1
|
Kim J, Mayorga-Burrezo P, Song SJ, Mayorga-Martinez CC, Medina-Sánchez M, Pané S, Pumera M. Advanced materials for micro/nanorobotics. Chem Soc Rev 2024; 53:9190-9253. [PMID: 39139002 DOI: 10.1039/d3cs00777d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Autonomous micro/nanorobots capable of performing programmed missions are at the forefront of next-generation micromachinery. These small robotic systems are predominantly constructed using functional components sourced from micro- and nanoscale materials; therefore, combining them with various advanced materials represents a pivotal direction toward achieving a higher level of intelligence and multifunctionality. This review provides a comprehensive overview of advanced materials for innovative micro/nanorobotics, focusing on the five families of materials that have witnessed the most rapid advancements over the last decade: two-dimensional materials, metal-organic frameworks, semiconductors, polymers, and biological cells. Their unique physicochemical, mechanical, optical, and biological properties have been integrated into micro/nanorobots to achieve greater maneuverability, programmability, intelligence, and multifunctionality in collective behaviors. The design and fabrication methods for hybrid robotic systems are discussed based on the material categories. In addition, their promising potential for powering motion and/or (multi-)functionality is described and the fundamental principles underlying them are explained. Finally, their extensive use in a variety of applications, including environmental remediation, (bio)sensing, therapeutics, etc., and remaining challenges and perspectives for future research are discussed.
Collapse
Affiliation(s)
- Jeonghyo Kim
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Paula Mayorga-Burrezo
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Su-Jin Song
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Carmen C Mayorga-Martinez
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Mariana Medina-Sánchez
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, San Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi, 5, Bilbao, 48009, Spain
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Chair of Micro- and Nano-Biosystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062, Dresden, Germany
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannenstrasse 3, CH-8092 Zürich, Switzerland
| | - Martin Pumera
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
2
|
Khoo V, Ng SF, Haw CY, Ong WJ. Additive Manufacturing: A Paradigm Shift in Revolutionizing Catalysis with 3D Printed Photocatalysts and Electrocatalysts Toward Environmental Sustainability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401278. [PMID: 38634520 DOI: 10.1002/smll.202401278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Semiconductor-based materials utilized in photocatalysts and electrocatalysts present a sophisticated solution for efficient solar energy utilization and bias control, a field extensively explored for its potential in sustainable energy and environmental management. Recently, 3D printing has emerged as a transformative technology, offering rapid, cost-efficient, and highly customizable approaches to designing photocatalysts and electrocatalysts with precise structural control and tailored substrates. The adaptability and precision of printing facilitate seamless integration, loading, and blending of diverse photo(electro)catalytic materials during the printing process, significantly reducing material loss compared to traditional methods. Despite the evident advantages of 3D printing, a comprehensive compendium delineating its application in the realm of photocatalysis and electrocatalysis is conspicuously absent. This paper initiates by delving into the fundamental principles and mechanisms underpinning photocatalysts electrocatalysts and 3D printing. Subsequently, an exhaustive overview of the latest 3D printing techniques, underscoring their pivotal role in shaping the landscape of photocatalysts and electrocatalysts for energy and environmental applications. Furthermore, the paper examines various methodologies for seamlessly incorporating catalysts into 3D printed substrates, elucidating the consequential effects of catalyst deposition on catalytic properties. Finally, the paper thoroughly discusses the challenges that necessitate focused attention and resolution for future advancements in this domain.
Collapse
Affiliation(s)
- Valerine Khoo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Sue-Faye Ng
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Choon-Yian Haw
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Gulei Innovation Institute, Xiamen University, Zhangzhou, 363200, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| |
Collapse
|
3
|
Jiang L, Liu X, Zhao D, Guo J, Ma X, Wang Y. Intelligent sensing based on active micro/nanomotors. J Mater Chem B 2023; 11:8897-8915. [PMID: 37667977 DOI: 10.1039/d3tb01163a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In the microscopic world, synthetic micro/nanomotors (MNMs) can convert a variety of energy sources into driving forces to help humans perform a number of complex tasks with greater ease and efficiency. These tiny machines have attracted tremendous attention in the field of drug delivery, minimally invasive surgery, in vivo sampling, and environmental management. By modifying their surface materials and functionalizing them with bioactive agents, these MNMs can also be transformed into dynamic micro/nano-biosensors that can detect biomolecules in real-time with high sensitivity. The extensive range of operations and uses combined with their minuscule size have opened up new avenues for tackling intricate analytical difficulties. Here, in this review, various driving methods are briefly introduced, followed by a focus on intelligent detection techniques based on MNMs. And we discuss the distinctive advantages, current issues, and challenges associated with MNM-based intelligent detection. It is believed that the future advancements of MNMs will greatly impact the diagnosis, treatment, and prevention of diseases.
Collapse
Affiliation(s)
- Lingfeng Jiang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Xiaoxia Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Dongfang Zhao
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Jinhong Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Yong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
4
|
Li C, Wu X, Hu J, Shan J, Zhang Z, Huang X, Liu H. Graphene-based photocatalytic nanocomposites used to treat pharmaceutical and personal care product wastewater: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35657-35681. [PMID: 35257332 DOI: 10.1007/s11356-022-19469-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Photocatalytic technology has been widely studied by researchers in the field of environmental purification. This technology can not only completely convert organic pollutants into small molecules of CO2 and H2O through redox reactions but also remove metal ions and other inorganic substances from water. This article reviews the research progress of graphene-based photocatalytic nanocomposites in the treatment of wastewater. First, we elucidate the basic principles of photocatalysis, the types of graphene-based nanocomposites, and the role of graphene in photocatalysis (e.g., graphene can accelerate the separation of photon-hole pairs and increase the intensity and range of light absorption). Second, the preparation, characterization, and application of composites in wastewater are introduced. We also discuss the kinetic model of the photocatalytic degradation of pollutants. Finally, the enhancement mechanism of graphene in terms of photocatalysis is not completely clear, and graphene-based photocatalysts with high catalytic efficiency, low cost, and large-scale production have not yet appeared, so there is an urgent need for more extensive and in-depth research.
