GL can be rapidly released within 4 s, and 99.6% of the CS-GL carriers can complete the release within 10 min.
Collapse
Affiliation(s)
- Mengting Lv
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Huanan Li
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Hua Cao
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Teng Wang
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Chengdian He
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yi Liang
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xiang Mao
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Zhenyu Wang
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
37
|
Zhao Y, Moshtaghibana S, Zhu T, Fayemiwo KA, Price A, Vladisavljević G. Microfluidic fabrication of novel polymeric core‐shell microcapsules for storage of
CO
2
solvents and organic chelating agents. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuan Zhao
- Department of Chemical Engineering Loughborough University Loughborough LE11 3TU UK
- School of Space and Environment, Beijing Key Laboratory of Bio‐Inspired Energy Materials and Devices Beihang University Beijing China
| | | | - Tianle Zhu
- School of Space and Environment, Beijing Key Laboratory of Bio‐Inspired Energy Materials and Devices Beihang University Beijing China
| | - Kehinde A. Fayemiwo
- Department of Chemical Engineering Loughborough University Loughborough LE11 3TU UK
| | - Adam Price
- Department of Chemistry Loughborough University Loughborough UK
| | - Goran Vladisavljević
- Department of Chemical Engineering Loughborough University Loughborough LE11 3TU UK
| |
Collapse
|
38
|
Sun J, Xu Z, Hou Y, Yao W, Fan X, Zheng H, Piao J, Li F, Wei Y. Hierarchically structured microcapsules for oral delivery of emodin and tanshinone IIA to treat renal fibrosis. Int J Pharm 2022; 616:121490. [DOI: 10.1016/j.ijpharm.2022.121490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/28/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
|
39
|
Zhang X, Qu Q, Zhou A, Wang Y, Zhang J, Xiong R, Lenders V, Manshian BB, Hua D, Soenen SJ, Huang C. Core-shell microparticles: From rational engineering to diverse applications. Adv Colloid Interface Sci 2022; 299:102568. [PMID: 34896747 DOI: 10.1016/j.cis.2021.102568] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 12/24/2022]
Abstract
Core-shell microparticles, composed of solid, liquid, or gas bubbles surrounded by a protective shell, are gaining considerable attention as intelligent and versatile carriers that show great potential in biomedical fields. In this review, an overview is given of recent developments in design and applications of biodegradable core-shell systems. Several emerging methodologies including self-assembly, gas-shearing, and coaxial electrospray are discussed and microfluidics technology is emphasized in detail. Furthermore, the characteristics of core-shell microparticles in artificial cells, drug release and cell culture applications are discussed and the superiority of these advanced multi-core microparticles for the generation of artificial cells is highlighted. Finally, the respective developing orientations and limitations inherent to these systems are addressed. It is hoped that this review can inspire researchers to propel the development of this field with new ideas.
Collapse
|
40
|
Encapsulation of volatile compounds in liquid media: Fragrances, flavors, and essential oils in commercial formulations. Adv Colloid Interface Sci 2021; 298:102544. [PMID: 34717207 DOI: 10.1016/j.cis.2021.102544] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
The first marketed example of the application of microcapsules dates back to 1957. Since then, microencapsulation techniques and knowledge have progressed in a plethora of technological fields, and efforts have been directed toward the design of progressively more efficient carriers. The protection of payloads from the exposure to unfavorable environments indeed grants enhanced efficacy, safety, and stability of encapsulated species while allowing for a fine tuning of their release profile and longer lasting beneficial effects. Perfumes or, more generally, active-loaded microcapsules are nowadays present in a very large number of consumer products. Commercial products currently make use of rigid, stable polymer-based microcapsules with excellent release properties. However, this type of microcapsules does not meet certain sustainability requirements such as biocompatibility and biodegradability: the leaking via wastewater contributes to the alarming phenomenon of microplastic pollution with about 4% of total microplastic in the environment. Therefore, there is a need to address new issues which have been emerging in relation to the poor environmental profile of such materials. The progresses in some of the main application fields of microencapsulation, such as household care, toiletries, cosmetics, food, and pesticides are reviewed herein. The main technologies employed in microcapsules production and the mechanisms underlying the release of actives are also discussed. Both the advantages and disadvantages of every technique have been considered to allow a careful choice of the most suitable technique for a specific target application and prepare the ground for novel ideas and approaches for encapsulation strategies that we expect to be proposed within the next years.
