1
|
Bhattacharjee R, Dubey AK, Ganguly A, Bhattacharya B, Mishra YK, Mostafavi E, Kaushik A. State-of-art high-performance Nano-systems for mutated coronavirus infection management: From Lab to Clinic. OPENNANO 2022. [PMCID: PMC9463543 DOI: 10.1016/j.onano.2022.100078] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants made emerging novel coronavirus diseases (COVID-19) pandemic/endemic/or both more severe and difficult to manage due to increased worry about the efficacy and efficiency of present preventative, therapeutic, and sensing measures. To deal with these unexpected circumstances, the development of novel nano-systems with tuneable optical, electrical, magnetic, and morphological properties can lead to novel research needed for (1) COVID-19 infection (anti-microbial systems against SARS-CoV-2), (2) early detection of mutated SARS-CoV-2, and (3) targeted delivery of therapeutics using nano-systems, i.e., nanomedicine. However, there is a knowledge gap in understanding all these nano-biotechnology potentials for managing mutated SARS-CoV-2 on a single platform. To bring up the aspects of nanotechnology to tackle SARS-CoV-2 variants related COVID-19 pandemic, this article emphasizes improvements in the high-performance of nano-systems to combat SARS-CoV-2 strains/variants with a goal of managing COVID-19 infection via trapping, eradication, detection/sensing, and treatment of virus. The potential of state-of-the-art nano-assisted approaches has been demonstrated as an efficient drug delivery systems, viral disinfectants, vaccine productive cargos, anti-viral activity, and biosensors suitable for point-of-care (POC) diagnostics. Furthermore, the process linked with the efficacy of nanosystems to neutralize and eliminate SARS-CoV-2 is extensively highligthed in this report. The challenges and opportunities associated with managing COVID-19 using nanotechnology as part of regulations are also well-covered. The outcomes of this review will help researchers to design, investigate, and develop an appropriate nano system to manage COVID-19 infection, with a focus on the detection and eradication of SARS-CoV-2 and its variants. This article is unique in that it discusses every aspect of high-performance nanotechnology for ideal COVID pandemic management.
Collapse
|
2
|
Bhardwaj SK, Knaus T, Garcia A, Yan N, Mutti FG. Bacterial Peroxidase on Electrochemically Reduced Graphene Oxide for Highly Sensitive H 2 O 2 Detection. Chembiochem 2022; 23:e202200346. [PMID: 35723909 PMCID: PMC9543142 DOI: 10.1002/cbic.202200346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 11/09/2022]
Abstract
Peroxidase enzymes enable the construction of electrochemical sensors for highly sensitive and selective quantitative detection of various molecules, pathogens and diseases. Herein, we describe the immobilization of a peroxidase from Bacillus s. (BsDyP) on electrochemically reduced graphene oxide (ERGO) deposited on indium tin oxide (ITO) and polyethylene terephthalate (PET) layers. XRD, SEM, AFM, FT-IR and Raman characterization of the sensor confirmed its structural integrity and a higher enzyme surface occupancy. The BsDyP-ERGO/ITO/PET electrode performed better than other horseradish peroxidase-based electrodes, as evinced by an improved electrochemical response in the nanomolar range (linearity 0.05-280 μM of H2 O2 , LOD 32 nM). The bioelectrode was mechanically robust, active in the 3.5-6 pH range and exhibited no loss of activity upon storage for 8 weeks at 4 °C.
