1
|
Ke Y, Sun Y, Liao A, Zhao F, Tan Y, Tan C. Conjugated Polyelectrolyte-Based Sensor Arrays: from Sensing Mechanisms to Artificial Sensory System Conceptualization. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16396-16409. [PMID: 40048404 DOI: 10.1021/acsami.4c22848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
In the past decades, conjugated polyelectrolytes (CPEs) have become prominent in sensing applications due to their unique properties, including strong and tunable light absorption, high sensitivity, water solubility, and biocompatibility. Inspired by mammalian olfactory and gustatory systems, CPE-based sensor arrays have made significant strides in discriminating structurally similar analytes and complex mixtures for various applications. This review consolidates recent advancements in CPE-based sensor arrays, highlighting rational design, controllable fabrication, and effective data processing methods. It covers the fundamentals of CPE fluorescence sensing, emphasizing design strategies for sensor array units and data processing techniques. The broad applicability of CPE-based sensor arrays is demonstrated across diverse domains, including environmental monitoring (e.g., detecting metal ions and explosives), medical diagnostics (e.g., sensing disease markers and analyzing biological samples), and food safety (e.g., assessing the freshness, quality, and source of food products). Further, challenges and future directions in the field are discussed to inspire further research and development in this area.
Collapse
Affiliation(s)
- Yulei Ke
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Yuanjie Sun
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Anhui Liao
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Fangxi Zhao
- Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Ying Tan
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Chunyan Tan
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
2
|
Kuang Y, Ni W, Liu H, Han J. Poly(p-Phenyleneethynylene)s-Based Sensor Array for Diagnosis of Clinical Diseases. ChemMedChem 2025; 20:e202400686. [PMID: 39581864 DOI: 10.1002/cmdc.202400686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024]
Abstract
Inspired by the mammalian taste and olfactory systems, array-based pattern recognition technology has demonstrated significant potential in discerning subtle differences between highly similar compounds and complex mixtures, owing to their unique parallel detection mechanism based on cross-reactive signals. While optical sensor array has been extensively employed in the field of chemical sensing, they encounter significant challenges in non-specific recognition of multiple analytes at low concentrations, particularly in rife environments with complex interferences. Poly(p-phenylene ethynylene)s (PPEs) offer substantial advantages in detecting multi-analytes at low concentrations, owing to its distinctive optical properties, including the "molecular wire" effect, fluorescence super-amplification and super-quenching. This is particularly promising for the parallel detection of ultra-low concentration multi-biomarkers in clinical diseases. As the continuous development of PPEs sensor array, more sensitive methods for rapid detection of clinical disease will be further developed. It will promote the further development of the field of early diagnosis of clinical diseases.
Collapse
Affiliation(s)
- Yongbin Kuang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 211109, China
| | - Weiwei Ni
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 211109, China
| | - Han Liu
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 211109, China
| | - Jinsong Han
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 211109, China
| |
Collapse
|
3
|
Huang H, Shi X, Ni W, Zhang W, Ji L, Wu J, Yuan Z, Ma Y, Stewart C, Fok KL, Li L, Han J. Combinatorial Library-Screened Array for Rapid Clinical Sperm Quality Assessment. Anal Chem 2025; 97:3748-3755. [PMID: 39921623 DOI: 10.1021/acs.analchem.4c06952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Nonspecific interactions are ubiquitous and important in biology; however, they are rarely valued or employed in the field of clinical disease diagnosis. Relying on nonspecific cross-interactions, sensor arrays have shown great potential in distinguishing mixtures or nuanced compounds. However, developing generic strategies for constructing effective arrays tailored to compositionally complicated and highly individualized clinical biospecimens remains challenging. Here, we introduce a combinatorial chemistry-screened array strategy, leveraging four-component Ugi reactions to achieve the rapid synthesis of hundreds of structurally diverse sensing elements. Moreover, effective sensor arrays can thus be built by rapidly screening sensors against diverse analytes. Next, we demonstrate the practical applicability of this array by clinical sperm quality assessment, given the current lack of well-established clinical rapid detection techniques. A library of 192 structurally diverse sensor elements was synthesized. Following screening, a pruned 14-element array was successfully constructed, achieving 94.2% accuracy in distinguishing between healthy individuals and four types of abnormal sperm samples from patients within 1 min. This universal strategy avoids complex sensor design and greatly improves the efficiency of sensor array construction, offering a new way of designing effective arrays.