Collapse
Affiliation(s)
- Caifang Li
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
| | - Xianliang Wu
- Guizhou Institute of Biology, Guiyang, Guizhou, 550009, China
| | - Jiwei Hu
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
| | - Junyue Shan
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
| | - Zhenming Zhang
- Guizhou Institute of Biology, Guiyang, Guizhou, 550009, China
| | - Xianfei Huang
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China.
| | - Huijuan Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| |
Collapse
|
5
|
Song X, Tao Y, Liu J, Lin J, Dai P, Wang Q, Li W, Chen W, Zheng C. Photocatalytic-induced bubble-propelled isotropic g-C 3N 4-coated carbon microsphere micromotors for dynamic removal of organic pollutants. RSC Adv 2022; 12:13116-13126. [PMID: 35497017 PMCID: PMC9053031 DOI: 10.1039/d2ra01577c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
An isotropic bubble-propelled graphitic carbon nitride coated carbon microsphere (g-C3N4@CMS) micromotor that displays efficient self-propulsion powered by visible light irradiation and offers effective dynamic removal of organic pollutants for environmental applications is described. Its morphology, structure, and composition were systematically characterized, confirming the successful coating of g-C3N4 on the CMS surface and a core-shell structure. The photocatalytic-induced bubble propulsion of g-C3N4@CMS micromotors essentially stems from the asymmetrical photocatalytic redox reactions of g-C3N4 on the symmetrical surface of micromotors under visible light illumination. The stacking effect of g-C3N4 on the CMS surface results in a microporous structure that provides a highly reactive photocatalytic layer, which also leads to effective bubble evolution and propulsion at remarkable speeds of over 167.97 μm s-1 under 250 mW cm-2 visible light in the presence of 30% H2O2 fuel. The velocity can be easily and effectively adjusted by H2O2 fuel and the intensity of visible light. Furthermore, the motion state can be reversibly and wirelessly controlled by "switching on/off" light. Such coupling of the high photocatalytic activity of the porous g-C3N4 shell with the rapid movement of these light-driven micromotors, along with the corresponding fluid dynamics and mixing, result in greatly accelerated organic pollutant degradation. The adsorption kinetics have also been investigated and shown to follow pseudo-second-order kinetics. The strategy proposed here would inspire the designing of light-driven symmetrical micromotors because of the low cost, single component, and simple structure as well as facile and large-scale fabrication, which make them suitable for practical applications.
Collapse
Affiliation(s)
- Xiaoyi Song
- School of Materials Science and Engineering, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
| | - Yulian Tao
- School of Materials Science and Engineering, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
| | - Jialiang Liu
- School of Materials Science and Engineering, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
| | - Jian Lin
- School of Materials Science and Engineering, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
| | - Pingqiang Dai
- School of Materials Science and Engineering, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
| | - Qianting Wang
- School of Materials Science and Engineering, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
| | - Wei Li
- School of Materials Science and Engineering, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
- Institute of Materials Surface Technology, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
| | - Wenzhe Chen
- School of Materials Science and Engineering, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
| | - Chan Zheng
- School of Materials Science and Engineering, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
- Institute of Materials Surface Technology, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
| |
Collapse
|
6
|
Yuan Y, Gao C, Wang Z, Fan J, Zhou H, Wang D, Zhou C, Zhu B, He Q. Upconversion-nanoparticle-functionalized Janus micromotors for efficient detection of uric acid. J Mater Chem B 2022; 10:358-363. [PMID: 35005767 DOI: 10.1039/d1tb02550c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report enzyme-powered upconversion-nanoparticle-functionalized Janus micromotors, which are prepared by immobilizing uricase asymmetrically onto the surface of silicon particles, to actively and rapidly detect uric acid. The asymmetric distribution of uricase on silicon particles allows the Janus micromotors to display efficient motion in urine under the propulsion of biocatalytic decomposition of uric acid and simultaneously detect uric acid based on the luminescence quenching effect of the UCNPs modified on the other side of SiO2. The efficient motion of the motors greatly enhances the interaction between UCNPs and the quenching substrate and improves the uric acid detection efficiency. Overall, such a platform using uric acid simultaneously as the detected substrate and motion fuel offers considerable promise for developing multifunctional micro/nanomotors for a variety of bioassay and biomedical applications.
Collapse
Affiliation(s)
- Ye Yuan
- Chemistry and Chemical Engineering College, Inner Mongolia University, Hohhot, 010021, China. .,Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150080, China.
| | - Changyong Gao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, Cixi, 315300, China.
| | - Zhexu Wang
- Chemistry and Chemical Engineering College, Inner Mongolia University, Hohhot, 010021, China.
| | - Jianming Fan
- Chemistry and Chemical Engineering College, Inner Mongolia University, Hohhot, 010021, China.
| | - Haofei Zhou
- Chemistry and Chemical Engineering College, Inner Mongolia University, Hohhot, 010021, China.
| | - Daolin Wang
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150080, China.
| | - Chang Zhou
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150080, China.
| | - Baohua Zhu
- Chemistry and Chemical Engineering College, Inner Mongolia University, Hohhot, 010021, China.