Collapse
Affiliation(s)
- Sheetal K. Bhardwaj
- Van't Hoff Institute for Molecular Sciences HIMS-Biocat & HetCatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Tanja Knaus
- Van't Hoff Institute for Molecular Sciences HIMS-Biocat & HetCatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Amanda Garcia
- Van't Hoff Institute for Molecular Sciences HIMS-Biocat & HetCatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Ning Yan
- Van't Hoff Institute for Molecular Sciences HIMS-Biocat & HetCatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Francesco G. Mutti
- Van't Hoff Institute for Molecular Sciences HIMS-Biocat & HetCatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
3
|
Kujawska M, Bhardwaj SK, Mishra YK, Kaushik A. Using Graphene-Based Biosensors to Detect Dopamine for Efficient Parkinson's Disease Diagnostics. BIOSENSORS 2021; 11:433. [PMID: 34821649 PMCID: PMC8615362 DOI: 10.3390/bios11110433] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease in which the neurotransmitter dopamine (DA) depletes due to the progressive loss of nigrostriatal neurons. Therefore, DA measurement might be a useful diagnostic tool for targeting the early stages of PD, as well as helping to optimize DA replacement therapy. Moreover, DA sensing appears to be a useful analytical tool in complex biological systems in PD studies. To support the feasibility of this concept, this mini-review explores the currently developed graphene-based biosensors dedicated to DA detection. We discuss various graphene modifications designed for high-performance DA sensing electrodes alongside their analytical performances and interference studies, which we listed based on their limit of detection in biological samples. Moreover, graphene-based biosensors for optical DA detection are also presented herein. Regarding clinical relevance, we explored the development trends of graphene-based electrochemical sensing of DA as they relate to point-of-care testing suitable for the site-of-location diagnostics needed for personalized PD management. In this field, the biosensors are developed into smartphone-connected systems for intelligent disease management. However, we highlighted that the focus should be on the clinical utility rather than analytical and technical performance.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland
| | - Sheetal K. Bhardwaj
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Amsterdam Scientific Instruments B.V., Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark;
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA;
| |
Collapse
|
4
|
Sharma PK, Kim ES, Mishra S, Ganbold E, Seong RS, Kaushik AK, Kim NY. Ultrasensitive and Reusable Graphene Oxide-Modified Double-Interdigitated Capacitive (DIDC) Sensing Chip for Detecting SARS-CoV-2. ACS Sens 2021; 6:3468-3476. [PMID: 34478270 DOI: 10.1021/acssensors.1c01437] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This research reveals the promising functionalization of graphene oxide (GrO)-glazed double-interdigitated capacitive (DIDC) biosensing platform to detect severe acute respiratory syndrome coronavirus (SARS-CoV-2) spike (S1) proteins with enhanced selectivity and rapid response. The DIDC bioactive surface consisting of Pt/Ti featured SiO2 substrate was fabricated using GrO/EDC-NHS/anti-SARS-CoV-2 antibodies (Abs) which is having layer-by-layer interface self-assembly chemistry method. This electroactive immune-sensing platform exhibits reproducibility and sensitivity with reference to the S1 protein of SARS-CoV-2. The outcomes of analytical studies confirm that GrO provided a desired engineered surface for Abs immobilization and amplified capacitance to achieve a wide detection range (1.0 mg/mL to 1.0 fg/mL), low limit of detection (1 fg/mL) within 3 s of response time, good linearity (18.56 nF/g), and a high sensitivity of 1.0 fg/mL. Importantly, the unique biochip was selective against blood-borne antigens and standby for 10 days at 5 °C. Our developed DIDC-based SARS-CoV-2 biosensor is suitable for point-of-care (POC) diagnostic applications due to portability and scaling-up ability. In addition, this sensing platform can be modified for the early diagnosis of severe viral infections using real samples.