Collapse
Affiliation(s)
- Hui Huang
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Xiao Shi
- Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weiwei Ni
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wenhui Zhang
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ligong Ji
- Taixing Second People's Hospital, Taixing 225411, China
| | - Jin Wu
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210993, China
| | - Zhenwei Yuan
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yanlin Ma
- Key Laboratory of Reproductive Health Diseases Research and Translation, Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, the First Affiliated Hospital of Hainan Medical university, Department of Reproductive Medicine, Hainan Medical University, Haikou 571101, China
| | - Callum Stewart
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Kin Lam Fok
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Linxian Li
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Stockholm 17177, Sweden
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jinsong Han
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| |
Collapse
|
4
|
Barboza-Ramos I, Karuk Elmas SN, Schanze KS. Fluorogenic sensors. SENSORY POLYMERS 2024:181-223. [DOI: 10.1016/b978-0-443-13394-7.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Qin J, Wang H, Xu Y, Shi F, Yang S, Huang H, Liu J, Stewart C, Li L, Li F, Han J, Wu W. A simple array integrating machine learning for identification of flavonoids in red wines. RSC Adv 2023; 13:8882-8889. [PMID: 36936820 PMCID: PMC10019168 DOI: 10.1039/d2ra08049d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Bioactive flavonoids, the major ingredients of red wines, have been proven to prevent atherosclerosis and cardiovascular disease due to their anti-inflammatory and anti-oxidant activity. However, flavonoids have proven challenging to identify, even when multiple approaches are combined. Hereby, a simple array was constructed to detect flavonoids by employing phenylboronic acid modified perylene diimide derivatives (PDIs). Through multiple non-specific interactions (hydrophilic, hydrophobic, charged, aromatic, hydrogen-bonded and reversible covalent interactions) with flavonoids, the fluorescence of PDIs can be modulated, and variations in intensity can be used to create fingerprints of flavonoids. This array successfully discriminated 14 flavonoids of diverse structures and concentrations with 100% accuracy, based on patterns in fluorescence intensity modulation, via optimized machine learning algorithms. As a result, this array demonstrated the parallel detection of 8 different types and origins of red wines with a high accuracy, revealing the excellent potential of the sensor array in food mixtures detection.
Collapse
Affiliation(s)
- Jiaojiao Qin
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University 211109 China
| | - Hao Wang
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University 211109 China
| | - Yu Xu
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University 211109 China
| | - Fangfang Shi
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University 211109 China
| | - Shijie Yang
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University 211109 China
| | - Hui Huang
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet Sweden
| | - Jun Liu
- Shandong Yuwang Ecological Food Industry Co., Ltd De Zhou 251200 China
| | - Callum Stewart
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet Sweden
| | - Linxian Li
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet Sweden
| | - Fei Li
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University 211109 China
| | - Jinsong Han
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University 211109 China
| | - Wenwen Wu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University Nanjing Jiangsu Province 211109 China
| |
Collapse
|
6
|
Hein R, Beer PD. Halogen bonding and chalcogen bonding mediated sensing. Chem Sci 2022; 13:7098-7125. [PMID: 35799814 PMCID: PMC9214886 DOI: 10.1039/d2sc01800d] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Sigma-hole interactions, in particular halogen bonding (XB) and chalcogen bonding (ChB), have become indispensable tools in supramolecular chemistry, with wide-ranging applications in crystal engineering, catalysis and materials chemistry as well as anion recognition, transport and sensing. The latter has very rapidly developed in recent years and is becoming a mature research area in its own right. This can be attributed to the numerous advantages sigma-hole interactions imbue in sensor design, in particular high degrees of selectivity, sensitivity and the capability for sensing in aqueous media. Herein, we provide the first detailed overview of all developments in the field of XB and ChB mediated sensing, in particular the detection of anions but also neutral (gaseous) Lewis bases. This includes a wide range of optical colorimetric and luminescent sensors as well as an array of electrochemical sensors, most notably redox-active host systems. In addition, we discuss a range of other sensor designs, including capacitive sensors and chemiresistors, and provide a detailed overview and outlook for future fundamental developments in the field. Importantly the sensing concepts and methodologies described herein for the XB and ChB mediated sensing of anions, are generically applicable for the development of supramolecular receptors and sensors in general, including those for cations and neutral molecules employing a wide array of non-covalent interactions. As such we believe this review to be a useful guide to both the supramolecular and general chemistry community with interests in the fields of host-guest recognition and small molecule sensing. Moreover, we also highlight the need for a broader integration of supramolecular chemistry, analytical chemistry, synthetic chemistry and materials science in the development of the next generation of potent sensors.
