1
|
Sun M, Yang B, Yan J, Zhou Y, Huang Z, Zhang N, Mo R, Ma R. Perovskite CoSn(OH) 6 nanocubes with tuned d-band states towards enhanced oxygen evolution reactions. NANOSCALE 2024; 16:10618-10627. [PMID: 38764380 DOI: 10.1039/d4nr00975d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The CoSn(OH)6 perovskite hydroxide is a structure stable and inexpensive electrocatalyst for the oxygen evolution reaction (OER). However, the OER activity of CoSn(OH)6 is still unfavorable due to its limited active sites. In this work, an Fe3+ doping strategy is used to optimize the d-band state of the CoSn(OH)6 perovskite hydroxide. The CoSn(OH)6 catalyst with slightly Fe3+ doped nanocubes is synthesized by a facile hydrothermal method. Structure characterization shows that Fe3+ ions are incorporated into the crystal structure of CoSn(OH)6. Owing to the regulation of the electronic structure, CoSn(OH)6-Fe1.8% exhibits an OER overpotential of 289 mV at a current density of 10 mA cm-2 in OER electrochemical tests. In situ Raman spectroscopy shows that no obvious re-construction occurred during the OER for both CoSn(OH)6 and CoSn(OH)6-Fe1.8%. DFT calculations show that the introduction of Fe3+ into CoSn(OH)6 can shift the d-band center to a relatively high position, thus promoting the OER intermediates' adsorption ability. Further DFT calculations suggest that incorporation of an appropriate amount of Fe3+ into CoSn(OH)6 significantly reduces the rate-determining Gibbs free energy during the OER. This work offers valuable insights into tuning the d-band center of perovskite hydroxide materials for efficient OER applications.
Collapse
Affiliation(s)
- Mingwei Sun
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, P. R. China.
- School of Materials Science and Engineering, Central South University, Changsha 410083, China.
| | - Baopeng Yang
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Jiaxing Yan
- School of Materials Science and Engineering, Central South University, Changsha 410083, China.
| | - Yulong Zhou
- School of Materials Science and Engineering, Central South University, Changsha 410083, China.
| | - Zhencong Huang
- School of Materials Science and Engineering, Central South University, Changsha 410083, China.
| | - Ning Zhang
- School of Materials Science and Engineering, Central South University, Changsha 410083, China.
| | - Rong Mo
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, P. R. China.
| | - Renzhi Ma
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
2
|
Lu L, Lv C, Zhou M, Yan S, Qiao G, Zou Z. Stable CO 2reduction under natural air on Ni-Sn hydroxide photocatalyst with dynamic renewable oxygen vacancies. NANOTECHNOLOGY 2024; 35:325707. [PMID: 38701763 DOI: 10.1088/1361-6528/ad4712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Advanced photocatalysts are highly desired to activate the photocatalytic CO2reduction reaction (CO2RR) with low concentration. Herein, the NiSn(OH)6with rich surface lattice hydroxyls was synthesized to boost the activity directly under the natural air. Results showed that terminal Ni-OH could serve as donors to feed protons and generate oxygen vacancies (VO), thus beneficial to convert the activated CO2(HCO3-) mainly into CO (5.60μmol g-1) in the atmosphere. It was flexible and widely applicable for a stable CO2RR from high pure to air level free of additionally adding H2O reactant, and higher than the traditional gas-liquid-solid (1.58μmol g-1) and gas-solid (4.07μmol g-1) reaction system both using high pure CO2and plenty of H2O. The strong hydrophilia by the rich surface hydroxyls allowed robust H2O molecule adsorption and dissociation at VOsites to achieve the Ni-OH regeneration, leading to a stable CO yield (11.61μmol g-1) with the enriched renewable VOregardless of the poor CO2and H2O in air. This work opens up new possibilities for the practical application of natural photosynthesis.