Collapse
Affiliation(s)
- Parshant Kumar Sharma
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
| | - Eun-Seong Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
| | - Sachin Mishra
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
- NDAC Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
| | - Enkhzaya Ganbold
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
| | - Ryun-Sang Seong
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
| | - Ajeet Kumar Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, United States
| | - Nam-Young Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
- NDAC Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
| |
Collapse
|
5
|
Bhardwaj SK, Mujawar M, Mishra YK, Hickman N, Chavali M, Kaushik A. Bio-inspired graphene-based nano-systems for biomedical applications. NANOTECHNOLOGY 2021; 32. [PMID: 34371491 DOI: 10.1088/1361-6528/ac1bdb] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 08/08/2021] [Indexed: 05/15/2023]
Abstract
The increasing demands of environmentally sustainable, affordable, and scalable materials have inspired researchers to explore greener nanosystems of unique properties which can enhance the performance of existing systems. Such nanosystems, extracted from nature, are state-of-art high-performance nanostructures due to intrinsic hierarchical micro/nanoscale architecture and generous interfacial interactions in natural resources. Among several, bio-inspired nanosystems graphene nanosystems have emerged as an essential nano-platform wherein a highly electroactive, scalable, functional, flexible, and adaptable to a living being is a key factor. Preliminary investigation project bio-inspired graphene nanosystems as a multi-functional nano-platform suitable for electronic devices, energy storage, sensors, and medical sciences application. However, a broad understanding of bio-inspired graphene nanosystems and their projection towards applied application is not well-explored yet. Considering this as a motivation, this mini-review highlights the following; the emergence of bio-inspired graphene nanosystems, over time development to make them more efficient, state-of-art technology, and potential applications, mainly biomedical including biosensors, drug delivery, imaging, and biomedical systems. The outcomes of this review will certainly serve as a guideline to motivate scholars to design and develop novel bio-inspired graphene nanosystems to develop greener, affordable, and scalable next-generation biomedical systems.
Collapse
Affiliation(s)
| | - Mubarak Mujawar
- Department of Electrical and Computer Engineering, College of Engineering and Computing, Florida International University, Miami, FL, 33174, United States of America
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark
| | - Nicoleta Hickman
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, United States of America
| | - Murthy Chavali
- Office of the Dean (Research) & Department of Chemistry, Faculty of Sciences, Alliance University, Bengaluru 562 106, Karnataka, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, United States of America
| |
Collapse
|
6
|
Gwiazda M, Bhardwaj SK, Kijeńska-Gawrońska E, Swieszkowski W, Sivasankaran U, Kaushik A. Impedimetric and Plasmonic Sensing of Collagen I Using a Half-Antibody-Supported, Au-Modified, Self-Assembled Monolayer System. BIOSENSORS-BASEL 2021; 11:bios11070227. [PMID: 34356698 PMCID: PMC8301786 DOI: 10.3390/bios11070227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022]
Abstract
This research presents an electrochemical immunosensor for collagen I detection using a self-assembled monolayer (SAM) of gold nanoparticles (AuNPs) and covalently immobilized half-reduced monoclonal antibody as a receptor; this allowed for the validation of the collagen I concentration through two different independent methods: electrochemically by Electrochemical Impedance Spectroscopy (EIS), and optically by Surface Plasmon Resonance (SPR). The high unique advantage of the proposed sensor is based on the performance of the stable covalent immobilization of the AuNPs and enzymatically reduced half-IgG collagen I antibodies, which ensured their appropriate orientation onto the sensor's surface, good stability, and sensitivity properties. The detection of collagen type I was performed in a concentration range from 1 to 5 pg/mL. Moreover, SPR was utilized to confirm the immobilization of the monoclonal half-antibodies and sensing of collagen I versus time. Furthermore, EIS experiments revealed a limit of detection (LOD) of 0.38 pg/mL. The selectivity of the performed immunosensor was confirmed by negligible responses for BSA. The performed approach of the immunosensor is a novel, innovative attempt that enables the detection of collagen I with very high sensitivity in the range of pg/mL, which is significantly lower than the commonly used enzyme-linked immunosorbent assay (ELISA).
Collapse
Affiliation(s)
- Marcin Gwiazda
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland; (M.G.); (E.K.-G.); (W.S.)
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Sheetal K. Bhardwaj
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904, 1098 XH Amsterdam, The Netherlands
- Correspondence: or (S.K.B.); or (A.K.)
| | - Ewa Kijeńska-Gawrońska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland; (M.G.); (E.K.-G.); (W.S.)