Collapse
Affiliation(s)
- Robert Hein
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Paul D Beer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
7
|
Ahumada G, Borkowska M. Fluorescent Polymers Conspectus. Polymers (Basel) 2022; 14:1118. [PMID: 35335449 PMCID: PMC8955759 DOI: 10.3390/polym14061118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
The development of luminescent materials is critical to humankind. The Nobel Prizes awarded in 2008 and 2010 for research on the development of green fluorescent proteins and super-resolved fluorescence imaging are proof of this (2014). Fluorescent probes, smart polymer machines, fluorescent chemosensors, fluorescence molecular thermometers, fluorescent imaging, drug delivery carriers, and other applications make fluorescent polymers (FPs) exciting materials. Two major branches can be distinguished in the field: (1) macromolecules with fluorophores in their structure and (2) aggregation-induced emission (AIE) FPs. In the first, the polymer (which may be conjugated) contains a fluorophore, conferring photoluminescent properties to the final material, offering tunable structures, robust mechanical properties, and low detection limits in sensing applications when compared to small-molecule or inorganic luminescent materials. In the latter, AIE FPs use a novel mode of fluorescence dependent on the aggregation state. AIE FP intra- and intermolecular interactions confer synergistic effects, improving their properties and performance over small molecules aggregation-induced, emission-based fluorescent materials (AIEgens). Despite their outstanding advantages (over classic polymers) of high emission efficiency, signal amplification, good processability, and multiple functionalization, AIE polymers have received less attention. This review examines some of the most significant advances in the broad field of FPs over the last six years, concluding with a general outlook and discussion of future challenges to promote advancements in these promising materials that can serve as a springboard for future innovation in the field.
Collapse
Affiliation(s)
- Guillermo Ahumada
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea;
| | | |
Collapse
|
8
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
9
|
Ghohestani E, Tashkhourian J, Sharifi H, Bojanowski NM, Seehafer K, Smarsly E, Bunz UHF, Hemmateenejad B. A poly(arylene ethynylene)-based microfluidic fluorescence sensor array for discrimination of polycyclic aromatic hydrocarbons. Analyst 2022; 147:4266-4274. [DOI: 10.1039/d2an01045c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) were discriminated using a microfluidic paper-based sensor array device.
Collapse
Affiliation(s)
| | | | - Hoda Sharifi
- Department of Chemistry, Shiraz University, 719468 Shiraz, Iran
| | - N. Maximilian Bojanowski
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld, 69120, Heidelberg, Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld, 69120, Heidelberg, Germany
| | - Emanuel Smarsly
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld, 69120, Heidelberg, Germany
| | - Uwe H. F. Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld, 69120, Heidelberg, Germany
| | | |
Collapse
|
10
|
Zhang B, Zhou Q, Zhang X, Ma J, Cong X, Wang Q, Liao Y, Yang Y, Wang H. Thermostable fluorescent supramolecular gels constructed from a single gelator and its application in discriminating organic acids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
A minimized fluorescent chemosensor array utilizing carboxylate-attached polythiophenes on a chip for metal ions detection. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2037-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Hossain MS, Rahaman SA, Hatai J, Saha M, Bandyopadhyay S. Switching the recognition ability of a photoswitchable receptor towards phosphorylated anions. Chem Commun (Camb) 2020; 56:4172-4175. [PMID: 32167107 DOI: 10.1039/d0cc00926a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An azobenzene based photoswitchable macrocyclic receptor displays different binding affinities in its E and Z forms towards various phosphorylated coenzymes under physiological conditions with remarkable selectivity for ATP in the E-form and selectivity towards GTP in the photoisomerized Z-form. Linear discriminant analysis clearly separated the analytes using the E-form. An application of this method enabled monitoring the progress of enzymatic phosphorylation using a tyrosine kinase enzyme.
Collapse
Affiliation(s)
- Munshi Sahid Hossain
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| | - Sk Atiur Rahaman
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| | - Joydev Hatai
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitatsstraße 745141, Essen, Germany.
| | - Monochura Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| |
Collapse
|
13
|
Sasaki Y, Kojima S, Hamedpour V, Kubota R, Takizawa SY, Yoshikawa I, Houjou H, Kubo Y, Minami T. Accurate chiral pattern recognition for amines from just a single chemosensor. Chem Sci 2020. [DOI: 10.1039/d0sc00194e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The current work proposes a novel method for accurate pattern recognition of (mono- and di-) amines and determination of enantiomeric excess (ee) using molecular self-assembly.
