1
|
Du K, Shi P, Zhang D, Xiao Y, Zhang S. Polydopamine-Anchored Cellulose Nanofiber Flexible Aerogel with High Charge Transfer as a Substrate for Conductive Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30314-30323. [PMID: 38809660 DOI: 10.1021/acsami.4c06367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In order to obtain a flexible aerogel substrate for conductive materials used in the electrode, polydopamine-anchored cellulose nanofiber (PDA@CNF) was introduced into a polyethylene imine-poly(vinyl alcohol) (PEI-PVA) cross-linking network which used 4-formylphenylboronic acid (4FPBA) as bridge. The incorporation of rigid CNF as a structural scaffold effectively improved the pore architecture of the aerogel, potentially providing substantial advantages for the infiltration and deposition of conductive materials. Additionally, the outstanding stability and flexibility exhibited by the aerogel in aqueous solutions suggest its significant potential for applications in flexible electrodes. Furthermore, electrochemical experiments showed that the rapid pathway formed between PDA and PEI could enhance the charge-transfer rate within the aerogel substrate. It is anticipated that such an enhancement would significantly benefit the electrochemical attributes of the electrode. Inspired by mussels, our introduced PDA-anchored rigid CNF into flexible polymer networks to fabricate aerogel substrates for electrode materials. This study would contribute to the development and utilization of flexible electrodes while reducing carbon footprint in energy production and conversion processes.
Collapse
Affiliation(s)
- Keke Du
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Pengcheng Shi
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dongyan Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yiyan Xiao
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shuangbao Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Yaseen MW, Maman MP, Mishra S, Mohammad I, Li X. Strategies to alleviate distortive phase transformations in Li-ion intercalation reactions: an example with vanadium pentoxide. NANOSCALE 2024; 16:9710-9727. [PMID: 38682562 DOI: 10.1039/d3nr06138h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Chemical and electrochemical Li-ion insertion in transition metal oxides, either via a phase transformation reaction (ions insert into specific crystallographic sites of the host lattice) or a solid solution insertion (ions distribute uniformly throughout the host lattice), enables high energy density electrochemical energy storage. Many phase transformation cathode materials, that undergo two-phase reactions, exhibit high theoretical capacities arising from multi-electron redox reactions. However, challenges in distortive phase transformations and uncontrolled phase nucleation, propagation, segregation, and co-existence continue to limit the energy density, (dis)charging rate performances, and cycling stability of available phase transformation cathode materials. Vanadium pentoxide (V2O5), a classical layered intercalation host material with high theoretical capacity, undergoes irreversible structural changes and capacity fading when intercalating more than one lithium ion per V2O5 unit in its thermodynamically stable phase. Here, we review recent synthetic strategies to alter the V-O connectivity, thereby alleviating distortive phase transformations and promoting solid solution-based Li-ion insertion in V2O5. We also summarize several widely accessible and classical molecular-based analytical tools that can provide local structural dynamics and phase transformation mechanism information on the lithiation of V2O5, including single-crystal X-ray diffraction, infrared and Raman spectroscopy, electron paramagnetic resonance, and nuclear magnetic resonance spectroscopy.
Collapse
Affiliation(s)
| | - Manju P Maman
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, USA.
| | - Shashank Mishra
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, USA.
| | | | - Xuefei Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, USA.
| |
Collapse
|
3
|
Hu E, Jia BE, Zhu Q, Xu J, Loh XJ, Chen J, Pan H, Yan Q. Engineering High Voltage Aqueous Aluminum-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2309252. [PMID: 38217311 DOI: 10.1002/smll.202309252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/14/2023] [Indexed: 01/15/2024]
Abstract
The energy transition to renewables necessitates innovative storage solutions beyond the capacities of lithium-ion batteries. Aluminum-ion batteries (AIBs), particularly their aqueous variants (AAIBs), have emerged as potential successors due to their abundant resources, electrochemical advantages, and eco-friendliness. However, they grapple with achieving their theoretical voltage potential, often yielding less than expected. This perspective article provides a comprehensive examination of the voltage challenges faced by AAIBs, attributing gaps to factors such as the aluminum reduction potential, hydrogen evolution reaction, and aluminum's inherent passivation. Through a critical exploration of methodologies, strategies, such as underpotential deposition, alloying, interface enhancements, tailored electrolyte compositions, and advanced cathode design, are proposed. This piece seeks to guide researchers in harnessing the full potential of AAIBs in the global energy storage landscape.