- Centre for Advanced Materials and Technologies CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland; (M.G.); (E.K.-G.); (W.S.)
| | - Unni Sivasankaran
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL 33805, USA
- Correspondence: or (S.K.B.); or (A.K.)
| |
Collapse
|
7
|
Mathew G, Narayanan N, Abraham DA, De M, Neppolian B. Facile Green Approach for Developing Electrochemically Reduced Graphene Oxide-Embedded Platinum Nanoparticles for Ultrasensitive Detection of Nitric Oxide. ACS OMEGA 2021; 6:8068-8080. [PMID: 33817466 PMCID: PMC8014916 DOI: 10.1021/acsomega.0c05644] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Nitric oxide (NO) plays a crucial and important role in cellular physiology and also acts as a signaling molecule for cancer in humans. However, conventional detection methods have their own limitations in the detection of NO at low concentrations because of its high reactivity and low lifetime. Herein, we report a strategy to fabricate Pt nanoparticle-decorated electrochemically reduced graphene oxide (erGO)-modified glassy carbon electrode (GCE) with efficiency to detect NO at a low concentration. For this study, Pt@erGO/GCE was fabricated by employing two different sequential methods [first GO reduction followed by Pt electrodeposition (SQ-I) and Pt electrodeposition followed by GO reduction (SQ-II)]. It was interesting to note that the electrocatalytic current response for SQ-I (184 μA) was ∼15 and ∼3 folds higher than those of the bare GCE (11.7 μA) and SQ-II (61.5 μA). The higher current response was mainly attributed to a higher diffusion coefficient and electrochemically active surface area. The proposed SQ-I electrode exhibited a considerably low LOD of 52 nM (S/N = 3) in a linear range of 0.25-40 μM with a short response time (0.7 s). In addition, the practical analytical applicability of the proposed sensor was also verified.
Collapse
Affiliation(s)
- Georgeena Mathew
- SRM
Research Institute, SRM Institute of Science
and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Naresh Narayanan
- SRM
Research Institute, SRM Institute of Science
and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Daniel Arulraj Abraham
- National
Laboratory of Solid State Microstructures and Department of Materials
Science and Engineering, College of Engineering and Applied Sciences,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Mrinmoy De
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore, Karnataka 560012, India
| | - Bernaurdshaw Neppolian
- SRM
Research Institute, SRM Institute of Science
and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| |
Collapse
|
8
|
Verma S, Arya P, Singh A, Kaswan J, Shukla A, Kushwaha HR, Gupta S, Singh SP. ZnO-rGO nanocomposite based bioelectrode for sensitive and ultrafast detection of dopamine in human serum. Biosens Bioelectron 2020; 165:112347. [DOI: 10.1016/j.bios.2020.112347] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 11/28/2022]
|
9
|
Krishnan S, He X, Zhao F, Zhang Y, Liu S, Xing R. Dual labeled mesoporous silica nanospheres based electrochemical immunosensor for ultrasensitive detection of carcinoembryonic antigen. Anal Chim Acta 2020; 1133:119-127. [DOI: 10.1016/j.aca.2020.07.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022]
|
10
|
Mujawar MA, Gohel H, Bhardwaj SK, Srinivasan S, Hickman N, Kaushik A. Nano-enabled biosensing systems for intelligent healthcare: towards COVID-19 management. MATERIALS TODAY. CHEMISTRY 2020; 17:100306. [PMID: 32835155 PMCID: PMC7274574 DOI: 10.1016/j.mtchem.2020.100306] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 05/18/2023]
Abstract
Biosensors are emerging as efficient (sensitive and selective) and affordable analytical diagnostic tools for early-stage disease detection, as required for personalized health wellness management. Low-level detection of a targeted disease biomarker (pM level) has emerged extremely useful to evaluate the progression of disease under therapy. Such collected bioinformatics and its multi-aspects-oriented analytics is in demand to explore the effectiveness of a prescribed treatment, optimize therapy, and correlate biomarker level with disease pathogenesis. Owing to nanotechnology-enabled advancements in sensing unit fabrication, device integration, interfacing, packaging, and sensing performance at point-of-care (POC) has rendered diagnostics according to the requirements of disease management and patient disease profile i.e. in a personalized manner. Efforts are continuously being made to promote the state of art biosensing technology as a next-generation non-invasive disease diagnostics methodology. Keeping this in view, this progressive opinion article describes personalized health care management related analytical tools which can provide access to better health for everyone, with overreaching aim to manage healthy tomorrow timely. Considering accomplishments and predictions, such affordable intelligent diagnostics tools are urgently required to manage COVID-19 pandemic, a life-threatening respiratory infectious disease, where a rapid, selective and sensitive detection of human beta severe acute respiratory system coronavirus (SARS-COoV-2) protein is the key factor.