Collapse
Affiliation(s)
- Lei Lu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Nanjing University, 210093, People's Republic of China
| | - Changyu Lv
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Man Zhou
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Shicheng Yan
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Nanjing University, 210093, People's Republic of China
| | - Guanjun Qiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zhigang Zou
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Nanjing University, 210093, People's Republic of China
| |
Collapse
|
3
|
Yang Z, Li C, Liu F, Lv X, Zhang L, Fang Y, Wang H. Tailoring the Hollow Structure within CoSn(OH) 6 Nanocubes for Advanced Supercapacitors. Molecules 2022; 27:molecules27227960. [PMID: 36432061 PMCID: PMC9696706 DOI: 10.3390/molecules27227960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The enhanced application performance of hollow-structured materials is attributed to their large surface area with more active sites. In this work, the hollow CoSn(OH)6 nanocubes with increased surface area and mesopores were derived from dense CoSn(OH)6 nanocube precursors by alkaline etching. As a result, the hollow CoSn(OH)6 nanocubes-based cathode electrode exhibited a higher area-specific capacitance of 85.56 µF cm-2 at 0.5 mA cm-2 and a mass-specific capacitance of 5.35 mF g-1 at 0.5 mA cm-2, which was more extensive than that of the dense precursor. Meanwhile, the current density was increased 4-fold with good rate capability for hollow CoSn(OH)6 nanocubes.
Collapse
Affiliation(s)
- Zhiyong Yang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, School of Environment and Engineering, Weifang University of Science and Technology, Weifang 262700, China
| | - Chunxia Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, School of Environment and Engineering, Weifang University of Science and Technology, Weifang 262700, China
| | - Fangfang Liu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, School of Environment and Engineering, Weifang University of Science and Technology, Weifang 262700, China
- Correspondence: (F.L.); (H.W.)
| | - Xiaowei Lv
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lei Zhang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yanli Fang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hui Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Correspondence: (F.L.); (H.W.)
| |
Collapse
|
4
|
Wu W, Shi S, Zhang Z, Guo X, Sun L, Wei R, Zhang J, Gao L, Pan X, Xiao G. Monodisperse perovskite CoSn(OH)6 in-situ grown on NiCo hydroxide nanoflowers with strong interfacial bonds to boost broadband visible-light-driven photocatalytic CO2 reduction. J Colloid Interface Sci 2022; 619:407-418. [DOI: 10.1016/j.jcis.2022.03.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
|
5
|
Wang W, Song F, Du C, Su Y. Durable and eco-friendly peroxymonosulfate activation over cobalt/tin oxides-based heterostructures for antibiotics removal: Insight to mechanism, degradation pathway. J Colloid Interface Sci 2022; 625:479-492. [PMID: 35738045 DOI: 10.1016/j.jcis.2022.06.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 02/06/2023]
Abstract
Potential leaching of Co ions could decrease the catalytic activity and cause secondary pollution of water, thereby threatening ecological safety and human health. In response, the in-situ generation of well-dispersed Co2SnO4 and SnO2 with fine interfacial feature was constructed for PMS activation toward efficient tetracycline degradation and lower cobalt ion leaching feature. The synergistic effect of Co2SnO4 and SnO2 endowed Co2SnO4-SnO2 an outstanding catalytic performance for tetracycline degradation in alkaline condition. Meanwhile, the catalysts can effectively degrade the quinolones, dyes and mixture pollutant solution. The excellent performance can attributed to the in-situ introduction of SnO2, which stabilizes the microstructure and provides an effective electronic pathway to enhance the activity of Co2SnO4 in the Co2SnO4-SnO2. In optimized condition, the tetracycline degradation efficiency was enhanced to 94.9% within 20 min and maintained the stability at least four cycles. The degradation rate constant of Co2SnO4-SnO2 was 0.149 min-1, which was about 1.93, 2.98, 11.5 times higher than of Co2SnO4, Co3O4 and SnO2, respectively. Notably, the leaching performance of Co2SnO4-SnO2 was greatly suppressed to be 7.45 ug/L, which was lower than that of Co2SnO4 (6.41 mg/L) and Co3O4 (1.12 mg/L). Radical quenching and EPR experiments showed that singlet oxygen (1O2), rather than hydroxyl active species and sulfate radicals, played a predominating role for PMS activation in the Co2SnO4-SnO2/PMS system. The intermediates and degradation routes for tetracycline degradation were characterized by liquid chromatograph-tandem mass spectrometry. This study expected to provide a novel strategy to construct heterostructural catalysts with lower cobalt ion leaching for the activation of PMS.