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150080, China.
| |
Collapse
|
7
|
Saw WS, Anasamy T, Foo YY, Kwa YC, Kue CS, Yeong CH, Kiew LV, Lee HB, Chung LY. Delivery of Nanoconstructs in Cancer Therapy: Challenges and Therapeutic Opportunities. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000206] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wen Shang Saw
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| | - Theebaa Anasamy
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| | - Yiing Yee Foo
- Department of Pharmacology Faculty of Medicine University of Malaya Kuala Lumpur 50603 Malaysia
| | - Yee Chu Kwa
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| | - Chin Siang Kue
- Department of Diagnostic and Allied Health Sciences Faculty of Health and Life Sciences Management and Science University Shah Alam Selangor 40100 Malaysia
| | - Chai Hong Yeong
- School of Medicine Faculty of Health and Medical Sciences Taylor's University Subang Jaya Selangor 47500 Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology Faculty of Medicine University of Malaya Kuala Lumpur 50603 Malaysia
| | - Hong Boon Lee
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
- School of Biosciences Faculty of Health and Medical Sciences Taylor's University Subang Jaya Selangor 47500 Malaysia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| |
Collapse
|
8
|
Wang B, Kostarelos K, Nelson BJ, Zhang L. Trends in Micro-/Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002047. [PMID: 33617105 DOI: 10.1002/adma.202002047] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/24/2020] [Indexed: 05/23/2023]
Abstract
Micro-/nanorobots (m-bots) have attracted significant interest due to their suitability for applications in biomedical engineering and environmental remediation. Particularly, their applications in in vivo diagnosis and intervention have been the focus of extensive research in recent years with various clinical imaging techniques being applied for localization and tracking. The successful integration of well-designed m-bots with surface functionalization, remote actuation systems, and imaging techniques becomes the crucial step toward biomedical applications, especially for the in vivo uses. This review thus addresses four different aspects of biomedical m-bots: design/fabrication, functionalization, actuation, and localization. The biomedical applications of the m-bots in diagnosis, sensing, microsurgery, targeted drug/cell delivery, thrombus ablation, and wound healing are reviewed from these viewpoints. The developed biomedical m-bot systems are comprehensively compared and evaluated based on their characteristics. The current challenges and the directions of future research in this field are summarized.
Collapse
Affiliation(s)
- Ben Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, Spain
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Tannenstrasse 3, Zurich, CH-8092, Switzerland
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
| |
Collapse
|
9
|
Salinas G, Pavel I, Sojic N, Kuhn A. Electrochemistry‐Based Light‐Emitting Mobile Systems. ChemElectroChem 2020. [DOI: 10.1002/celc.202001104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gerardo Salinas
- Univ. Bordeaux, CNRS Bordeaux INP, ISM, UMR 5255 33607 Pessac France
| | | | - Neso Sojic
- Univ. Bordeaux, CNRS Bordeaux INP, ISM, UMR 5255 33607 Pessac France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS Bordeaux INP, ISM, UMR 5255 33607 Pessac France
| |
Collapse
|
10
|
Londhe V, Sharma P. Unfolding the future: Self-controlled catalytic nanomotor in healthcare system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111330. [PMID: 32919683 DOI: 10.1016/j.msec.2020.111330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 06/18/2020] [Accepted: 07/19/2020] [Indexed: 12/30/2022]
Abstract
Nanomotors, multimetallic systems are biologically inspired self-propelled tiny engines able to perform difficult tasks of transporting cargos from one end to another in presence of hydrogen peroxide fuel. Nanomotors can revolutionize the drug delivery system at the desired target by converting chemical energy into mechanical energy. Nanomotors exhibit unique properties like moving at higher speed, self-propulsion and drilling into the complex cellular environment. The review focuses on fuel dependent and fuel-free nanomotors with their propulsion mechanism. Further, the review highlights the method of fabrication, biohybrid nanomotors, toxicities along with their application in the field of active drug delivery, diabetes, precise surgery, ischemic stroke therapy, diagnosis and treatment of coronavirus, microwave hyperthermia, zika virus detection, anti-bacterial activity, water treatment and sensing and challenges lying at the forefront in the development of these tiny nanomachines. Hydrogen peroxide is toxic to mankind; biohybrid motors give an extra edge of eliminating hydrogen peroxide as fuel for self-propulsion, this can be used for smart drug delivery by reducing toxicities as compared to artificial nanomotors. Cost-effective fabrication of nanomotors will extend their applications in commercial sector overcoming limitations like scale-up and regulatory approval. In near future, nanomotors will diversify in fields of restoring conductivity of electronic medical devices, 3D printing and theranostics.