Collapse
Affiliation(s)
- M A Mujawar
- Department of Electrical and Computer Engineering, College of Engineering and Computing, Florida International University, Miami, FL, 33174, USA
| | - H Gohel
- Department of Computer Science, School of Art and Sciences, University of Houston, Victoria, TX, USA
| | - S K Bhardwaj
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - S Srinivasan
- NnaoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, USA
| | - N Hickman
- NnaoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, USA
| | - A Kaushik
- NnaoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, USA
| |
Collapse
|
11
|
Rao R P, Sharma S, Mehrotra T, Das R, Kumar R, Singh R, Roy I, Basu T. Rapid Electrochemical Monitoring of Bacterial Respiration for Gram-Positive and Gram-Negative Microbes: Potential Application in Antimicrobial Susceptibility Testing. Anal Chem 2020; 92:4266-4274. [PMID: 32050756 DOI: 10.1021/acs.analchem.9b04810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antimicrobial resistance is a grave threat to human life. Currently used time-consuming antibiotic susceptibility test (AST) methods limit physicians in selecting proper antibiotics. Hence, we developed a rapid AST using electroanalysis with a 15 min assay time, called EAST, which is live-monitored by time-lapse microscopy video. The present work reports systematical electrochemical analysis and standardization of protocol for EAST measurement. The proposed EAST is successfully applied for Gram-positive Bacillus subtilis and Gram-negative Escherichia coli as model organisms to monitor bacterial concentration, decay kinetics in the presence of various antibiotics (ciprofloxacin, cefixime, and amoxycillin), drug efficacy, and IC50. Bacterial decay kinetics in the presence of antibiotics were validated by the colony counting method, field emission scanning electron microscopy, and atomic force microscopy image analysis. The EAST predicts the antibiotic susceptibility of bacteria within 15 min, which is a significant advantage over existing techniques that consume hours to days. The EAST was explored further by using bacteria-friendly l-lysine-functionalized cerium oxide nanoparticle coated indium tin oxide as a working electrode to observe the enhanced electron-transfer rate in the EAST. The results are very significant for future miniaturization and automation. The proposed EAST has huge potential in the development of a rapid AST device for applications in the clinical and pharmaceutical industries.
Collapse
Affiliation(s)
| | - Shalini Sharma
- Department of Chemistry, University of Delhi, New Delhi, Delhi 110007, India
| | | | | | | | | | - Indrajit Roy
- Department of Chemistry, University of Delhi, New Delhi, Delhi 110007, India
| | | |
Collapse
|
12
|
A mesoporous silver-doped TiO2-SnO2 nanocomposite on g-C3N4 nanosheets and decorated with a hierarchical core−shell metal-organic framework for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Mikrochim Acta 2020; 187:82. [DOI: 10.1007/s00604-019-4045-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/20/2019] [Indexed: 01/01/2023]
|
13
|
Bhardwaj SK, Chauhan R, Yadav P, Ghosh S, Mahapatro AK, Singh J, Basu T. Bi-enzyme functionalized electro-chemically reduced transparent graphene oxide platform for triglyceride detection. Biomater Sci 2019; 7:1598-1606. [DOI: 10.1039/c8bm01406j] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, increased attention has been drawn to application of graphene and its derivatives for construction of biosensors, since they can be used to rapidly detect the presence of bio-analytes.
