1
|
Dornelas J, Dornelas G, Rossi A, Piattelli A, Di Pietro N, Romasco T, Mourão CF, Alves GG. The Incorporation of Zinc into Hydroxyapatite and Its Influence on the Cellular Response to Biomaterials: A Systematic Review. J Funct Biomater 2024; 15:178. [PMID: 39057300 PMCID: PMC11277605 DOI: 10.3390/jfb15070178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Zinc is known for its role in enhancing bone metabolism, cell proliferation, and tissue regeneration. Several studies proposed the incorporation of zinc into hydroxyapatite (HA) to produce biomaterials (ZnHA) that stimulate and accelerate bone healing. This systematic review aimed to understand the physicochemical characteristics of zinc-doped HA-based biomaterials and the evidence of their biological effects on osteoblastic cells. A comprehensive literature search was conducted from 2022 to 2024, covering all years of publications, in three databases (Web of Science, PUBMED, Scopus), retrieving 609 entries, with 36 articles included in the analysis according to the selection criteria. The selected studies provided data on the material's physicochemical properties, the methods of zinc incorporation, and the biological effects of ZnHA on bone cells. The production of ZnHA typically involves the wet chemical synthesis of HA and ZnHA precursors, followed by deposition on substrates using processes such as liquid precursor plasma spraying (LPPS). Characterization techniques confirmed the successful incorporation of zinc into the HA lattice. The findings indicated that zinc incorporation into HA at low concentrations is non-cytotoxic and beneficial for bone cells. ZnHA was found to stimulate cell proliferation, adhesion, and the production of osteogenic factors, thereby promoting in vitro mineralization. However, the optimal zinc concentration for the desired effects varied across studies, making it challenging to establish a standardized concentration. ZnHA materials are biocompatible and enhance osteoblast proliferation and differentiation. However, the mechanisms of zinc release and the ideal concentrations for optimal tissue regeneration require further investigation. Standardizing these parameters is essential for the effective clinical application of ZnHA.
Collapse
Affiliation(s)
- Jessica Dornelas
- NanoOnco3D, Rio de Janeiro 20000-000, Brazil
- Cell and Molecular Biology Department, Institute of Biology, Fluminense Federal University, Niteroi 24220-900, Brazil
| | - Giselle Dornelas
- Post-Graduation Program in Sciences & Biotechnology, Institute of Biology, Fluminense Federal University, Niteroi 24220-900, Brazil
| | - Alexandre Rossi
- CBPF–Brazilian Center for Research in Physics, Rio de Janeiro 22290-180, Brazil
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International, University of Health and Medical Sciences, 00131 Rome, Italy
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Tea Romasco
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlos Fernando Mourão
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Gutemberg Gomes Alves
- Cell and Molecular Biology Department, Institute of Biology, Fluminense Federal University, Niteroi 24220-900, Brazil
- Post-Graduation Program in Sciences & Biotechnology, Institute of Biology, Fluminense Federal University, Niteroi 24220-900, Brazil
| |
Collapse
|
2
|
Wu N, Gao H, Wang X, Pei X. Surface Modification of Titanium Implants by Metal Ions and Nanoparticles for Biomedical Application. ACS Biomater Sci Eng 2023; 9:2970-2990. [PMID: 37184344 DOI: 10.1021/acsbiomaterials.2c00722] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Implant surface modification can improve osseointegration and reduce peri-implant inflammation. Implant surfaces are modified with metals because of their excellent mechanical properties and significant functions. Metal surface modification is divided into metal ions and nanoparticle surface modification. These two methods function by adding a finishing metal to the surface of the implant, and both play a role in promoting osteogenic, angiogenic, and antibacterial properties. Based on this, the nanostructural surface changes confer stronger antibacterial and cellular affinity to the implant surface. The current paper reviews the forms, mechanisms, and applications of nanoparticles and metal ion modifications to provide a foundation for the surface modification of implants.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Sabino RM, Rau JV, De Bonis A, De Stefanis A, Curcio M, Teghil R, Popat KC. Manganese-containing Bioactive Glass Enhances Osteogenic Activity of TiO 2 Nanotube Arrays. APPLIED SURFACE SCIENCE 2021; 570:151163. [PMID: 34594060 PMCID: PMC8478254 DOI: 10.1016/j.apsusc.2021.151163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Titanium and its alloys are the most used biomaterials for orthopedic and dental applications. However, up to 10% of these medical devices still fail, mostly due to implant loosening and suboptimal integration at the implant site. The biomaterial surface plays a critical role in promoting osseointegration, which can reduce the risk of device failure. In this study, we propose a novel surface modification on titanium to improve osteogenic differentiation by depositing manganese-containing bioactive glass (BG) on TiO2 nanotube arrays. The surfaces were characterized by scanning electron microscopy, energy dispersive X-ray spectrometer, contact angle goniometry, and X-ray photoelectron spectroscopy. Cell toxicity, viability, adhesion, and proliferation of adipose-derived stem cells on the surfaces were investigated up to 7 days. To evaluate the osteogenic properties of the surfaces, alkaline phosphatase activity, total protein, osteocalcin expression, and calcium deposition were quantified up to 28 days. The results indicate that TiO2 nanotube arrays modified with BG promote cell growth and induce increased osteocalcin and calcium contents when compared to unmodified TiO2 nanotube arrays. The deposition of manganese-containing bioactive glass onto TiO2 nanotubes demonstrates the ability to enhance osteogenic activity on titanium, showing great potential for use in orthopedic and dental implants.