Collapse
Affiliation(s)
- Erhai Hu
- Energy Research Institute @ NTU, Nanyang Technological University, Singapore, 637141, Singapore
| | - Bei-Er Jia
- School of Material Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Jianwei Xu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Qingyu Yan
- Energy Research Institute @ NTU, Nanyang Technological University, Singapore, 637141, Singapore
- School of Material Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| |
Collapse
|
4
|
Pomerantseva E. Chemical Preintercalation Synthesis of Versatile Electrode Materials for Electrochemical Energy Storage. Acc Chem Res 2023; 56:13-24. [PMID: 36512762 DOI: 10.1021/acs.accounts.2c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ConspectusThe widespread use of electrical plants and grids to generate, transmit, and deliver power to consumers makes electricity the most convenient form of energy to transport, control, and use. Balancing electricity demand with electricity supply requires a mechanism for energy storage, which is enabled by electrical energy storage devices such as batteries and supercapacitors. In addition to the grid-level energy storage, we have all witnessed the quick growth of a number of applications that require autonomous power, illustrated by the Internet of Things, and electrification of transport. Batteries, when developed for targeted applications with specific requirements, require new materials with improved performance enabled by rational design on the atomic level. The material tunability knobs include chemical composition, structure, morphology, and heterointerfaces, among others. Synthesis methods that could enable control of these parameters while offering versatility and being facile are highly desired.In this Account, we describe a synthesis strategy for the creation of new intercalation host oxides, hybrid materials, and compounds with oxide/carbon heterointerfaces for use as electrodes in intercalation batteries. We begin by introducing a strategy called the chemical preintercalation synthesis approach and describing processing steps that can be used to tune the material's chemical composition, structure, and morphology. We then show how the chemical preintercalation of inorganic ions can be used to improve the ion diffusion and stability of the synthesized materials. We reveal how confined interlayer water can be controlled and how the degree of hydration affects the electrochemical performance. This is followed by a demonstration of the chemical preintercalation of organic molecules leading to unprecedented expansion of the interlayer region up to ∼30 Å and initial electrochemical characterization of the obtained hybrid materials. We then present evidence that the carbonization of the interlayer organic molecules is an efficient synthetic pathway for creating oxide/carbon heterointerfaces and improving the electronic conductivity of oxides, which leads to improved stability and rate capability during electrochemical cycling. The examples discussed in this Account show that the chemical preintercalation synthesis approach opens pathways for the preparation of materials that have not been synthesized previously, such as new phases, hybrid materials, and 2D heterostructures with advanced functionalities. We demonstrate that chemical preintercalation can be used to effectively tune the chemistry of the confined interlayer region in layered phases and form tight oxide/carbon heterointerfaces enabling control of the material properties at the atomic level.
Collapse
Affiliation(s)
- Ekaterina Pomerantseva
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Sandagiripathira K, Moghaddasi MA, Shepard R, Smeu M. Investigating the role of structural water on the electrochemical properties of α-V 2O 5 through density functional theory. Phys Chem Chem Phys 2022; 24:24271-24280. [PMID: 36172789 DOI: 10.1039/d1cp05291h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The α polymorph of V2O5 is one of the few known cathodes capable of reversibly intercalating multivalent ions such as Mg, Ca, Zn and Al, but suffers from sluggish diffusion kinetics. The role of H2O within the electrolyte and between the layers of the structure in the form of a xerogel/aerogel structure, though, has been shown to lower diffusion barriers and lead to other improved electrochemical properties. This density functional theory study systematically investigates how and why the presence of structural H2O within α-V2O5 changes the resulting structure, voltage, and diffusion kinetics for the intercalation of Li, Na, Mg, Ca, Zn, and Al. We found that the coordination of H2O molecules with the ion leads to an improvement in voltage and energy density for all ions. This voltage increase was attributed to the extra host sites for electrons present with H2O, thus leading to a stronger ionization of the ion and a higher voltage. We also found that the increase in interlayer distance and a potential "charge shielding" effect drastically changes the electrostatic environment and the resulting diffusion kinetics. For Mg and Ca, this resulted in a decrease in diffusion barrier from 1.3 eV and 2.0 eV to 0.89 eV and 0.4 eV, respectively. We hope that our study motivates similar research regarding the role of water in both V2O5 xerogels/aerogels and other layered transition metal oxides.