Collapse
Affiliation(s)
| | | | - Premlata Yadav
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Subhasis Ghosh
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Ajit K. Mahapatro
- Department of Physics and Astrophysics
- University of Delhi
- New Delhi 110007
- India
| | - Jay Singh
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi 221005
- India
| | - Tinku Basu
- Amity Institute of Nanotechnology
- Amity University
- Noida
- India
| |
Collapse
|
14
|
Lu S, Yu T, Wang Y, Liang L, Chen Y, Xu F, Wang S. Nanomaterial-based biosensors for measurement of lipids and lipoproteins towards point-of-care of cardiovascular disease. Analyst 2018; 142:3309-3321. [PMID: 28828428 DOI: 10.1039/c7an00847c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) has become the primary cause of global deaths and inflicts an enormous healthcare burden on both developed and developing countries. Frequent monitoring of CVD-associated risk factors such as the level of lipids (e.g., triglyceride (TG) and total cholesterol (TC)) and lipoproteins (e.g., low-density lipoprotein (LDL) and high-density lipoprotein (HDL)) can effectively help prevent disease progression and improve clinical outcomes. However, measurement of these risk factors is generally integrated into an automated analyzer, which is prohibitively expensive and highly instrument-dependent for routine testing in primary care settings. As such, a variety of rapid, simple and portable nanomaterial-based biosensors have been developed for measuring the level of lipids (TG and TC) and lipoproteins (LDL and HDL) towards the management of CVD at the point-of-care (POC). In this review, we first summarize traditional methods for measurement of lipids and lipoproteins, and then present the latest advances in developing nanomaterial-based biosensors that can potentially monitor the risk factors of CVD at the POC.
Collapse
Affiliation(s)
- Siming Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Farzin L, Shamsipur M, Samandari L, Sheibani S. Recent advances in designing nanomaterial based biointerfaces for electrochemical biosensing cardiovascular biomarkers. J Pharm Biomed Anal 2018; 161:344-376. [PMID: 30205301 DOI: 10.1016/j.jpba.2018.08.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
Early diagnosis of cardiovascular disease (CVD) is critically important for successful treatment and recovery of patients. At present, detection of CVD at early stages of its progression becomes a major issue for world health. The nanoscale electrochemical biosensors exhibit diverse outstanding properties, rendering them extremely suitable for the determination of CVD biomarkers at very low concentrations in biological fluids. The unique advantages offered by electrochemical biosensors in terms of sensitivity and stability imparted by nanostructuring the electrode surface together with high affinity and selectivity of bioreceptors have led to the development of new electrochemical biosensing strategies that have introduced as interesting alternatives to conventional methodologies for clinical diagnostics of CVD. This review provides an updated overview of selected examples during the period 2005-2018 involving electrochemical biosensing approaches and signal amplification strategies based on nanomaterials, which have been applied for determination of CVD biomarkers. The studied CVD biomarkers include AXL receptor tyrosine kinase, apolipoproteins, cholesterol, C-reactive protein (CRP), D-dimer, fibrinogen (Fib), glucose, insulin, interleukins, lipoproteins, myoglobin, N-terminal pro-B-type natriuretic peptide (BNP), tumor necrosis factor alpha (TNF-α) and troponins (Tns) on electrochemical transduction format. Identification of new specific CVD biomarkers, multiplex bioassay for the simultaneous determination of biomarkers, emergence of microfluidic biosensors, real-time analysis of biomarkers and point of care validation with high sensitivity and selectivity are the major challenges for future research.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran.