Collapse
|
41
|
Liu Z, Liu X, Jiang S, Zhu C, Ma Y, Fu T. Effects on droplet generation in step-emulsification microfluidic devices. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Liu F, Guan X, Liu X, McClements DJ, Ngai T. Bioinspired Eggosomes with Dual Stimuli-Responsiveness. ACS APPLIED BIO MATERIALS 2021; 4:7825-7835. [DOI: 10.1021/acsabm.1c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fuguo Liu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Xin Guan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
43
|
Dai Y, Jiang Z, Li J, Wang M, Liu C, Qi W, Su R, He Z. Co-assembly of curcumin and a cystine bridged peptide to construct tumor-responsive nano-micelles for efficient chemotherapy. J Mater Chem B 2021; 8:1944-1951. [PMID: 32067020 DOI: 10.1039/c9tb02625h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effective uptake and release of hydrophobic antitumor drugs in cancer cells is a practical challenge for tumor chemotherapy. Many methods were developed to conquer it through modifying drug molecules with hydrophilic groups, or fabricating nanodrugs based on hydrophilic materials. In recent years, peptides have attracted significant interest as part of a promising platform for fabricating nanodrugs due to their low cytotoxicity, favorable variability and self-assembly property. In this study, a cystine bridged peptide (CBP) was designed to co-assemble with a hydrophobic antitumor drug curcumin (CCM), to form a tumor-responsive nanodrug. The hydrophilicity of the peptide promotes the water-dispersity of nanodrugs, and the disulfide bond in cystine, which is cleavable by glutathione (GSH), was involved considering the overexpressed GSH in tumor microenvironments. In vitro and in vivo tests on cervical cancer cells revealed that the obtained nanodrug can rapidly dissociate at tumor sites and inhibit the tumor growth with limited side effects on healthy tissues.
Collapse
Affiliation(s)
- Yemei Dai
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Zelei Jiang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Jingyi Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Mengfan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China. and Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China. and Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China and The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300350, P. R. China
| | - Rongxin Su
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China. and Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China and The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300350, P. R. China
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
44
|
Gao Y, Ma Q, Cao J, Wang Y, Yang X, Xu Q, Liang Q, Sun Y. Recent advances in microfluidic-aided chitosan-based multifunctional materials for biomedical applications. Int J Pharm 2021; 600:120465. [PMID: 33711469 DOI: 10.1016/j.ijpharm.2021.120465] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022]
Abstract
Chitosan-based biomaterials has shown great advantages in a broad range of applications, including drug delivery, clinical diagnosis, cell culture and tissue engineering. However, due to the lack of control over the fabrication processes by conventional techniques, the wide application of chitosan-based biomaterials has been hampered. Recently, microfluidics has been demonstrated as one of the most promising platforms to fabricate high-performance chitosan-based multifunctional materials with monodisperse size distribution and accurately controlled morphology and microstructures, which show great promising for biomedical applications. Here, we review recent progress of the fabrication of chitosan-based biomaterials with different structures and integrated functions by microfluidic technology. A comprehensive and in-depth depiction of critical microfluidic formation mechanism and process of various chitosan-based materials are first interpreted, with particular descriptions about the microfluidic-mediated control over the morphology and microstructures. Afterwards, recently emerging representative applications of chitosan-based multifunctional materials in various fields, are systematically summarized. Finally, the conclusions and perspectives on further advancing the microfluidic-aided chitosan-based multifunctional materials toward potential and versatile development for fundamental researches and biomedicine are proposed.
Collapse
Affiliation(s)
- Yang Gao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China.
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yiwen Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xin Yang
- Hangzhou Huadong Medicine Group Biotechnology Institute Company, Hangzhou, China
| | - Qiulong Xu
- Jiangsu Seven Continent Institute of Green Technology, Suzhou, China
| | - Qing Liang
- The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China.
| |
Collapse
|
45
|
Wang H, Liu R, Wang S, Guan Y, Zhang Y. A highly programmable platform for sequential release of protein therapeutics. J Mater Chem B 2021; 9:1616-1624. [PMID: 33475126 DOI: 10.1039/d0tb02657c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drug carriers capable of releasing multiple protein therapeutics in an appropriate sequence are highly desirable for the treatment of many diseases. However current systems only allow the sequential release of two or three proteins, and it is difficult to adjust the time intervals between them. Here to solve these problems a new system is designed. The proteins are first encapsulated in CaCO3 microspheres. Then the microspheres are coated with hydrogen-bonded tannic acid (TA)/polyethylene glycol (PEG) layer-by-layer films. The encapsulated protein does not release from the microsphere until the TA/PEG coating is fully disintegrated. As the TA/PEG coating is eroded at a constant rate, the lag time for protein release is proportional to the coating thickness. To achieve sequential release, one can simply coat the protein-encapsulated microspheres with different thickness TA/PEG films and then mix them. Both in vitro and in vivo tests demonstrate that the proteins can be released from the mixed samples in a sequence according to the thickness of the TA/PEG coatings. The time intervals between the protein releases can be facilely adjusted by adjusting the thickness of the TA/PEG coatings. In addition, sequential release of more than 3 proteins can be facilely achieved.