Collapse
Affiliation(s)
- Kaveen Sandagiripathira
- Department of Physics, Binghamton University - SUNY, 4400 Vestal Parkway East, Binghamton, New York 13902, USA.
| | - Mohammad Ali Moghaddasi
- Department of Physics, Binghamton University - SUNY, 4400 Vestal Parkway East, Binghamton, New York 13902, USA.
| | - Robert Shepard
- Department of Physics, Binghamton University - SUNY, 4400 Vestal Parkway East, Binghamton, New York 13902, USA. .,Department of Mathematics and Technology, Alvernia University, 400 Saint Bernardine Street, Reading, Pennsylvania 19607, USA.
| | - Manuel Smeu
- Department of Physics, Binghamton University - SUNY, 4400 Vestal Parkway East, Binghamton, New York 13902, USA.
| |
Collapse
|
6
|
Shi Y, Chen Y, Shi L, Wang K, Wang B, Li L, Ma Y, Li Y, Sun Z, Ali W, Ding S. An Overview and Future Perspectives of Rechargeable Zinc Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000730. [PMID: 32406195 DOI: 10.1002/smll.202000730] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 05/27/2023]
Abstract
Aqueous rechargeable zinc-based batteries have sparked a lot of enthusiasm in the energy storage field recently due to their inherent safety, low cost, and environmental friendliness. Although remarkable progress has been made in the exploration of performance so far, there are still many challenges such as low working voltage and dissolution of electrode materials at the material and system level. Herein, the central tenet is to establish a systematic summary for the construction and mechanism of different aqueous zinc-based batteries. Details for three major zinc-based battery systems, including alkaline rechargeable Zn-based batteries (ARZBs), aqueous Zn ion batteries (AZIBs), and dual-ion hybrid Zn batteries (DHZBs) are given. First, the electrode materials and energy storage mechanism of the three types of zinc-based batteries are discussed to provide universal guidance for these batteries. Then, the electrode behavior of zinc anodes and strategies to deal with problems such as dendrite and passivation are recommended. Finally, some challenge-oriented solutions are provided to facilitate the next development of zinc-based batteries. Combining the characteristics of zinc-based batteries with good use of concepts and ideas from other disciplines will surely pave the way for its commercialization.
Collapse
Affiliation(s)
- Yuchuan Shi
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ye Chen
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lei Shi
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ke Wang
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Biao Wang
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Long Li
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yaming Ma
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuhan Li
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zehui Sun
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wajid Ali
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shujiang Ding
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
7
|
Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y. Energy storage: The future enabled by nanomaterials. Science 2019; 366:366/6468/eaan8285. [DOI: 10.1126/science.aan8285] [Citation(s) in RCA: 658] [Impact Index Per Article: 131.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lithium-ion batteries, which power portable electronics, electric vehicles, and stationary storage, have been recognized with the 2019 Nobel Prize in chemistry. The development of nanomaterials and their related processing into electrodes and devices can improve the performance and/or development of the existing energy storage systems. We provide a perspective on recent progress in the application of nanomaterials in energy storage devices, such as supercapacitors and batteries. The versatility of nanomaterials can lead to power sources for portable, flexible, foldable, and distributable electronics; electric transportation; and grid-scale storage, as well as integration in living environments and biomedical systems. To overcome limitations of nanomaterials related to high reactivity and chemical instability caused by their high surface area, nanoparticles with different functionalities should be combined in smart architectures on nano- and microscales. The integration of nanomaterials into functional architectures and devices requires the development of advanced manufacturing approaches. We discuss successful strategies and outline a roadmap for the exploitation of nanomaterials for enabling future energy storage applications, such as powering distributed sensor networks and flexible and wearable electronics.