| | - Leila Samandari
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran
| |
Collapse
|
16
|
Quan Q, Xie S, Weng B, Wang Y, Xu YJ. Revealing the Double-Edged Sword Role of Graphene on Boosted Charge Transfer versus Active Site Control in TiO 2 Nanotube Arrays@RGO/MoS 2 Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704531. [PMID: 29667357 DOI: 10.1002/smll.201704531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/09/2018] [Indexed: 06/08/2023]
Abstract
Charge separation/transfer is generally believed to be the most key factor affecting the efficiency of photocatalysis, which however will be counteracted if not taking the active site engineering into account for a specific photoredox reaction. Here, a 3D heterostructure composite is designed consisting of MoS2 nanoplatelets decorated on reduced graphene oxide-wrapped TiO2 nanotube arrays (TNTAs@RGO/MoS2 ). Such a cascade configuration renders a directional migration of charge carriers and controlled immobilization of active sites, thereby showing much higher photoactivity for water splitting to H2 than binary TNTAs@RGO and TNTAs/MoS2 . The photoactivity comparison and mechanistic analysis reveal the double-edged sword role of RGO on boosted charge separation/transfer versus active site control in this composite system. The as-observed inconsistency between boosted charge transfer and lowered photoactivity over TNTAs@RGO is attributed to the decrease of active sites for H2 evolution, which is significantly different from the previous reports in literature. The findings of the intrinsic relationship of balanced benefits from charge separation/transfer and active site control could promote the rational optimization of photocatalyst design by cooperatively manipulating charge flow and active site control, thereby improving the efficiency of photocatalysis for target photoredox processes.
Collapse
Affiliation(s)
- Quan Quan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shunji Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Bo Weng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yi-Jun Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
17
|
Saini P, Singh M, Thakur J, Patil R, Ma YR, Tandon RP, Singh SP, Mahapatro AK. Probing the Mechanism for Bipolar Resistive Switching in Annealed Graphene Oxide Thin Films. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6521-6530. [PMID: 29363947 DOI: 10.1021/acsami.7b09447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The bipolar resistive switching (BRS) between a metallic low resistance state (LRS) and an insulating high resistance state (HRS) is demonstrated for annealed graphene oxide (GO) thin film-based device structures with aluminum (Al) as one of the contact electrodes. An optimal switching of ∼104 order is recorded for Al/GO (200 °C)/indium tin oxide (ITO) among the device structures in metal (M2)/GO (T)/metal (M1) configurations (M1 = Al, Au, or ITO and M2 = Au or Al), fabricated using GO (T)/metal (M1), annealed at different temperatures, T = 100, 200, 300, and 400 °C. The initial Ohmic conduction for electronic transport and the presence of metal contents through GO thin films in the X-ray photoelectron spectroscopy support the physical evidence of Al filament formation between the two electrodes as imaged by the high-resolution transmission electron microscopy. The speculated mechanism for BRS in repeated voltage sweep cycles is attributed to the current triggered breaking of metal filaments because of the combined effect of Joule's heating and Peltier heat generation at LRS → HRS transition, and electric field induced migration of metal atoms, leading to the formation of metal filaments through the GO film at the HRS → LRS transition. The higher switching ratio exhibited in the current study could be translated to engineer simple and low-cost resistive memory devices.