Collapse
Affiliation(s)
- Roberta M. Sabino
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, USA
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
- I.M. Sechenov First Moscow State Medical University, Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, Trubetskaya 8, build. 2, 119991 Moscow, Russia
| | - Angela De Bonis
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano, 10-85100 Potenza, Italy
| | - Adriana De Stefanis
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Montelibretti Unit, Via Salaria km 29.300, 00015 Monterotondo Scalo, Italy
| | - Mariangela Curcio
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano, 10-85100 Potenza, Italy
| | - Roberto Teghil
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano, 10-85100 Potenza, Italy
| | - Ketul C. Popat
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, USA
- Department of Mechanical Engineering, Colorado State University, Fort Collins, USA
| |
Collapse
|
4
|
Zhu M, Zhang K, Feng L, Lin S, Pan Q, Bian L, Li G. Surface decoration of development-inspired synthetic N-cadherin motif via Ac-BP promotes osseointegration of metal implants. Bioact Mater 2021; 6:1353-1364. [PMID: 33210028 PMCID: PMC7658495 DOI: 10.1016/j.bioactmat.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 02/08/2023] Open
Abstract
Research works on the synergistic effect of surface modified bioactive molecules and bone metal implants have been highlighted. N-cadherin is regarded as a key factor in directing cell-cell interactions during the mesenchymal condensation preceding the osteogenesis in the musculoskeletal system. In this study, the N-cadherin mimetic peptide (Cad) was biofunctionalized on the titanium metal surface via the acryloyl bisphosphonate (Ac-BP). To learn the synergistic effect of N-cadherin mimetic peptide, when tethered with titanium substrates, on promoting osteogenic differentiation of the seeded human mesenchymal stem cells (hMSCs) and the osseointegration at the bone-implant interfaces. Results show that the conjugation of N-cadherin mimetic peptide with Ac-BP promoted the osteogenic gene markers expression in the hMSCs. The biofunctionalized biomaterial surfaces promote the expression of the Wnt/β-catenin downstream axis in the attached hMSCs, and then enhance the in-situ bone formation and osseointegration at the bone-implant interfaces. We conclude that this N-cadherin mimetic peptide tethered on Ti surface promote osteogenic differentiation of hMSCs and osseointegration of biomaterial implants in vitro and in vivo. These findings demonstrate the importance of the development-inspired surface bioactivation of metal implants and shed light on the possible cellular mechanisms of the enhanced osseointegration.
Collapse
Affiliation(s)
- Meiling Zhu
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, SAR, Hong Kong, PR China
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China
| | - Kunyu Zhang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Lu Feng
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, SAR, Hong Kong, PR China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, SAR, Hong Kong, PR China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China
| | - Qi Pan
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, SAR, Hong Kong, PR China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China
- Centre of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, SAR, Hong Kong, PR China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China
| |
Collapse
|
5
|
Bosch-Rué E, Diez-Tercero L, Giordano-Kelhoffer B, Delgado LM, Bosch BM, Hoyos-Nogués M, Mateos-Timoneda MA, Tran PA, Gil FJ, Perez RA. Biological Roles and Delivery Strategies for Ions to Promote Osteogenic Induction. Front Cell Dev Biol 2021; 8:614545. [PMID: 33520992 PMCID: PMC7841204 DOI: 10.3389/fcell.2020.614545] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Bone is the most studied tissue in the field of tissue regeneration. Even though it has intrinsic capability to regenerate upon injury, several pathologies and injuries could hamper the highly orchestrated bone formation and resorption process. Bone tissue engineering seeks to mimic the extracellular matrix of the tissue and the different biochemical pathways that lead to successful regeneration. For many years, the use of extrinsic factors (i.e., growth factors and drugs) to modulate these biological processes have been the preferred choice in the field. Even though it has been successful in some instances, this approach presents several drawbacks, such as safety-concerns, short release profile and half-time life of the compounds. On the other hand, the use of inorganic ions has attracted significant attention due to their therapeutic effects, stability and lower biological risks. Biomaterials play a key role in such strategies where they serve as a substrate for the incorporation and release of the ions. In this review, the methodologies used to incorporate ions in biomaterials is presented, highlighting the osteogenic properties of such ions and the roles of biomaterials in controlling their release.