Collapse
Affiliation(s)
- Vaishali Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| | - Pragya Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
11
|
Khezri B, Villa K, Novotný F, Sofer Z, Pumera M. Smartdust 3D-Printed Graphene-Based Al/Ga Robots for Photocatalytic Degradation of Explosives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002111. [PMID: 32633050 DOI: 10.1002/smll.202002111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Milli/micro/nanorobots are considered smart devices able to convert energy taken from different sources into mechanical movement and accomplish the appointed tasks. Future advances and realization of these tiny devices are mostly limited by the narrow window of material choices, the fuel requirement, multistep surface functionalization, rational structural design, and propulsion ability in complex environments. All these aspects call for intensive improvements that may speed up the real application of such miniaturized robots. 3D-printed graphene-based smartdust robots provided with a magnetic response and filled with aluminum/gallium molten alloy (Al/Ga) for autonomous motion are presented. These robots can swim by reacting with the surrounding environment without adding any fuel. Because their outer surface is coated with a hydrogel/photocatalyst (chitosan/carbon nitride, C3 N4 ) layer, these robots are used for the photocatalytic degradation of the picric acid as an explosive model molecule under visible light. The results show a fast and efficient degradation of picric acid that is attributed to a synergistic effect between the adsorption capability of the chitosan and the photocatalytic activity of C3 N4 particles. This work provides added insight into the large-scale fabrication, easy functionalization, and propulsion of tiny robots for environmental applications.
Collapse
Affiliation(s)
- Bahareh Khezri
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Praha 6, Prague, 16822, Czech Republic
| | - Katherine Villa
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Praha 6, Prague, 16822, Czech Republic
| | - Filip Novotný
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Praha 6, Prague, 16822, Czech Republic
| | - Zdeněk Sofer
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Praha 6, Prague, 16822, Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Praha 6, Prague, 16822, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, CZ-61600, Czech Republic
| |
Collapse
|
12
|
Affiliation(s)
- Wei Wang
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education) Harbin Institute of Technology Harbin China
| | - Zhiguang Wu
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education) Harbin Institute of Technology Harbin China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education) Harbin Institute of Technology Harbin China
| |
Collapse
|
13
|
Shi H, Chen X, Liu K, Ding X, Liu W, Xu M. Heterogeneous Fenton ferroferric oxide-reduced graphene oxide-based composite microjets for efficient organic dye degradation. J Colloid Interface Sci 2020; 572:39-47. [DOI: 10.1016/j.jcis.2020.03.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/12/2023]
|
14
|
Li D, Liu C, Yang Y, Wang L, Shen Y. Micro-rocket robot with all-optic actuating and tracking in blood. LIGHT, SCIENCE & APPLICATIONS 2020; 9:84. [PMID: 32411369 PMCID: PMC7214411 DOI: 10.1038/s41377-020-0323-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 05/10/2023]
Abstract
Micro/nanorobots have long been expected to reach all parts of the human body through blood vessels for medical treatment or surgery. However, in the current stage, it is still challenging to drive a microrobot in viscous media at high speed and difficult to observe the shape and position of a single microrobot once it enters the bloodstream. Here, we propose a new micro-rocket robot and an all-optic driving and imaging system that can actuate and track it in blood with microscale resolution. To achieve a high driving force, we engineer the microrobot to have a rocket-like triple-tube structure. Owing to the interface design, the 3D-printed micro-rocket can reach a moving speed of 2.8 mm/s (62 body lengths per second) under near-infrared light actuation in a blood-mimicking viscous glycerol solution. We also show that the micro-rocket robot is successfully tracked at a 3.2-µm resolution with an optical-resolution photoacoustic microscope in blood. This work paves the way for microrobot design, actuation, and tracking in the blood environment, which may broaden the scope of microrobotic applications in the biomedical field.
Collapse
Affiliation(s)
- Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, 999077 Hong Kong, China
| | - Chao Liu
- Department of Biomedical Engineering, City University of Hong Kong, 999077 Hong Kong, China
| | - Yuanyuan Yang
- Department of Biomedical Engineering, City University of Hong Kong, 999077 Hong Kong, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, 999077 Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057 China
| | - Yajing Shen
- Department of Biomedical Engineering, City University of Hong Kong, 999077 Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057 China
| |
Collapse
|
15
|
Micromotors from Microfluidics. Chem Asian J 2019; 14:2417-2430. [DOI: 10.1002/asia.201900290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/17/2019] [Indexed: 12/24/2022]
|
16
|
Chen Y, Xu B, Mei Y. Design and Fabrication of Tubular Micro/Nanomotors via 3D Laser Lithography. Chem Asian J 2019; 14:2472-2478. [PMID: 30989837 DOI: 10.1002/asia.201900300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/14/2019] [Indexed: 01/18/2023]
Abstract
Catalytic tubular micro/nanomachines convert chemical energy from a surrounding aqueous fuel solution into mechanical energy to generate autonomous movements, propelled by the oxygen bubbles decomposed by hydrogen peroxide and expelled from the microtubular cavity. With the development of nanotechnology, micro/nanomotors have attracted more and more interest due to their numerous potential for in vivo and in vitro applications. Here, highly efficient chemical catalytic microtubular motors were fabricated via 3D laser lithography and their motion behavior under the action of driving force in fluids was demonstrated. The frequency of catalytically-generated bubbles ejection was influenced by the geometrical shape of the micro/nanomotor and surrounding chemical fuel environment, resulting in the variation in motion speed. The micro/nanomotors generated with a rocket-like shape displayed a more active motion compared with that of a single tubular micro/nanomotor, providing a wider range of practical micro-/nanoscale applications in the future.