Collapse
Affiliation(s)
- Pooja Saini
- Department of Physics and Astrophysics, University of Delhi , Delhi 110007, India
| | - Manjri Singh
- CSIR-National Physical Laboratory , Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Jyoti Thakur
- Department of Physics and Astrophysics, University of Delhi , Delhi 110007, India
| | - Ranjit Patil
- CSIR-National Physical Laboratory , Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Yuan Ron Ma
- Department of Physics, National Dong-Hwa University , Hualien 97401, Taiwan
| | - Ram P Tandon
- Department of Physics and Astrophysics, University of Delhi , Delhi 110007, India
| | - Surinder P Singh
- CSIR-National Physical Laboratory , Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Ajit K Mahapatro
- Department of Physics and Astrophysics, University of Delhi , Delhi 110007, India
| |
Collapse
|
18
|
Islam K, Damiati S, Sethi J, Suhail A, Pan G. Development of a Label-Free Immunosensor for Clusterin Detection as an Alzheimer's Biomarker. SENSORS (BASEL, SWITZERLAND) 2018; 18:E308. [PMID: 29361679 PMCID: PMC5795331 DOI: 10.3390/s18010308] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 01/01/2023]
Abstract
Clusterin (CLU) has been associated with the clinical progression of Alzheimer's disease (AD) and described as a potential AD biomarker in blood plasma. Due to the enormous attention given to cerebrospinal fluid (CSF) biomarkers for the past couple of decades, recently found blood-based AD biomarkers like CLU have not yet been reported for biosensors. Herein, we report the electrochemical detection of CLU for the first time using a screen-printed carbon electrode (SPCE) modified with 1-pyrenebutyric acid N-hydroxysuccinimide ester (Pyr-NHS) and decorated with specific anti-CLU antibody fragments. This bifunctional linker molecule contains succinylimide ester to bind protein at one end while its pyrene moiety attaches to the carbon surface by means of π-π stacking. Cyclic voltammetric and square wave voltammetric studies showed the limit of detection down to 1 pg/mL and a linear concentration range of 1-100 pg/mL with good sensitivity. Detection of CLU in spiked human plasma was demonstrated with satisfactory recovery percentages to that of the calibration data. The proposed method facilitates the cost-effective and viable production of label-free point-of-care devices for the clinical diagnosis of AD.
Collapse
Affiliation(s)
- Kamrul Islam
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science and Engineering, University of Plymouth, Devon PL4 8AA, UK.
| | - Samar Damiati
- Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.
| | - Jagriti Sethi
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science and Engineering, University of Plymouth, Devon PL4 8AA, UK.
| | - Ahmed Suhail
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science and Engineering, University of Plymouth, Devon PL4 8AA, UK.
| | - Genhua Pan
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science and Engineering, University of Plymouth, Devon PL4 8AA, UK.
| |
Collapse
|
19
|
Benjamin M, Manoj D, Thenmozhi K, Bhagat PR, Saravanakumar D, Senthilkumar S. A bioinspired ionic liquid tagged cobalt-salophen complex for nonenzymatic detection of glucose. Biosens Bioelectron 2016; 91:380-387. [PMID: 28061420 DOI: 10.1016/j.bios.2016.12.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 01/04/2023]
Abstract
The development of efficient and cost effective nonenzymatic biosensors with remarkable sensitivity, selectivity and stability for the detection of biomolecules, especially glucose is one of the major challenges in materials- and electrochemistry. Herein, we report the design and preparation of nonenzymatic biosensor based on an ionic liquid tagged cobalt-salophen metal complex (Co-salophen-IL) immobilized on electrochemically reduced graphene oxide (ERGO) for the detection of glucose via an electrochemical oxidation. The bioinspired Co-salophen-IL complex has been synthesized and immobilized on ERGO, which was previously deposited on a screen printed carbon electrode (SPE) to form the Co-salophen-IL/ERGO/SPE nonenzymatic biosensor. The electrochemical behaviour of this modified electrode was studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Notably, the Co-salophen-IL/ERGO/SPE biosensor exhibited excellent electrocatalytic activity towards glucose oxidation in 0.1M NaOH, based on which an amperometric sensor has been developed. The modified electrode has shown prominent performance towards glucose detection over a wide linear range from 0.2µM to 1.8mM with a detection limit and sensitivity of 0.79µM and 62µAmM-1 respectively. The detection was carried out at 0.40V and such a less working potential excludes the interference from the coexisting oxidizable analytes. The role of Co-salophen, IL and ERGO in the electrocatalytic activity has been systematically investigated. Furthermore, the biosensor demonstrated high stability with good reproducibility.
Collapse
Affiliation(s)
- Michael Benjamin
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, India
| | - Devaraj Manoj
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, India
| | - Kathavarayan Thenmozhi
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, India
| | - Pundlik Rambhau Bhagat
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, India
| | - Duraisamy Saravanakumar
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, India.
| | - Sellappan Senthilkumar
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, India.
| |
Collapse
|