Collapse
Affiliation(s)
- Weihong Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Fanyue Song
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Chunfang Du
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Yiguo Su
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
6
|
Mishra NK, Singh AK, Mondal R, Singh P. NiC
2
O
4
⋅ 2H
2
O Nanoflakes: A Novel Redox‐mediated Intercalative Pseudocapacitive Electrode for Supercapacitor Applications in Aqueous KOH and Neutral Na
2
SO
4
electrolytes. ChemistrySelect 2022. [DOI: 10.1002/slct.202201134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Neeraj Kumar Mishra
- Department of Ceramic Engineering Indian Institute of Technology Banaras Hindu University) Varanasi Uttar Pradesh 221005 India
| | - Abhijeet Kumar Singh
- Centre of Advanced Studies Dr. A.P.J. Abdul Kalam Technical University Lucknow Uttar Pradesh 226031 India
| | - Rakesh Mondal
- Department of Ceramic Engineering Indian Institute of Technology Banaras Hindu University) Varanasi Uttar Pradesh 221005 India
| | - Preetam Singh
- Department of Ceramic Engineering Indian Institute of Technology Banaras Hindu University) Varanasi Uttar Pradesh 221005 India
| |
Collapse
|
7
|
Wang Y, Zhao L, Zhang F, Yu K, Yang C, Jia J, Guo W, Zhao J, Qu F. Synthesis of a Co-Sn Alloy-Deposited PTFE Film for Enhanced Solar-Driven Water Evaporation via a Super-Absorbent Polymer-Based "Water Pump" Design. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26879-26890. [PMID: 34075755 DOI: 10.1021/acsami.1c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solar-driven water evaporation is a promising solution to water pollution, the energy crisis, and water shortages. However, the approach in which the photothermal film is in direct contact with bulk water for water evaporation may lead to a large amount of heat loss, thereby reducing the light-to-heat conversion efficiency (η) of the photothermal film. Here, a highly efficient solar-driven water evaporation system was developed using a Co-Sn alloy-deposited Teflon (PTFE) film (Co-Sn alloy@PTFE) and super-absorbent polymers (SAPs) supported with a floating foam substrate. The Co-Sn alloy with full-spectrum (200-2500 nm) absorption characteristics is devoted to high light-to-heat conversion, while the porous PTFE with high mechanical performance can support the Co-Sn alloy. We used density functional theory to prove that the Co-Sn alloy had a strong adhesive force with PTFE without surfactants due to the high adsorption energy between the (101) crystal plane of the Co-Sn alloy and the hydroxyl group on the PTFE film. Importantly, via the SAP-based "water pump" design, we improved the η of the Co-Sn alloy@PTFE film to 89%, mainly because the SAP not only effectively performed water transportation but also markedly reduced the heat loss of the Co-Sn alloy@PTFE film. Our work highlights the strong potential of Co-Sn alloy@PTFE-based light-to-heat conversion systems for realizing highly effective solar energy-driven water evaporation.
Collapse
Affiliation(s)
- Yuzhu Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Le Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Kai Yu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Chunyu Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Jingjing Jia
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Wei Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Jingxiang Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| |
Collapse
|
8
|
Sahoo R, Singh M, Rao TN. A Review on the Current Progress and Challenges of 2D Layered Transition Metal Dichalcogenides as Li/Na‐ion Battery Anodes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100197] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ramkrishna Sahoo
- Centre for Nano Materials International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI) Hyderabad 500005 Telangana India
| | - Monika Singh
- Centre for Advanced Studies (CAS) Dr. APJ Abdul Kalam Technical University (AKTU) Lucknow 226031 India
| | - Tata Narasinga Rao
- Centre for Nano Materials International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI) Hyderabad 500005 Telangana India
| |
Collapse
|
9
|
Aruchamy G, Thangavelu S. Bifunctional CoSn(OH)6/MnO2 composite for solid-state asymmetric high power density supercapacitor and for an enhanced OER. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136141] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Ghubish Z, Saif M, Hafez H, Mahmoud H, Kamal R, El-Kemary M. Novel red photoluminescence sensor based on Europium ion doped calcium hydroxy stannate CaSn(OH)6:Eu+3 for latent fingerprint detection. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127840] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Polyphosphazene microspheres modified with transition metal hydroxystannate for enhancing the flame retardancy of polyethylene terephthalate. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Patil DS, Pawar SA, Ryu J, Shin JC, Kim HJ. Morphological evolution and electrochemical cycling for enhanced electrochemical activity of MnCo-layered double hydroxide. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Subbarayan S, Natesan M, Chen SM. Simple synthesis of CoSn(OH)6 nanocubes for the rapid electrochemical determination of rutin in the presence of quercetin and acetaminophen. NEW J CHEM 2020. [DOI: 10.1039/d0nj01737j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic presentation of the synthesis of CoSn(OH)6 nanocubes modified with SPCE towards the electrochemical detection of rutin.