Collapse
Affiliation(s)
- Yimeng Chen
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, 200433, China
| | - Borui Xu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, 200433, China
| | - Yongfeng Mei
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, 200433, China
| |
Collapse
|
17
|
Khezri B, Beladi Mousavi SM, Sofer Z, Pumera M. Recyclable nanographene-based micromachines for the on-the-fly capture of nitroaromatic explosives. NANOSCALE 2019; 11:8825-8834. [PMID: 31012898 DOI: 10.1039/c9nr02211b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It has been more than a decade since nano/micromachines (NMMs) have received the particular attention of scientists in different research fields. They are able to convert chemical energy into mechanical motion in their surrounding environment. Herein, a powerful, efficient and fast strategy of using nanosized reduced graphene oxide flake (n-rGO)-based self-propelled tubular micromachines for the removal of nitroaromatic compounds (NACs) is described. This method relies on the integration of the rGO as a well-known adsorbent of aromatic compounds with chemically powered engines for the removal of explosive compounds such as 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitrophenol (TNP) and 2,4-dinitrotoluene (DNT). Nanographene oxide reduced electrochemically inside the pores of the polycarbonate membrane to form an outer layer (n-rGO, adsorbent layer) of the micromachines. Subsequent electrodeposition of nickel (Ni, magnetic layer) and platinum (Pt, catalytic layer) resulted in the formation of n-rGO/Ni/Pt micromachines. Notably, the bubble-propelled micromachines were able to remove nitroaromatic compounds with high efficiency (∼90-92%) compared to the efficiency of magnetic-guided (22-42%) and static (2.5-7%) micromachines. Most importantly, the micromachines were regenerated and reused several times. The regeneration is based on an electrochemical method in which electron injection into the machine causes the expulsion of contaminants from the outer layer of the micromachines within a few seconds. The integration of the powerful self-propulsion, high adsorbent capacity of rGO and the introduced ultrafast regeneration procedure are beneficial for the realization of an active platform for water remediation.
Collapse
Affiliation(s)
- Bahareh Khezri
- Center for the Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Technická 5, Prague, Czech Republic.
| | | | | | | |
Collapse
|
18
|
María Hormigos R, Jurado Sánchez B, Escarpa A. Multi‐Light‐Responsive Quantum Dot Sensitized Hybrid Micromotors with Dual‐Mode Propulsion. Angew Chem Int Ed Engl 2019; 58:3128-3132. [DOI: 10.1002/anie.201811050] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/02/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Roberto María Hormigos
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering and Chemical Research Institute “Andres M. Del Rio”University of Alcalá Madrid Spain
| | - Beatriz Jurado Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering and Chemical Research Institute “Andres M. Del Rio”University of Alcalá Madrid Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering and Chemical Research Institute “Andres M. Del Rio”University of Alcalá Madrid Spain
| |
Collapse
|
19
|
María Hormigos R, Jurado Sánchez B, Escarpa A. Multi‐Light‐Responsive Quantum Dot Sensitized Hybrid Micromotors with Dual‐Mode Propulsion. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Roberto María Hormigos
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering and Chemical Research Institute “Andres M. Del Rio”University of Alcalá Madrid Spain
| | - Beatriz Jurado Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering and Chemical Research Institute “Andres M. Del Rio”University of Alcalá Madrid Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering and Chemical Research Institute “Andres M. Del Rio”University of Alcalá Madrid Spain
| |
Collapse
|
20
|
Yuan Y, Gao C, Wang D, Zhou C, Zhu B, He Q. Janus-micromotor-based on-off luminescence sensor for active TNT detection. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1324-1331. [PMID: 31293869 PMCID: PMC6604751 DOI: 10.3762/bjnano.10.131] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2019] [Indexed: 05/08/2023]
Abstract
An active TNT (2,4,6-trinitrotoluene) catalytic sensor based on Janus upconverting nanoparticle (UCNP)-functionalized micromotor capsules, displaying "on-off" luminescence with a low limit of detection has been developed. The Janus capsule motors were fabricated by layer-by-layer assembly of UCNP-functionalized polyelectrolyte microcapsules, followed by sputtering of a platinum layer onto one half of the capsule. By catalytic decomposition of hydrogen peroxide to oxygen bubbles, the Janus UCNP capsule motors are rapidly propelled with a speed of up to 110 μm s-1. Moreover, the Janus motors display efficient on-off luminescent detection of TNT. Owing to the unique motion of the Janus motor with bubble generation, the likelihood of collision with TNT molecules and the reaction rate between them are increased, resulting in a limit of detection as low as 2.4 ng mL-1 TNT within 1 minute. Such bubble-propelled Janus UCNP capsule motors have great potential for contaminated water analysis.
Collapse
Affiliation(s)
- Ye Yuan
- Chemistry and Chemical Engineering College, Inner Mongolia University, College Road 235, Hohhot 010021, China
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Yi Kuang Jie 2, Harbin 150080, China
| | - Changyong Gao
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Yi Kuang Jie 2, Harbin 150080, China
| | - Daolin Wang
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Yi Kuang Jie 2, Harbin 150080, China
| | - Chang Zhou
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Yi Kuang Jie 2, Harbin 150080, China
| | - Baohua Zhu
- Chemistry and Chemical Engineering College, Inner Mongolia University, College Road 235, Hohhot 010021, China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Yi Kuang Jie 2, Harbin 150080, China
| |
Collapse
|
21
|
Pacheco M, Jurado-Sánchez B, Escarpa A. Lab-on-a-micromotor: catalytic Janus particles as mobile microreactors for tailored synthesis of nanoparticles. Chem Sci 2018; 9:8056-8064. [PMID: 30568766 PMCID: PMC6253719 DOI: 10.1039/c8sc03681k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/29/2018] [Indexed: 12/03/2022] Open
Abstract
Catalytic Janus micromotors encapsulating Cd2+ or citrate are used here as mobile microreactors for "on the fly" CdS quantum dot and gold nanoparticle synthesis. Micromotor navigation in microliter "reagent solutions" results in the generation of the corresponding nanoparticles inside the micromotor body with high yield and negligible waste generation. Nanoparticle generation can be attributed to convective diffusion of reagents into the moving reactor body. "On-demand" modulation of nanoparticle size and catalytic activities can be achieved by judicious control of the motion behavior of the microreactor. The use of confined reagents in connection with such enhanced movement allows for efficient operation in very low (less than 800 μL) volumes. The new microreactors developed here hold considerable promise for reactions in aqueous environments for novel synthetic schemes in different sites along with multiplexed capabilities for a myriad of catalytic reactions.