Collapse
Affiliation(s)
- Elia Bosch-Rué
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Leire Diez-Tercero
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Luis M. Delgado
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Begoña M. Bosch
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mireia Hoyos-Nogués
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Phong A. Tran
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Francisco Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Roman A. Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
6
|
Tang B, Shen X, Yang Y, Xu Z, Yi J, Yao Y, Cao M, Zhang Y, Xia H. Enhanced cellular osteogenic differentiation on CoFe 2O 4/P(VDF-TrFE) nanocomposite coatings under static magnetic field. Colloids Surf B Biointerfaces 2020; 198:111473. [PMID: 33250417 DOI: 10.1016/j.colsurfb.2020.111473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 01/15/2023]
Abstract
Cellular responses can be regulated and manipulated through combining stimuli-responsive biomaterial with external stimulus. In this present, the magneto-responsive CoFe2O4/P(VDF-TrFE) nanocomposite coatings were designed to understand cell behaviors of preosteoblasts, as well as get insight into the underlying mechanism of osteogenic differentiation under static magnetic field (SMF). CoFe2O4/P(VDF-TrFE) nanocomposite coatings with differential magnetic property (low, medium and high magnetization) were prepared by incorporation of different mass fraction of CoFe2O4 nanoparticles (6%, 13 %, 20 %) into P(VDF-TrFE) matrix. Cell experiments indicated that all nanocomposite coatings with the assistance of SMF could promote the cell attachment, proliferation and osteogenic differentiation of MC3T3-E1 cells. Among different nanocomposite coatings, low magnetization coating (6%) showed a higher ALP activity and gene expression of Runx2, Col-I, OCN. Molecular biology assays demonstrated that the combination of nanocomposite coatings and SMF could significantly up-regulate the expression level of α2β1 integrin and p-ERK. Whereas, the addition of inhibitor U0126 down-regulated sharply the expression level of p-ERK, which indicated that cellular osteogenic differentiation of MC3T3-E1 cells was governed through α2β1 integrin-mediated MEK/ERK signaling pathways during CoFe2O4/P(VDF-TrFE) nanocomposite coatings were combined with SMF. This work provided a promising strategy to enhance cellular osteogenic differentiation through a remote-control manner, which exhibited great potential in the application of bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Bolin Tang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China.
| | - Xiaojun Shen
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Yaru Yang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Zhi Xu
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China.
| | - Jie Yi
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Yongbo Yao
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Miao Cao
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Yalin Zhang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Hongqin Xia
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| |
Collapse
|
7
|
Tang B, Shen X, Ye G, Yang Y, Jiang Y, Xia H, Chen X. Magnetic-Field-Assisted Cellular Osteogenic Differentiation on Magnetic Zinc Ferrite Coatings via MEK/ERK Signaling Pathways. ACS Biomater Sci Eng 2020; 6:6864-6873. [PMID: 33320603 DOI: 10.1021/acsbiomaterials.0c01087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Combining an external stimulus and stimuli-responsive biomaterials can regulate cellular behaviors. In this paper, a magneto-responsive zinc ferrite (ZnFe2O4) coating was designed to gain insight into the preosteoblasts behaviors and osteogenic differentiation mechanism under a static magnetic field (SMF). ZnFe2O4 coatings with distinct magnetization (low, medium, and high magnetizations) were prepared by being annealed at different temperatures. Cellular biology experiments indicated that all ZnFe2O4 coatings with the assistance of SMF could promote the early proliferation (3 days) and osteogenic differentiation of MC3T3-E1 cells. Among different ZnFe2O4 samples, low and medium magnetization of ZnFe2O4 showed a higher osteogenesis-related gene expression (Runx2, Col-I, OCN) than that of high magnetization ZnFe2O4 under SMF, while cellular adhesion and proliferation cultured on different ZnFe2O4 samples presented insignificant differences. Molecular biology tests showed that the combination of ferromagnetic ZnFe2O4 and SMF could significantly improve the expression level of α2β1 integrin and p-ERK. However, the addition of the inhibitor U0126 sharply reduced the expression level of p-ERK, which indicated that α2β1 integrin-mediated MEK/ERK signaling pathways play a key role in SMF-assisted cellular osteogenic differentiation over ZnFe2O4 coatings. This work provides an attractive strategy to enhance cellular osteogenic differentiation in a remote-control way, which exhibited enormous potential in the field of bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Bolin Tang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Xiaojun Shen
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Guanchen Ye
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,China Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Yaru Yang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Yang Jiang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Hongqin Xia
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Xiaoyi Chen
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,China Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| |
Collapse
|
8
|