Collapse
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science
- The University of Tokyo
- Tokyo
- Japan
| | - Soya Kojima
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Tokyo 192-0397
- Japan
| | - Vahid Hamedpour
- Institute of Industrial Science
- The University of Tokyo
- Tokyo
- Japan
| | - Riku Kubota
- Institute of Industrial Science
- The University of Tokyo
- Tokyo
- Japan
| | - Shin-ya Takizawa
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo
- Japan
| | - Isao Yoshikawa
- Institute of Industrial Science
- The University of Tokyo
- Tokyo
- Japan
| | - Hirohiko Houjou
- Institute of Industrial Science
- The University of Tokyo
- Tokyo
- Japan
| | - Yuji Kubo
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Tokyo 192-0397
- Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science
- The University of Tokyo
- Tokyo
- Japan
| |
Collapse
|
14
|
Le NDB, Singla AK, Geng Y, Han J, Seehafer K, Prakash G, Moyano DF, Downey CM, Monument MJ, Itani D, Bunz UHF, Jirik FR, Rotello VM. Simple and robust polymer-based sensor for rapid cancer detection using serum. Chem Commun (Camb) 2019; 55:11458-11461. [PMID: 31535684 DOI: 10.1039/c9cc04854e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report a polymer-based sensor that rapidly detects cancer based on changes in serum protein levels. Using three ratiometric fluorescence outputs, this simple system identifies early stage and metastatic lung cancer with a high level of accuracy exceeding many biomarker-based assays, making it an attractive strategy for point-of-care testing.
Collapse
Affiliation(s)
- Ngoc D B Le
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| | - Arvind K Singla
- Department of Biochemistry and Molecular Biology, The McCaig Institute for Bone and Joint Health, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Yingying Geng
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| | - Jinsong Han
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Gyan Prakash
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| | - Daniel F Moyano
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| | - Charlene M Downey
- Department of Biochemistry and Molecular Biology, The McCaig Institute for Bone and Joint Health, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Michael J Monument
- Department of Surgery, The McCaig Institute for Bone and Joint Health, Arnie Charbonneau Cancer Institute, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Doha Itani
- Department of Pathology and Laboratory Medicine, Calgary Laboratory Services/University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank R Jirik
- Department of Biochemistry and Molecular Biology, The McCaig Institute for Bone and Joint Health, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| |
Collapse
|
15
|
Ma L, Ma H. Synthesis of π-conjugated network polymers based on triphenylamine (TPA) and tetraphenylethylene (TPE) as building blocks via direct Pd-catalyzed reactions and their application in CO 2 capture and explosive detection. RSC Adv 2019; 9:18098-18105. [PMID: 35515247 PMCID: PMC9064729 DOI: 10.1039/c9ra02469g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/26/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, we report the synthesis of π-conjugated network polymers via palladium-catalyzed direct arylation polycondensation of triphenylamine (TPA) and tetraphenylethylene (TPE) with different active substrates. Moreover, six conjugated porous polymers were obtained (named as TPA-TPA-MA, TPA-PB-MA, TPA-TFB-MA, TPA-TPE-MA, TPE-PB-MA, and TPE-TFB-MA). Then, the fluorescence properties in the solid and dispersed states, the corresponding microporous structures, and the Brunauer-Emmett-Teller (BET) surface areas of all polymers were well studied. Among the obtained materials, TPA-PB-MA possessed not only largest BET surface area (686 m2 g-1) and largest pore volume (0.716 cm3 g-1), but also the smallest pore size of 0.823 nm. These properties are very beneficial for the application of TPA-PB-MA in CO2 storage and PA sensing. At 1 bar, TPA-PB-MA demonstrated the significant CO2 uptake of 2.70 and 1.35 mmol g-1 at 273 and 298 K, respectively. Furthermore, TPA-PB-MA was most sensitive and selective towards PA recognition. The K SV constant was measured as 4.0 × 104 M-1.
Collapse
Affiliation(s)
- Lamaocao Ma
- Shaw Library, Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Hengchang Ma
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou Gansu 730070 P. R. China
| |
Collapse
|
16
|
Exploring functionalized polythiophene derivatives based on thiophene-linker-thiophene platform, analysis of prototype monomer crystal for C Br/C H bulk polycondensation and its application for acid detection. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Wang K, Li Y, Li H, Yin M, Liu H, Deng Q, Wang S. Upconversion fluorescent nanoparticles based-sensor array for discrimination of the same variety red grape wines. RSC Adv 2019; 9:7349-7355. [PMID: 35519955 PMCID: PMC9061164 DOI: 10.1039/c8ra09959f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/22/2019] [Indexed: 11/21/2022] Open
Abstract
A fluorescent sensor array composed of upconversion nanomaterials to distinguish the same variety of red grape wines was constructed.