Collapse
Affiliation(s)
- Marta Pacheco
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering , University of Alcala , E-28807 , Madrid , Spain . ;
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering , University of Alcala , E-28807 , Madrid , Spain . ;
- Chemical Research Institute "Andrés M. Del Rio" , University of Alcala , E-28807 , Madrid , Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering , University of Alcala , E-28807 , Madrid , Spain . ;
- Chemical Research Institute "Andrés M. Del Rio" , University of Alcala , E-28807 , Madrid , Spain
| |
Collapse
|
22
|
Li D, Liu Y, Yang Y, Shen Y. A fast and powerful swimming microrobot with a serrated tail enhanced propulsion interface. NANOSCALE 2018; 10:19673-19677. [PMID: 30209454 DOI: 10.1039/c8nr04907f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We demonstrate the use of a swimming microrobot with a serrated tail in the propulsion region to enhance reaction interfaces. A 3D printed tail with multiple catalytic channels and nanointerfaces could reinforce the microrobot, allowing it to reach swimming speeds of ∼1 mm s-1 and enabling it to transport objects with a weight 6500 times that of itself. This research represents a new concept in swimming microrobot design and is expected to benefit a wide range of engineering fields.
Collapse
Affiliation(s)
- Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.
| | | | | | | |
Collapse
|
23
|
Chi Q, Wang Z, Tian F, You J, Xu S. A Review of Fast Bubble-Driven Micromotors Powered by Biocompatible Fuel: Low-Concentration Fuel, Bioactive Fluid and Enzyme. MICROMACHINES 2018; 9:E537. [PMID: 30424470 PMCID: PMC6215315 DOI: 10.3390/mi9100537] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
Micromotors are extensively applied in various fields, including cell separation, drug delivery and environmental protection. Micromotors with high speed and good biocompatibility are highly desirable. Bubble-driven micromotors, propelled by the recoil effect of bubbles ejection, show good performance of motility. The toxicity of concentrated hydrogen peroxide hampers their practical applications in many fields, especially biomedical ones. In this paper, the latest progress was reviewed in terms of constructing fast, bubble-driven micromotors which use biocompatible fuels, including low-concentration fuels, bioactive fluids, and enzymes. The geometry of spherical and tubular micromotors could be optimized to acquire good motility using a low-concentration fuel. Moreover, magnesium- and aluminum-incorporated micromotors move rapidly in water if the passivation layer is cleared in the reaction process. Metal micromotors demonstrate perfect motility in native acid without any external chemical fuel. Several kinds of enzymes, including catalase, glucose oxidase, and ureases were investigated to serve as an alternative to conventional catalysts. They can propel micromotors in dilute peroxide or in the absence of peroxide.
Collapse
Affiliation(s)
- Qingjia Chi
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhen Wang
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan 430070, China.
| | - Feifei Tian
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| | - Ji'an You
- School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430063, China.
| | - Shuang Xu
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
24
|
Wang L, Popescu MN, Stavale F, Ali A, Gemming T, Simmchen J. Cu@TiO 2 Janus microswimmers with a versatile motion mechanism. SOFT MATTER 2018; 14:6969-6973. [PMID: 30074047 DOI: 10.1039/c8sm00808f] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report novel metal-capped TiO2 photochemically-active colloids endowed with a 'hybrid drive': directional motion is achieved in water upon UV illumination, as well as in dilute peroxide solutions upon illumination with UV or visible light. From the different behaviours of nearby particles, we infer that distinct reaction pathways affect the local composition and flow of the solution.
Collapse
Affiliation(s)
- LinLin Wang
- Physical Chemistry TU Dresden, Zellescher Weg 19, 01062 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Parmar J, Vilela D, Villa K, Wang J, Sánchez S. Micro- and Nanomotors as Active Environmental Microcleaners and Sensors. J Am Chem Soc 2018; 140:9317-9331. [PMID: 29969903 DOI: 10.1021/jacs.8b05762] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The quest to provide clean water to the entire population has led to a tremendous boost in the development of environmental nanotechnology. Toward this end, micro/nanomotors are emerging as attractive tools to improve the removal of various pollutants. The micro/nanomotors either are designed with functional materials in their structure or are modified to target pollutants. The active motion of these motors improves the mixing and mass transfer, greatly enhancing the rate of various remediation processes. Their motion can also be used as an indicator of the presence of a pollutant for sensing purposes. In this Perspective, we discuss different chemical aspects of micromotors mediated environmental cleanup and sensing strategies along with their scalability, reuse, and cost associated challenges.