Wu F, Xu J, Yan R, Hu B, Li G, Jin M, Jiang X, Li J, Tang P, Zhu J, Yan S. In vitro and in vivo evaluation of antibacterial activity of polyhexamethylene guanidine (PHMG)-loaded TiO 2 nanotubes. ACTA ACUST UNITED AC 2020; 15:045016. [PMID: 32567560 DOI: 10.1088/1748-605x/ab7e79] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Artificial joint replacement is an effective surgical method for treating end-stage degenerative joint diseases, but peripheral bacterial infection of prosthesis can compromise the effect of the surgery. Herein, antibacterial effects of titanium dioxide nanotubes (TNTs) coated with polyhexamethylene guanidine (PHMG) were examined via in vitro and in vivo experiments. TNTs with a pore diameter 46.4 ± 5.9 nm and length of 300-500 nm for the slice and 650-800 nm for the rod were fabricated by anodization. Then, 3.46 ± 0.40 mg and 1.27 ± 0.28 mg of PHMG were coated onto the TNT slice and rod, respectively. In vitro studies of the release of PHMG showed that the antibacterial agent was released in two stages: initial burst release and relatively slow release. In vitro and in vivo antibacterial studies showed that the PHMG-loaded TNTs (PHMG-TNTs) had excellent antibacterial abilities to prevent bacterial infections. Clinical pathological analysis of rabbit femurs indicated that the implanted PHMG-TNTs had no apparent pathological changes. Real-time quantitative reverse transcription polymerase chain reaction analysis of the femur tissues around the implants showed that the expression of osteogenic-related genes, including runt-related transcription factor 2, osteocalcin, alkaline phosphatase, bone sialoprotein, bone morphogenetic protein 2 and vascular endothelial growth factor A, was significantly upregulated in the PHMG-TNT implanted group as compared to the other groups. Overall, these findings provide a promising approach for the fabrication of antibacterial and bone biocompatible titanium-based implants in orthopedics.
Collapse
Affiliation(s)
- Fengfeng Wu
- Department of Orthopedics, the Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China. Department of Orthopedics and Rehabilitation, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou Hospital of Zhejiang University, Huzhou 313000, People's Republic of China. These authors contributed equally to this article
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Li X, Wang Q, Yu Y, Fang L, Wang X, Miao Z, Wan M, Wang F, Mao C. In Situ Doping of Metal Nanoparticles into Medical Polymer Membranes and Their Biomedical Application. ChemistrySelect 2020. [DOI: 10.1002/slct.202000024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoyun Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
- School of EnvironmentNanjing Normal University Nanjing 210023 China
| | - Yueqi Yu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Leyi Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Xingwen Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Zhuoyue Miao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Fenghe Wang
- School of EnvironmentNanjing Normal University Nanjing 210023 China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| |
Collapse
|
10
|
Fu J, Liu X, Tan L, Cui Z, Liang Y, Li Z, Zhu S, Zheng Y, Kwok Yeung KW, Chu PK, Wu S. Modulation of the mechanosensing of mesenchymal stem cells by laser-induced patterning for the acceleration of tissue reconstruction through the Wnt/β-catenin signaling pathway activation. Acta Biomater 2020; 101:152-167. [PMID: 31678738 DOI: 10.1016/j.actbio.2019.10.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 11/29/2022]
Abstract
Growing evidence suggests that the physical microenvironment can guide cell fate. However, cells sense cues from the adjacent physical microenvironment over a limited distance. In the present study, murine mesenchymal stem cells (MSCs) and murine preosteoblastic cells (MC3T3-E1) behaviors are regulated by the cell-material interface using ordered-micro and disordered-nano patterned structures on Ti implants. The optimal bone formation structure is a stable wave (horizontal direction: ridge, 2.7 µm; grooves, 5.3 µm; and vertical direction: distance, 700 µm) with the appropriate density of nano-branches (6.0 per µm2). The repeated waves provide cells with directional guidance, and the disordered branches influence cell geometry by providing different spacing and density nanostructure. And micro-nano patterned structure can provide biophysical cues to direct cell phenotype development, including cell size, shape, and orientation, to influence cellular processes including survival, growth, and differentiation. Thus, the overlaid isotropic and anisotropic cues, ordered-micro and disordered-nano patterned structures, could transfer further and alter cell shape and induce nuclear orientation by activating Wnt/β-catenin signaling to promote integrin α5, integrin β1, cadherin 2, Runx2, Opn, and Ocn. That canonical Wnt signaling inhibitor dickkopf1 further demonstrates osteogenic differentiation induced by ordered-micro and disordered-nano patterned structures, which is related to Wnt/β-catenin signaling. Our findings show the role of ordered microstructures and disordered nanostructures in modulating stem cell differentiation with potential medical applications. STATEMENT OF SIGNIFICANCE: It remains a challenge to modify poor osteogenic and osteoconductive properties of titanium alloy bases on the inherent poverty of titanium. We demonstrate that ordered microtopography and disordered nano topography pattern structure could lead to osteogenic differentiation in vitro and bone regeneration in vivo. Furthermore, the pattern structure is created through selective laser melting and alkali heat. And the structure only takes advantage of titanium itself and does not bring in active film, such as hydroxyapatite. On the other hand, we find that cell shape and orientation show angle-orientation tendency due to the polarity, which involves with mechanical signal created via patterned structure. Meanwhile, the Wnt/Ca2+ signaling pathway is activated.