Collapse
Affiliation(s)
- Sumithra Subbarayan
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Manjula Natesan
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| |
Collapse
|
14
|
Liu H, Ding YN, Bian B, Li L, Li R, Zhang X, Liu Z, Zhang X, Fan G, Liu Q. Rapid colorimetric determination of dopamine based on the inhibition of the peroxidase mimicking activity of platinum loaded CoSn(OH) 6 nanocubes. Mikrochim Acta 2019; 186:755. [PMID: 31707595 DOI: 10.1007/s00604-019-3940-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/12/2019] [Indexed: 02/02/2023]
Abstract
Platinum nanoparticles were loaded on CoSn(OH)6 nanocubes via a co-precipitation method. The material (NCs) is shown to be a viable peroxidase mimic that catalyzes the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by hydrogen peroxide (H2O2) to generate oxidized TMB (oxTMB) with absorption at 652 nm. The formation of the blue color can be observed in <30 s. Thus, a visual and colorimetric assay was worked out for H2O2. It has a detection limit as low as 4.4 μM and works in the 5 to 200 μM concentration range. The method was also used to detect dopamine (DA) which is found to inhibit the enzyme mimicking activity of the NCs. Hence, less blue color is formed in its presence. The respective DA assay has a linear response in the 5.0 to 60 μM concentration range and a 0.76 μM detection limit. Graphical abstractSchematic diagram of a visual colorimetric method for determination of H2O2 and dopamine (DA) with the aid of color change of 3,3',5,5'-tetramethylbenzidine (oxTMB), based on the peroxidase-like activity of Pt/CoSn(OH)6 nanocubes.
Collapse
Affiliation(s)
- Hao Liu
- College of Chemical and Environmental Engineering; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Ya-Nan Ding
- College of Chemical and Environmental Engineering; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Bing Bian
- College of Chemical and Environmental Engineering; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China.,College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Lei Li
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China.,School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Ruomeng Li
- College of Chemical and Environmental Engineering; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xianxi Zhang
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China.,School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Zhenxue Liu
- College of Chemical and Environmental Engineering; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiao Zhang
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Gaochao Fan
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
15
|
Wang Y, Guo H, Luo X, Liu X, Hu Z, Han L, Zhang Z. Nonsiliceous Mesoporous Materials: Design and Applications in Energy Conversion and Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805277. [PMID: 30869834 DOI: 10.1002/smll.201805277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/10/2019] [Indexed: 06/09/2023]
Abstract
In this work, the progress in the design of nonsiliceous mesoporous materials (nonSiMPMs) over the last five years from the perspectives of the chemical composition, morphology, loading, and surface modification is summarized. Carbon, metal, and metal oxide are in focus, which are the most promising compositions. Then, representative applications of nonSiMPMs are demonstrated in energy conversion and storage, including recent technical advances in dye-sensitized solar cells, perovskite solar cells, photocatalysts, electrocatalysts, fuel cells, storage batteries, supercapacitors, and hydrogen storage systems. Finally, the requirements and challenges of the design and application of nonSiMPMs are outlined.