Collapse
Affiliation(s)
- Jemish Parmar
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , 08028 Barcelona Spain
| | - Diana Vilela
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , 08028 Barcelona Spain
| | - Katherine Villa
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , 08028 Barcelona Spain
| | - Joseph Wang
- Department of NanoEngineering , University of California San Diego , La Jolla , California 92093 , United States
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , 08028 Barcelona Spain.,Institució Catalana de Recerca i Estudis Avancats (ICREA) , Pg. Lluís Companys 23 , 08010 Barcelona , Spain
| |
Collapse
|
26
|
Mallick A, Laskar A, Adhikari R, Roy S. Redox Reaction Triggered Nanomotors Based on Soft-Oxometalates With High and Sustained Motility. Front Chem 2018; 6:152. [PMID: 29780800 PMCID: PMC5946003 DOI: 10.3389/fchem.2018.00152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
The recent interest in self-propulsion raises an immediate challenge in facile and single-step synthesis of active particles. Here, we address this challenge and synthesize soft oxometalate nanomotors that translate ballistically in water using the energy released in a redox reaction of hydrazine fuel with the soft-oxometalates. Our motors reach a maximum speed of 370 body lengths per second and remain motile over a period of approximately 3 days. We report measurements of the speed of a single motor as a function of the concentration of hydrazine. It is also possible to induce a transition from single-particle translation to collective motility with biomimetic bands simply by tuning the loading of the fuel. We rationalize the results from a physicochemical hydrodynamic theory. Our nanomotors may also be used for transport of catalytic materials in harsh chemical environments that would otherwise passivate the active catalyst.
Collapse
Affiliation(s)
- Apabrita Mallick
- Eco-Friendly Applied Materials Laboratory, College of Chemistry, Central China Normal University, Wuhan, China.,Eco-Friendly Applied Materials Laboratory, Department of Chemistry, Materials Science Centre, Indian Institute of Science Education and Research, Kolkata, India
| | - Abhrajit Laskar
- The Institute of Mathematical Sciences, Chennai Institute of Technology, Chennai, India
| | - R Adhikari
- The Institute of Mathematical Sciences, Chennai Institute of Technology, Chennai, India.,Department of Applied Mathematics and Theoretical Physics (DAMTP), Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Soumyajit Roy
- Eco-Friendly Applied Materials Laboratory, College of Chemistry, Central China Normal University, Wuhan, China.,Eco-Friendly Applied Materials Laboratory, Department of Chemistry, Materials Science Centre, Indian Institute of Science Education and Research, Kolkata, India
| |
Collapse
|
27
|
Hermanová S, Pumera M. Polymer platforms for micro- and nanomotor fabrication. NANOSCALE 2018; 10:7332-7342. [PMID: 29638234 DOI: 10.1039/c8nr00836a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Artificial, self-propelled micro- and nanomotors are small devices capable of autonomous movement, which are a powerful scientific innovation for solving various medical and environmental issues. Their design is frequently inspired by complex biological structures which are composed of biopolymers and their composites. The choice of materials for nano- and micromachines is crucial for their shape, mechanism and efficiency of propulsion. In this review, we discuss the utilization and fabrication of polymers as soft components of micro- and nanomotors.
Collapse
Affiliation(s)
- Soňa Hermanová
- Department of Polymers, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | | |
Collapse
|
28
|
Zha F, Wang T, Luo M, Guan J. Tubular Micro/Nanomotors: Propulsion Mechanisms, Fabrication Techniques and Applications. MICROMACHINES 2018; 9:E78. [PMID: 30393354 PMCID: PMC6187598 DOI: 10.3390/mi9020078] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 12/28/2022]
Abstract
Micro/nanomotors are self-propelled machines that can convert various energy sources into autonomous movement. With the great advances of nanotechnology, Micro/Nanomotors of various geometries have been designed and fabricated over the past few decades. Among them, the tubular Micro/Nanomotors have a unique morphology of hollow structures, which enable them to possess a strong driving force and easy surface functionalization. They are promising for environmental and biomedical applications, ranging from water remediation, sensing to active drug delivery and precise surgery. This article gives a comprehensive and clear review of tubular Micro/Nanomotors, including propulsion mechanisms, fabrication techniques and applications. In the end, we also put forward some realistic problems and speculate about corresponding methods to improve existing tubular Micro/Nanomotors.
Collapse
Affiliation(s)
- Fengjun Zha
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Tingwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Ming Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
29
|
Pacheco M, Jurado-Sánchez B, Escarpa A. Sensitive Monitoring of Enterobacterial Contamination of Food Using Self-Propelled Janus Microsensors. Anal Chem 2018; 90:2912-2917. [PMID: 29376315 DOI: 10.1021/acs.analchem.7b05209] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Food poisoning caused by bacteria is a major cause of disease and death worldwide. Herein we describe the use of Janus micromotors as mobile sensors for the detection of toxins released by enterobacteria as indicators of food contamination. The micromotors are prepared by a Pickering emulsion approach and rely on the simultaneous encapsulation of platinum nanoparticles for enhanced bubble-propulsion and receptor-functionalized quantum dots (QDs) for selective binding with the 3-deoxy-d-manno-oct-2-ulosonic acid target in the endotoxin molecule. Lipopolysaccharides (LPS) from Salmonella enterica were used as target endotoxins, which upon interaction with the QDs induce a rapid quenching of the native fluorescence of the micromotors in a concentration-dependent manner. The micromotor assay can readily detect concentrations as low as 0.07 ng mL-1 of endotoxin, which is far below the level considered toxic to humans (275 μg mL-1). Micromotors have been successfully applied for the detection of Salmonella toxin in food samples in 15 min compared with several hours required by the existing Gold Standard method. Such ultrafast and reliable approach holds considerable promise for food contamination screening while awaiting the results of bacterial cultures in a myriad of food safety and security defense applications.