Collapse
Affiliation(s)
- Jieni Fu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Xiangmei Liu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
| | - Lei Tan
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Yanqin Liang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li KaShing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Paul K Chu
- Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Shuilin Wu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China; School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
11
|
Zhong L, Chen J, Ma Z, Feng H, Chen S, Cai H, Xue Y, Pei X, Wang J, Wan Q. 3D printing of metal–organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration. NANOSCALE 2020; 12:24437-24449. [PMID: 33305769 DOI: 10.1039/d0nr06297a] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A nanoZIF-8 modified porous composite scaffold was fabricated via extrusion-based 3D printing technology, which could promote osteogenesis in vitro and accelerate bone regeneration in vivo.
Collapse
|
12
|
Kuang J, Xing Z, Yin J, Li Z, Tan S, Li M, Jiang J, Zhu Q, Zhou W. Ti3+ self-doped rutile/anatase/TiO2(B) mixed-crystal tri-phase heterojunctions as effective visible-light-driven photocatalysts. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Zhang M, Zhang J, Chen J, Zeng Y, Zhu Z, Wan Y. Fabrication of Curcumin-Modified TiO 2 Nanoarrays via Cyclodextrin Based Polymer Functional Coatings for Osteosarcoma Therapy. Adv Healthc Mater 2019; 8:e1901031. [PMID: 31664793 DOI: 10.1002/adhm.201901031] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/23/2019] [Indexed: 12/29/2022]
Abstract
The incomplete removal of bone tumors leads to increased local recurrence and poor prognosis. To prevent ostoperative tumor recurrence and simultaneously repair surgery-caused bone defects, there is a need of great significance to develop implantable biomaterials possessing both cancer cell-killing ability and excellent bioactivity. In this work, a functionalized titanium-based implant is successfully fabricated by loading curcumin (CUR) onto cyclodextrin based polymer (pCD) modified titanium dioxide (TiO2 ) nanorod arrays. Herein, a polydopamine (pDA) assisted film is implemented as a first coating layer onto the surface of the TiO2 nanoarrays to guarantee the robust anchorage of the pCD. The pCD coating acts as a reservoir for CUR, allowing for efficient drug loading and sustained release of anticancer drugs. Studies show that the CUR-modified surfaces (TiO2 /pDA/pCD/CUR) can significantly promote apoptosis of osteosarcoma cells in vitro by inducing mitochondrial dysfunction caused by the ROS overproduction, and meanwhile, effectively inhibit the tumor growth in vivo. Moreover, such functionalized implants with surface density of loaded CUR at 22.48 µg cm-2 or lower support the attachment and proliferation of osteoblasts in vitro. These results successfully demonstrate that as-prepared TiO2 /pDA/pCD/CUR constructs have combined anticancer performance and good biocompatibility, which has great promise for the surgical therapy of bone tumors.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Nano‐Science and Nano‐TechnologyCollege of Physical Science and TechnologyCentral China Normal University Wuhan 430079 China
| | - Jiting Zhang
- Institute of Nano‐Science and Nano‐TechnologyCollege of Physical Science and TechnologyCentral China Normal University Wuhan 430079 China
| | - Jisheng Chen
- Institute of Nano‐Science and Nano‐TechnologyCollege of Physical Science and TechnologyCentral China Normal University Wuhan 430079 China
| | - Yan Zeng
- College of ChemistryCentral China Normal University Wuhan 430079 China
| | - Zhihong Zhu
- Institute of Nano‐Science and Nano‐TechnologyCollege of Physical Science and TechnologyCentral China Normal University Wuhan 430079 China
| | - Ying Wan
- College of Life Science and TechnologyHuazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
14
|
Gong J, Sun M, Wang S, He J, Wang Y, Qian Y, Liu Y, Dong L, Ma L, Cheng K, Weng W, Yu M, Zhang YS, Wang H. Surface Modification by Divalent Main-Group-Elemental Ions for Improved Bone Remodeling To Instruct Implant Biofabrication. ACS Biomater Sci Eng 2019; 5:3311-3324. [PMID: 33405574 DOI: 10.1021/acsbiomaterials.9b00270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jiaxing Gong