Collapse
Affiliation(s)
- Yongfei Wang
- School of High Temperature Materials and Magnesite Resources Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| | - Hong Guo
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xudong Luo
- School of High Temperature Materials and Magnesite Resources Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| | - Xin Liu
- School of High Temperature Materials and Magnesite Resources Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| | - Zhizhi Hu
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| | - Lu Han
- School of High Temperature Materials and Magnesite Resources Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| |
Collapse
|
16
|
Ikkurthi KD, Srinivasa Rao S, Ahn JW, Sunesh CD, Kim HJ. A cabbage leaf like nanostructure of a NiS@ZnS composite on Ni foam with excellent electrochemical performance for supercapacitors. Dalton Trans 2019; 48:578-586. [DOI: 10.1039/c8dt04139c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, a NiS@ZnS composite nanostructure was synthesized on a nickel foam substrate by a facile chemical bath deposition (CBD) method.
Collapse
Affiliation(s)
| | - S. Srinivasa Rao
- School of Mechanical and Mechatronics Engineering
- KyungSung University
- Busan
- Republic of Korea
| | - Jin-Woo Ahn
- School of Mechanical and Mechatronics Engineering
- KyungSung University
- Busan
- Republic of Korea
| | | | - Hee-Je Kim
- School of Electrical Engineering
- Pusan National University
- Busan
- Republic of Korea
| |
Collapse
|
17
|
Sahoo R, Pham DT, Lee TH, Luu THT, Seok J, Lee YH. Redox-Driven Route for Widening Voltage Window in Asymmetric Supercapacitor. ACS NANO 2018; 12:8494-8505. [PMID: 30044606 DOI: 10.1021/acsnano.8b04040] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Although aqueous asymmetric supercapacitors are promising technologies because of their high-energy density and enhanced safety, their voltage window is still limited by the narrow stability window of water. Redox reactions at suitable electrodes near the water splitting potential can increase the working potential. Here, we demonstrate a kinetic approach for expanding the voltage window of aqueous asymmetric supercapacitors using in situ activated Mn3O4 and VO2 electrodes. The underlying mechanism indicates a specific potential of ∼1 V vs Ag/AgCl for the oxidation of Mn4+-to-Mn7+ at the positive electrode and ∼ -0.8 V vs Ag/AgCl for the reduction of V3+-to-V2+ at the negative electrode, which limits oxygen and hydrogen evolution reactions, respectively. The as-fabricated aqueous asymmetric supercapacitor exhibited a working voltage of 2.2 V with a high-energy density of 42.7 Wh/kg and a power density of ∼1.1 kW/kg. This mechanism improves the voltage window and energy and power densities.
Collapse
Affiliation(s)
- Ramkrishna Sahoo
- Center for Integrated Nanostructure Physics (CINAP) , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Duy Tho Pham
- Center for Integrated Nanostructure Physics (CINAP) , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Tae Hoon Lee
- Center for Integrated Nanostructure Physics (CINAP) , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Thi Hoai Thuong Luu
- Center for Integrated Nanostructure Physics (CINAP) , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Jinbong Seok
- Center for Integrated Nanostructure Physics (CINAP) , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics (CINAP) , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| |
Collapse
|
18
|
Ghorai A, Midya A, Ray SK. Superior charge storage performance of WS2 quantum dots in a flexible solid state supercapacitor. NEW J CHEM 2018. [DOI: 10.1039/c7nj03869k] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Defect induced enhanced charge storage performance of WS2 quantum dots in a flexible solid state supercapacitor.