Collapse
Affiliation(s)
- M Pacheco
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala , Alcala de Henares E-28871, Madrid, Spain
| | - B Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala , Alcala de Henares E-28871, Madrid, Spain.,Chemical Research Institute "Andrés M. del Río", University of Alcala , Alcala de Henares E-28871, Madrid, Spain
| | - A Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala , Alcala de Henares E-28871, Madrid, Spain.,Chemical Research Institute "Andrés M. del Río", University of Alcala , Alcala de Henares E-28871, Madrid, Spain
| |
Collapse
|
30
|
Zhang K, Fraxedas J, Sepulveda B, Esplandiu MJ. Photochemically Activated Motors: From Electrokinetic to Diffusion Motion Control. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44948-44953. [PMID: 29199814 DOI: 10.1021/acsami.7b15855] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Self-propelled micro/nanomotors that can transform chemical energy from the surrounding environment into mechanical motion are cutting edge nanotechnologies with potential applications in biomedicine and environmental remediation. These applications require full understanding of the propulsion mechanisms to improve the performance and controllability of the motors. In this work, we demonstrate that there are two competing chemomechanical mechanisms at semiconductor/metal (Si/Pt) micromotors in a pump configuration under visible light exposure. The first propulsion mechanism is driven by an electro-osmotic process stemmed from a photoactivation reaction mediated by H2O2, which takes place in two separated redox reactions at the Si and Pt interfaces. One reaction involves the oxidation of H2O2 at the silicon side, and the other the H2O2 reduction at the metal side. The second mechanism is not light responsive and is triggered by the redox decomposition of H2O2 exclusively at the Pt surface. We show that it is possible to enhance/suppress one mechanism over the other by tuning the surface roughness of the micromotor metal. More specifically, the actuation mechanism can be switched from light-controlled electrokinetics to light-insensitive diffusio-osmosis by only increasing the metal surface roughness. The different actuation mechanisms yield strikingly different fluid flow velocities, electric fields, and light sensitivities. Consequently, these findings are very relevant and can have a remarkable impact on the design and optimization of photoactivated catalytic devices and, in general, on bimetallic or insulating-metallic motors.
Collapse
Affiliation(s)
- Kuan Zhang
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB) , Bellaterra E-08193, Spain
| | - Jordi Fraxedas
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Borja Sepulveda
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Maria J Esplandiu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB) , Bellaterra E-08193, Spain
| |
Collapse
|
31
|
Shayegh S, Amrollahi Bioki H, Zarandi MB, Samani NK, Rahnamanic A. ZnS nanoparticles incorporated in polyaniline composite: Preparation and optical characterization. POLYMER SCIENCE SERIES B 2017. [DOI: 10.1134/s1560090417050104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Liu L, Bai T, Chi Q, Wang Z, Xu S, Liu Q, Wang Q. How to Make a Fast, Efficient Bubble-Driven Micromotor: A Mechanical View. MICROMACHINES 2017; 8:E267. [PMID: 30400455 PMCID: PMC6189961 DOI: 10.3390/mi8090267] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 08/17/2017] [Accepted: 08/23/2017] [Indexed: 01/05/2023]
Abstract
Micromotors, which can be moved at a micron scale, have special functions and can perform microscopic tasks. They have a wide range of applications in various fields with the advantages of small size and high efficiency. Both high speed and efficiency for micromotors are required in various conditions. However, the dynamical mechanism of bubble-driven micromotors movement is not clear, owing to various factors affecting the movement of micromotors. This paper reviews various factors acting on micromotor movement, and summarizes appropriate methods to improve the velocity and efficiency of bubble-driven micromotors, from a mechanical view. The dynamical factors that have significant influence on the hydrodynamic performance of micromotors could be divided into two categories: environment and geometry. Improving environment temperature and decreasing viscosity of fluid accelerate the velocity of motors. Under certain conditions, raising the concentration of hydrogen peroxide is applied. However, a high concentration of hydrogen peroxide is not applicable. In the environment of low concentration, changing the geometry of micromotors is an effective mean to improve the velocity of micromotors. Increasing semi-cone angle and reducing the ratio of length to radius for tubular and rod micromotors are propitious to increase the speed of micromotors. For Janus micromotors, reducing the mass by changing the shape into capsule and shell, and increasing the surface roughness, is applied. This review could provide references for improving the velocity and efficiency of micromotors.
Collapse
Affiliation(s)
- Lisheng Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Tao Bai
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan 430070, China.
| | - Qingjia Chi
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhen Wang
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan 430070, China.
| | - Shuang Xu
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan 430070, China.
| | - Qiwen Liu
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan 430070, China.
| | - Qiang Wang
- Infrastructure Management Department, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
33
|
Wang H, Pumera M. Emerging materials for the fabrication of micro/nanomotors. NANOSCALE 2017; 9:2109-2116. [PMID: 28144663 DOI: 10.1039/c6nr09217a] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Self-propelled autonomous nano and micromotors are devices which in many aspects mimic living organisms: they take chemical energy from the environment and convert it to motion; they are capable of phototaxis, chemotaxis and magnetotaxis, following the gradient of fuel, a magnetic field or light. There is an immense spectrum of possible applications of these devices, ranging from environmental remediation to the biomedical field. All of these developments depend on the materials used and there has been intensive development of materials allowing more efficient propulsion, phototaxis, chemotaxis and enhanced applications of these devices. Here we review the emerging materials employed in the fabrication of nano/micromotors and discuss their applications in the field of nanorobots.
Collapse
Affiliation(s)
- Hong Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| | - Martin Pumera
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| |
Collapse
|