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, 395 Yanan Road, Hangzhou 310003, China
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, 268 Kaixuan Road, Hangzhou 310029, China
| | - Miao Sun
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, 395 Yanan Road, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, 268 Kaixuan Road, Hangzhou 310029, China
| | - Shaolong Wang
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, 395 Yanan Road, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, 268 Kaixuan Road, Hangzhou 310029, China
| | - Jianxiang He
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, 395 Yanan Road, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, 268 Kaixuan Road, Hangzhou 310029, China
| | - Yu Wang
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, 395 Yanan Road, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, 268 Kaixuan Road, Hangzhou 310029, China
| | - Ying Qian
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, 395 Yanan Road, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, 268 Kaixuan Road, Hangzhou 310029, China
| | - Yu Liu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, 395 Yanan Road, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, 268 Kaixuan Road, Hangzhou 310029, China
| | - Lingqing Dong
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, 395 Yanan Road, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, 268 Kaixuan Road, Hangzhou 310029, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Liang Ma
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, 395 Yanan Road, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, 268 Kaixuan Road, Hangzhou 310029, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Huiming Wang
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, 395 Yanan Road, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, 268 Kaixuan Road, Hangzhou 310029, China
| |
Collapse
|
15
|
Assembly of surface-defect single-crystalline strontium titanate nanocubes acting as molecular bricks onto surface-defect single-crystalline titanium dioxide (B) nanorods for efficient visible-light-driven photocatalytic performance. J Colloid Interface Sci 2019; 537:441-449. [DOI: 10.1016/j.jcis.2018.11.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/25/2022]
|
16
|
Zhang S, Ma B, Liu F, Duan J, Wang S, Qiu J, Li D, Sang Y, Liu C, Liu D, Liu H. Polylactic Acid Nanopillar Array-Driven Osteogenic Differentiation of Human Adipose-Derived Stem Cells Determined by Pillar Diameter. NANO LETTERS 2018. [PMID: 29517915 DOI: 10.1021/acs.nanolett.7b04747] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Numerous studies have determined that physical cues, especially the nanotopography of materials, play key roles in directing stem cell differentiation. However, most research on nanoarrays for stem cell fate regulation is based on nonbiodegradable materials, such as silicon wafers, TiO2, and poly(methyl methacrylate), which are rarely used as tissue engineering biomaterials. In this study, we prepared biodegradable polylactic acid (PLA) nanopillar arrays with different diameters but the same center-to-center distance using a series of anodic aluminum oxide nanowell arrays as templates. Human adipose-derived stem cells (hADSCs) were selected to investigate the effect of the diameter of PLA nanopillar arrays on stem cell differentiation. By culturing hADSCs without the assistance of any growth factors or osteogenic-induced media, the differentiation tendencies of hADSCs on the nanopillar arrays were assessed at the gene and protein levels. The assessment results suggested that the osteogenic differentiation of hADSCs can be driven by nanopillar arrays, especially by nanopillar arrays with a diameter of 200 nm. Moreover, an in vivo animal model of the samples demonstrated that PLA film with the 200 nm pillar array exhibits an improved ectopic osteogenic ability compared with the planar PLA film after 4 weeks of ectopic implantation. This study has provided a new variable to investigate in the interaction between stem cells and nanoarray structures, which will guide the bone regeneration clinical research field. This work paves the way for the utility of degradable biopolymer nanoarrays with specific geometrical and mechanical signals in biomedical applications, such as patches and strips for spine fusion, bone crack repair, and restoration of tooth enamel.