Collapse
Affiliation(s)
- Arup Ghorai
- School of Nanoscience and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Anupam Midya
- School of Nanoscience and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Samit K. Ray
- Department of Physics
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
- S. N. Bose National Centre for Basic Sciences
| |
Collapse
|
19
|
Sahoo R, Acharyya P, Singh NK, Pal A, Negishi Y, Pal T. Advance Aqueous Asymmetric Supercapacitor Based on Large 2D NiCo 2O 4 Nanostructures and the rGO@Fe 3O 4 Composite. ACS OMEGA 2017; 2:6576-6585. [PMID: 31457255 PMCID: PMC6644927 DOI: 10.1021/acsomega.7b01091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/22/2017] [Indexed: 05/31/2023]
Abstract
NiCo2O4 nanostructure is a widely studied pseudocapacitor material because of its high specific capacitance value. Most of the time, the thickness of the nanostructure inhibits the electrode material from whole-body participation and causes sluggish charge transportation. These phenomena directly interfere with the electrochemical performance of the electrode, such as specific capacitance value, stability, energy density, and so forth. Here, two different thin two-dimensional morphologies (nanosheet and nanoplate) of the NiCo2O4 nanocomposite with a large lateral size are reported using ammonia as a hydrolyzing agent. The large size and flat surface of the as-synthesized materials offer enormous active sites during the electrochemical reaction, and the thin wall makes the ion penetration and transportation very effective and facile. Therefore, the NiCo2O4 nanosheet and nanoplate structures exhibited high specific capacitance values of 1540 and 1333 F/g, respectively, with excellent rate and good cycling stability. Here also, two different advance aqueous asymmetric supercapacitors have been reported utilizing two NiCo2O4 nanostructure materials as positive electrodes and the rGO@Fe3O4 composite as a negative electrode, which exhibited excellent rate and high specific energy without sacrificing the specific power. We also studied the electrochemical activity of the rGO@Fe3O4 composite at different compositions.
Collapse
Affiliation(s)
- Ramkrishna Sahoo
- Department
of Chemistry and Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Paribesh Acharyya
- Department
of Chemistry and Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Navin Kumar Singh
- Department
of Chemistry and Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Anjali Pal
- Department
of Chemistry and Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Yuichi Negishi
- Department
of Applied Chemistry, Tokyo University of
Science, Tokyo 1628601, Japan
| | - Tarasankar Pal
- Department
of Chemistry and Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
20
|
Chen R, Liu L, Hou L, Zhou J, Gao F. One-Step Solvothermal Synthesis of 3D Hierarchical Ni
x
Co9-x
S8
Structures for High-Performance Supercapacitors. ChemElectroChem 2017. [DOI: 10.1002/celc.201700394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rongna Chen
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry; Yanshan University; Qinhuangdao 066004 P. R. China
| | - Lei Liu
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry; Yanshan University; Qinhuangdao 066004 P. R. China
| | - Li Hou
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry; Yanshan University; Qinhuangdao 066004 P. R. China
| | - Junshuang Zhou
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry; Yanshan University; Qinhuangdao 066004 P. R. China
| | - Faming Gao
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry; Yanshan University; Qinhuangdao 066004 P. R. China
| |
Collapse
|
21
|
Le TH, Kim Y, Yoon H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers (Basel) 2017; 9:polym9040150. [PMID: 30970829 PMCID: PMC6432010 DOI: 10.3390/polym9040150] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 11/16/2022] Open
Abstract
Conducting polymers (CPs) have received much attention in both fundamental and practical studies because they have electrical and electrochemical properties similar to those of both traditional semiconductors and metals. CPs possess excellent characteristics such as mild synthesis and processing conditions, chemical and structural diversity, tunable conductivity, and structural flexibility. Advances in nanotechnology have allowed the fabrication of versatile CP nanomaterials with improved performance for various applications including electronics, optoelectronics, sensors, and energy devices. The aim of this review is to explore the conductivity mechanisms and electrical and electrochemical properties of CPs and to discuss the factors that significantly affect these properties. The size and morphology of the materials are also discussed as key parameters that affect their major properties. Finally, the latest trends in research on electrochemical capacitors and sensors are introduced through an in-depth discussion of the most remarkable studies reported since 2003.