Collapse
Affiliation(s)
- Haozheng Wang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Rui Liu
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Sha Wang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ying Guan
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yongjun Zhang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China. and School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
46
|
Liu WY, Wang W, Ju XJ, Liu Z, Xie R, Chu LY. Functional microparticles from multiscale regulation of multiphase emulsions for mass-transfer intensification. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
47
|
Xu Y, Yang M, Ma Q, Di X, Wu G. A bio-inspired fluorescent nano-injectable hydrogel as a synergistic drug delivery system. NEW J CHEM 2021. [DOI: 10.1039/d0nj05719c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A nano-injectable hydrogel with fluorescence properties and controlled sequential release of dual drugs.
Collapse
Affiliation(s)
- Yue Xu
- Key Laboratory of Functional Polymer Materials
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Mingming Yang
- Key Laboratory of Functional Polymer Materials
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Qiyue Ma
- Key Laboratory of Functional Polymer Materials
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xiang Di
- Key Laboratory of Functional Polymer Materials
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Guolin Wu
- Key Laboratory of Functional Polymer Materials
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
48
|
Mu XT, Li Y, Ju XJ, Yang XL, Xie R, Wang W, Liu Z, Chu LY. Microfluidic Fabrication of Structure-Controlled Chitosan Microcapsules via Interfacial Cross-Linking of Droplet Templates. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57514-57525. [PMID: 33301686 DOI: 10.1021/acsami.0c14656] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, a simple and flexible method for the fabrication of chitosan microcapsules with controllable structures and functions via the interfacial cross-linking reaction of the water-in-oil (W/O) emulsion templates is developed. The interfacial cross-linking reactions of chitosan and terephthalaldehyde (TPA) in W/O emulsion templates are comprehensively studied. The interfacial cross-linking reactions of the droplet templates in both batchwise and continuous conditions are studied. A poly(dimethylsiloxane) (PDMS) droplet-capture microfluidic chip is fabricated to investigate the interfacial reaction in continuous conditions online. In this study, the size and shell thickness of the microcapsules are affected by the preparation condition, such as the template size, emulsifier concentration, TPA concentration, and cross-linking time. Moreover, the size and shell thickness changes of chitosan microcapsules prepared in continuous conditions are much faster than those prepared in batchwise conditions. By regulating the preparation parameters, the microcapsules with controllable structures are fabricated in both batchwise and continuous conditions. The drug release behaviors of the microcapsules with controllable structures are studied. Furthermore, by adding magnetic nanoparticles to the aqueous solution, magnetic-responsive microcapsules are fabricated easily. This work provides valuable guidance for the controllable fabrication of chitosan microcapsules with designed structures and functions via single emulsion templates.
Collapse
Affiliation(s)
- Xiao-Ting Mu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Yao Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Xiu-Lan Yang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
49
|
Liu Z, Duan C, Jiang S, Zhu C, Ma Y, Fu T. Microfluidic step emulsification techniques based on spontaneous transformation mechanism: A review. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
Zhang MJ, Zhang P, Qiu LD, Chen T, Wang W, Chu LY. Controllable microfluidic fabrication of microstructured functional materials. BIOMICROFLUIDICS 2020; 14:061501. [PMID: 33193936 PMCID: PMC7644275 DOI: 10.1063/5.0027907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/21/2020] [Indexed: 05/16/2023]
Abstract
Microstructured functional materials such as microfibers and microparticles are widely used for a myriad of applications. Precise manipulation of the functional components and structure is important for the microstructured functional materials to achieve desired functions for advanced application. This review highlights the recent progress on the controllable microfluidic fabrication of microstructured functional materials from liquid templates. First, microfluidic strategies for controllable generation of liquid templates including laminar jets and emulsion droplets are introduced. Then, strategies for fabricating microfibers and microparticles with diverse structures and advanced functions from the liquid templates are highlighted. These strategies mainly focus on precisely engineering the functional components and microstructures of the microfibers and microparticles by tailoring those of their liquid templates to achieve desired advanced functions. Finally, future development of microfluidic techniques for industrial-scale production of the microstructured functional materials is discussed.
Collapse
Affiliation(s)
- Mao-Jie Zhang
- College of Engineering, Sichuan Normal University, Chengdu 610101, China
| | - Ping Zhang
- College of Engineering, Sichuan Normal University, Chengdu 610101, China
| | - Lian-Di Qiu
- College of Engineering, Sichuan Normal University, Chengdu 610101, China
| | - Ting Chen
- College of Engineering, Sichuan Normal University, Chengdu 610101, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Author to whom correspondence should be addressed:
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|