Collapse
Affiliation(s)
- Shan Zhang
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , China
| | - Baojin Ma
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , China
| | - Feng Liu
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , China
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , China
| | - Shicai Wang
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , China
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , China
| | - Dong Li
- Cryomedicine Laboratory , Qilu Hospital, Shandong University , Jinan , 250012 , China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , China
| | - Chao Liu
- Department of Oral and Maxillofacial surgery, Qilu Hospital, Institute of Stomatology , Shandong University , Jinan , 250012 , China
| | - Duo Liu
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , China
| | - Hong Liu
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , China
- Institute for Advanced Interdisciplinary Research , Jinan University , Jinan , 250022 , China
| |
Collapse
|
17
|
Fohlerova Z, Mozalev A. Tuning the response of osteoblast-like cells to the porous-alumina-assisted mixed-oxide nano-mound arrays. J Biomed Mater Res B Appl Biomater 2017; 106:1645-1654. [DOI: 10.1002/jbm.b.33971] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/27/2017] [Accepted: 08/04/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Zdenka Fohlerova
- CEITEC-Central European Institute of Technology, Brno University of Technology; Brno Czech Republic
| | - Alexander Mozalev
- CEITEC-Central European Institute of Technology, Brno University of Technology; Brno Czech Republic
| |
Collapse
|
18
|
Effect of hierarchical pore structure on ALP expression of MC3T3-E1 cells on bioglass films. Colloids Surf B Biointerfaces 2017; 156:213-220. [DOI: 10.1016/j.colsurfb.2017.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/19/2017] [Accepted: 05/05/2017] [Indexed: 01/16/2023]
|
19
|
Wan M, Zhang J, Wang Q, Zhan S, Chen X, Mao C, Liu Y, Shen J. In Situ Growth of Mesoporous Silica with Drugs on Titanium Surface and Its Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18609-18618. [PMID: 28513138 DOI: 10.1021/acsami.7b05163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mesoporous silica has been developed for the modification of titanium surfaces that are used as implant materials. Yet, the traditional modification methods failed to effectively construct mesoporous silica on the titanium surface evenly and firmly, in which the interaction between mesoporous silica and titanium was mainly physical. Here, in situ growth of mesoporous silica on a titanium surface was performed using a simple evaporation-induced self-assembly strategy. Meantime, in situ introduction of drugs (heparin and vancomycin) to mesoporous silica was also adopted to improve the drug-loading amount. Both the above-mentioned processes were completed at the same time. Transmission electron microscopy, N2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle measurements were used to characterize the structure of the mesoporous silica film. Results indicated that the mesoporous silica film that in situ grew on the titanium surface was smooth, thin, transparent, and stable. Cytotoxicity, proliferation performance of osteoblast cells, and in vitro and in vivo studies of the antibacterial activity of the coating were tested. This is the first study to modify the titanium surface by the in situ growth of a mesoporous silica coating with two kinds of drugs. The stability of the mesoporous silica coating can be attributed to the chemical bonding between dopamine and silicon hydroxyl of the mesoporous silica coating, and the smooth surface of mesoporous silica is a result of the method of in situ growth. The large amount of drug-loading also could be ascribed to the in situ introduction of drugs during the synthetic process. The strategy proposed in this work will bring more possibilities for the preparation of advanced functional materials based on the combination of mesoporous structure and metallic materials.
Collapse
Affiliation(s)
- Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210046, China
| | - Jin Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210046, China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210046, China
| | - Shuyue Zhan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210046, China
| | - Xudong Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210046, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210046, China
| | - Yuhong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210046, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210046, China
| |
Collapse
|
20
|
Cheng Z, Cheng K, Weng W. SiO 2/TiO 2 Nanocomposite Films on Polystyrene for Light-Induced Cell Detachment Application. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2130-2137. [PMID: 28026924 DOI: 10.1021/acsami.6b14182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Light-induced cell detachment shows much potential in in vitro cell culture and calls for high-performance light-responsive films. In this study, a smooth and dense SiO2/TiO2 nanocomposite thin film with thickness of around 250 nm was first fabricated on H2O2 treated polystyrene (PS) substrate via a low-temperature sol-gel method. It was observed that the film could well-adhere on the PS surface and the bonding strength became increasingly high with the increase of SiO2 content. The peeling strength and shear strength reached 3.05 and 30.02 MPa, respectively. It was observed the surface of the film could transform into superhydrophilic upon 20 min illumination of ultraviolet with a wavelength of 365 nm (UV365). In cell culture, cells, i.e., NIH3T3 and MC3T3-E1 cells, cultured on SiO2/TiO2 nanocomposite film were easily detached after 10 min of UV365 illumination; the detachment rates reached 90.8% and 88.6%, respectively. Correspondingly, continuous cell sheets with good viability were also easily obtained through the same way. The present work shows that SiO2/TiO2 nanocomposite thin film could be easily prepared on polymeric surface at low temperature. The corresponding film exhibits excellent biocompatibility, high bonding strength, and good light responses. It could be a good candidate for the surface of cell culture utensils with light-induced cell detachment property.