Collapse
Affiliation(s)
- Thanh-Hai Le
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Yukyung Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| |
Collapse
|
22
|
Dutta S, Ray C, Negishi Y, Pal T. Facile Synthesis of Unique Hexagonal Nanoplates of Zn/Co Hydroxy Sulfate for Efficient Electrocatalytic Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8134-8141. [PMID: 28211670 DOI: 10.1021/acsami.7b00030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cost-effective, highly active water oxidation catalysts are increasingly being demanded in the field of energy conversion and storage. Herein, a simple modified hydrothermally (MHT) synthesized zinc and cobalt based hydroxyl double salt, that is, Zn4-xCoxSO4(OH)6·0.5H2O (ZCS), has been exfoliated for the first time as an efficient electrocatalyst for oxygen evolution reaction (OER) in alkaline medium. Morphology investigation suggests the evolution of unique hexagonal nanoplates of ZCS material. As OER catalyst, it requires only 370 and 450 mV overpotential to achieve 10 and 100 mA cm-2 current density, respectively. More importantly, performance at the overpotential over 400 mV and durability of the designed material have been found to be superior to those of commercial RuO2 catalyst. In the designed ZCS material trace amounts of cobalt species lead to higher mass activity of 146 A g-1, compared to that of the RuO2 catalyst (83 A g-1) at the same overpotential of 370 mV. The outstanding activity and stability of the cost-effective material emerges from the promotional effect of Zn ions, which are present as the principal constituent in the electrocatalyst, and they also protect the cobalt ions in the matrix during its long-term electrochemical test. It is important to note that an appropriate ratio of zinc and cobalt ions synergistically helps to create an economically viable and environmentally suitable electrocatalyst in comparison to other related transition metal based materials.
Collapse
Affiliation(s)
- Soumen Dutta
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, West Bengal, India
| | - Chaiti Ray
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, West Bengal, India
| | - Yuichi Negishi
- Department of Applied Chemistry, Tokyo University of Science , Tokyo 1628601, Japan
| | - Tarasankar Pal
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, West Bengal, India
| |
Collapse
|
23
|
Ede SR, Anantharaj S, Kumaran KT, Mishra S, Kundu S. One step synthesis of Ni/Ni(OH)2 nano sheets (NSs) and their application in asymmetric supercapacitors. RSC Adv 2017. [DOI: 10.1039/c6ra26584g] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ni/Ni(OH)2 NSs were prepared by a facile hydrothermal method using EtOH as reducing agent. Asymmetric device is fabricated using AC and Ni/Ni(OH)2 NSs as electrodes, with optimized specific capacitance of 62 F g−1 and a maximum energy density of 23.45 W h kg−1.
Collapse
Affiliation(s)
- Sivasankara Rao Ede
- Academy of Scientific and Innovative Research (AcSIR)
- CSIR-Central Electrochemical Research Institute (CSIR-CECRI) Campus
- New Delhi
- India
- Electrochemical Materials Science (ECMS) Division
| | - S. Anantharaj
- Academy of Scientific and Innovative Research (AcSIR)
- CSIR-Central Electrochemical Research Institute (CSIR-CECRI) Campus
- New Delhi
- India
- Electrochemical Materials Science (ECMS) Division
| | - K. T. Kumaran
- Electrochemical Materials Science (ECMS) Division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi-630006
- India
| | - Soumyaranjan Mishra
- Electrochemical Materials Science (ECMS) Division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi-630006
- India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR)
- CSIR-Central Electrochemical Research Institute (CSIR-CECRI) Campus
- New Delhi
- India
- Electrochemical Materials Science (ECMS) Division
| |
Collapse
|
24
|
Mahamallik P, Pal A. Photo-Fenton process in a Co(ii)-adsorbed micellar soft-template on an alumina support for rapid methylene blue degradation. RSC Adv 2016. [DOI: 10.1039/c6ra19857k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Co(ii)-mediated photo-Fenton degradation of methylene blue was achieved for the first time on the admicellar layer supported on an alumina surface.
Collapse
Affiliation(s)
| | - Anjali Pal
- Department of Civil Engineering
- Indian Institute of Technology
- Kharagpur 721302
- India
| |
Collapse
|
25
|
Sahoo R, Pal A, Pal T. 2D materials for renewable energy storage devices: Outlook and challenges. Chem Commun (Camb) 2016; 52:13528-13542. [DOI: 10.1039/c6cc05357b] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review cost-effective, clean and durable alternative energy devices based on 2D materials.
Collapse
Affiliation(s)
- Ramkrishna Sahoo
- Department of Chemistry
- Indian institute of Technology
- Kharagpur 721302
- India
| | - Anjali Pal
- Department of Civil Engineering
- Indian institute of Technology
- Kharagpur 721302
- India
| | - Tarasankar Pal
- Department of Chemistry
- Indian institute of Technology
- Kharagpur 721302
- India
| |
Collapse
|