Collapse
|
8
|
Wu F, Yang H, Bai Y, Wu C. Paving the Path toward Reliable Cathode Materials for Aluminum-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806510. [PMID: 30767291 DOI: 10.1002/adma.201806510] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/04/2018] [Indexed: 05/18/2023]
Abstract
Aluminum metal is a high-energy-density carrier with low cost, and thus endows rechargeable aluminum batteries (RABs) with the potential to act as an inexpensive and efficient electrochemical device, so as to supplement the increasing demand for energy storage and conversion. Despite the enticing aspects regarding cost and energy density, the poor reversibility of electrodes has limited the pursuit of RABs for a long time. Fortunately, ionic-liquid electrolytes enable reversible aluminum plating/stripping at room temperature, and they lay the very foundation of RABs. In order to integrate with the aluminum-metal anode, the selection of the cathode is pivotal, but is limited at present. The scant option of a reliable cathode can be accounted for by the intrinsic high charge density of Al3+ ions, which results in sluggish diffusion. Hence, reliable cathode materials are a key challenge of burgeoning RABs. Herein, the main focus is on the insertion cathodes for RABs also termed aluminum-ion batteries, and the recent progress and optimization methods are summarized. Finally, an outlook is presented to navigate the possible future work.
Collapse
Affiliation(s)
- Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haoyi Yang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ying Bai
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chuan Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
9
|
Tian B, Tang W, Su C, Li Y. Reticular V 2O 5·0.6H 2O Xerogel as Cathode for Rechargeable Potassium Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2018; 10:642-650. [PMID: 29256595 DOI: 10.1021/acsami.7b15407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Potassium ion batteries (KIBs), because of their low price, may exhibit advantages over lithium ion batteries as potential candidates for large-scale energy storage systems. However, owing to the large ionic radii of K-ions, it is challenging to find a suitable intercalation host for KIBs and thus the rechargeable KIB electrode materials are still largely unexplored. In this work, a reticular V2O5·0.6H2O xerogel was synthesized via a hydrothermal process as a cathode material for rechargeable KIBs. Compared with the orthorhombic crystalline V2O5, the hydrated vanadium pentoxide (V2O5·0.6H2O) exhibits the ability of accommodating larger alkali metal ions of K+ because of the enlarged layer space by hosting structural H2O molecules in the interlayer. By intercalation of H2O into the V2O5 layers, its potassium electrochemical activity is significantly improved. It exhibits an initial discharge capacity of ∼224.4 mA h g-1 and a discharge capacity of ∼103.5 mA h g-1 even after 500 discharge/charge cycles at a current density of 50 mA g-1, which is much higher than that of the V2O5 electrode without structural water. Meanwhile, X-ray diffraction and X-ray photoelectron spectroscopy combined with energy dispersive spectroscopy techniques are carried out to investigate the potassiation/depotassiation process of the V2O5·0.6H2O electrodes, which confirmed the potassium intercalation storage mechanisms of this hydrated material. The results demonstrate that the interlayer-spacing-enlarged V2O5·0.6H2O is a promising cathode candidate for KIBs.
Collapse
Affiliation(s)
- Bingbing Tian
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology (ICL-2D MOST), Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University , Shenzhen 518060, China
- Department of Chemistry, Centre for Advanced 2D Materials (CA2DM) and Graphene Research Centre, National University of Singapore , 3 Science Drive 3, Singapore 117543, Singapore
| | - Wei Tang
- Institute of Materials Research and Engineering, A*STAR , 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology (ICL-2D MOST), Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University , Shenzhen 518060, China
- Department of Chemistry, Centre for Advanced 2D Materials (CA2DM) and Graphene Research Centre, National University of Singapore , 3 Science Drive 3, Singapore 117543, Singapore
| | - Ying Li
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology (ICL-2D MOST), Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University , Shenzhen 518060, China
| |
Collapse
|
10
|
Etman AS, Inge AK, Jiaru X, Younesi R, Edström K, Sun J. A Water Based Synthesis of Ultrathin Hydrated Vanadium Pentoxide Nanosheets for Lithium Battery Application: Free Standing Electrodes or Conventionally Casted Electrodes? Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|