Collapse
Affiliation(s)
- Zhiguo Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center of Sensor Materials and Applications, Zhejiang University , Hangzhou 310027, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center of Sensor Materials and Applications, Zhejiang University , Hangzhou 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center of Sensor Materials and Applications, Zhejiang University , Hangzhou 310027, China
| |
Collapse
|
21
|
Ge F, Yu M, Yu C, Lin J, Weng W, Cheng K, Wang H. Improved rhBMP-2 function on MBG incorporated TiO 2 nanorod films. Colloids Surf B Biointerfaces 2016; 150:153-158. [PMID: 27914251 DOI: 10.1016/j.colsurfb.2016.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 12/27/2022]
Abstract
In the process of biomaterials mediated bone regeneration, rhBMP-2 delivery at efficient dose in sustained kinetics is crucial for promoting cell osteogenic differentiation. Meanwhile, surface morphology of the biomaterials could regulate cellular responses as well as strengthen the rhBMP-2 interaction with cells for better bone induction. Herein, TiO2 nanorod films with varied mesoporous bioactive glass (MBG) incorporation amount were designed to strengthen the efficacy of rhBMP-2, basing on optimized loading/release behaviors and surface nanostructure cooperatively. The MBG incorporation improved rhBMP-2 loading amount and regulated its release behavior. Consequently, the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) on the incorporated films was extremely enhanced, and the incorporated nanorod film with 200nm MBG thickness exhibited the best osteoinduction effect. However, MBG film and the incorporated nanorod film had the same loading amount of rhBMP-2, the latter showed a much higher expression of 7-day osteogenic differentiation index than the former, which could be attributed to the synergistic effect of optimized rhBMP-2 release behavior and surface morphology. The MBG incorporated TiO2 nanorod films here presents a promising strategy for enhancing osteoinduction through optimized rhBMP-2 release behavior.
Collapse
Affiliation(s)
- Fei Ge
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Mengfei Yu
- The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003, China
| | - Cuixia Yu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Jun Lin
- The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Huiming Wang
- The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
22
|
Zhang Y, Xing Z, Liu X, Li Z, Wu X, Jiang J, Li M, Zhu Q, Zhou W. Ti 3+ Self-Doped Blue TiO 2(B) Single-Crystalline Nanorods for Efficient Solar-Driven Photocatalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2016; 8:26851-26859. [PMID: 27652448 DOI: 10.1021/acsami.6b09061] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ti3+ self-doped blue TiO2(B) single-crystalline nanorods (b-TR) are fabricated via a simple sol-gelation method, cooperated with hydro-thermal treatment and subsequent in situ treatment method, and afterward annealed at 350 °C in Ar. The structures are characterized by X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (UV-vis), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The prepared b-TR with narrow band gap possesses single-crystalline TiO2(B) phase, Ti3+ self-doping, and one-dimensional (1D) rodlike nanostructure. In addition, the improved photocatalytic performance is studied by decomposition of Rhodamine B (RhB) and hydrogen evolution. The degradation rate of RhB by Ti3+ self-doped blue TiO2(B) single-crystalline nanorods is ∼6.9- and 2.1-times higher compared with the rates of titanium dioxide nanoparticles and pristine TiO2(B) nanorods under visible light illumination, respectively. The hydrogen evolution rate of b-TR is 26.6 times higher compared with that of titanium dioxide nanoparticles under AM 1.5 irradiation. The enhanced photocatalytic performances arise from the synergetic action of the special TiO2(B) phase, Ti3+ self-doping, and the 1D rod-shaped single-crystalline nanostructure, favoring the visible light utilization and the separation and transportation of photogenerated charge carriers.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University , Harbin 150080, PR China
| | - Zipeng Xing
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University , Harbin 150080, PR China
| | - Xuefeng Liu
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University , Harbin 150080, PR China
| | - Zhenzi Li
- Department of Epidemiology and Biostatistics, Harbin Medical University , Harbin 150086, PR China
| | - Xiaoyan Wu
- Department of Epidemiology and Biostatistics, Harbin Medical University , Harbin 150086, PR China
| | - Jiaojiao Jiang
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University , Harbin 150080, PR China
| | - Meng Li
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University , Harbin 150080, PR China
| | - Qi Zhu
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University , Harbin 150080, PR China
| | - Wei Zhou
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University , Harbin 150080, PR China
| |
Collapse
|