Collapse
Affiliation(s)
- Kewei Wang
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin Key Laboratory of Food Nutrition and Safety
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
| | - Yanli Li
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin Key Laboratory of Food Nutrition and Safety
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
| | - Haijie Li
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin Key Laboratory of Food Nutrition and Safety
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
| | - Mingyuan Yin
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin Key Laboratory of Food Nutrition and Safety
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
| | - Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Technology and Business University
- Beijing
- China
| | - Qiliang Deng
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin Key Laboratory of Food Nutrition and Safety
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin Key Laboratory of Food Nutrition and Safety
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
| |
Collapse
|
18
|
Feng C, Zhao P, Wang L, Yang T, Wu Y, Ding Y, Hu A. Fluorescent electronic tongue based on soluble conjugated polymeric nanoparticles for the discrimination of heavy metal ions in aqueous solution. Polym Chem 2019. [DOI: 10.1039/c9py00033j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A fluorescence sensing array (or fluorescent electronic tongue) based on six sorts of soluble conjugated polymeric nanoparticles (SCPNs) decorated with PEG chains is designed for the rapid identification of heavy metal ions in water.
Collapse
Affiliation(s)
- Chuying Feng
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Peng Zhao
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Lili Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Tao Yang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yusen Wu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
19
|
Guo KH, Lu KH, Yeh YC. Cell-Based Biosensor with Dual Signal Outputs for Simultaneous Quantification of Phenylacetic Acid and Phenylethylamine. ACS Synth Biol 2018; 7:2790-2795. [PMID: 30418753 DOI: 10.1021/acssynbio.8b00416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Despite the importance of 2-phenylacetic acid, a plant hormone in the endogenous auxin family, its biosynthesis pathway has yet to be elucidated. In this study, we developed a novel whole-cell biosensor for the simultaneous quantification of 2-phenylacetic acid (PA) and 2-phenylethylamine (PEA) through the regulation of bacterial catabolism of aromatic compounds. We used the PA regulon to enable the recognition of PA and PEA. Differentiation of PEA from PA involves the incorporation of the FeaR regulon within the same whole-cell biosensor to report the presence of aromatic amines. The proposed system is highly sensitive to PA as well as PEA.
Collapse
Affiliation(s)
- Kai-Hong Guo
- Department of Chemistry, National Taiwan Normal University, 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Kun-Hua Lu
- Department of Chemistry, National Taiwan Normal University, 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| |
Collapse
|
20
|
Huang W, Bender M, Seehafer K, Wacker I, Schröder RR, Bunz UHF. Novel Functional TPE Polymers: Aggregation‐Induced Emission, pH Response, and Solvatochromic Behavior. Macromol Rapid Commun 2018; 40:e1800774. [DOI: 10.1002/marc.201800774] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/21/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Huang
- Organisch‐Chemisches InstitutRuprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Markus Bender
- Organisch‐Chemisches InstitutRuprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Kai Seehafer
- Organisch‐Chemisches InstitutRuprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Irene Wacker
- Cryo Electron MicroscopyUniversitatsklinikum Heidelberg, BioQuant Im Neuenheimer Feld 267 69120 Heidelberg Germany
- Centre for Advanced MaterialsRuprecht‐Karls‐Universitat Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Rasmus R. Schröder
- Cryo Electron MicroscopyUniversitatsklinikum Heidelberg, BioQuant Im Neuenheimer Feld 267 69120 Heidelberg Germany
- Centre for Advanced MaterialsRuprecht‐Karls‐Universitat Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Uwe H. F. Bunz
- Organisch‐Chemisches InstitutRuprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre for Advanced MaterialsRuprecht‐Karls‐Universitat Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| |
Collapse
|
21
|
Wang B, Han J, Zhang H, Bender M, Biella A, Seehafer K, Bunz UHF. Detecting Counterfeit Brandies. Chemistry 2018; 24:17361-17366. [PMID: 30298635 DOI: 10.1002/chem.201804607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Indexed: 11/12/2022]
Abstract
A hypothesis-free sensor array (optoelectronic tongue) composed of an anionic, a cationic and two neutral poly(para-aryleneethynylene)s (PAE) at pH 3, 7 and 13 discriminate more than 30 spirits (including brandy, Branntwein, Cognac, Spirituose, and Weinbrand). Counterfeits (made by mixing of low-quality spirits and caramel colour) and different batches of identical brands of brandies are discriminated. The sensor array works without sample preparation or great instrumental cost, and is superior to conventional methods with respect to sample need (10-20 μL), time and effort. The discrimination stems from differential fluorescence quenching of the PAE-array by the complex mixture of the beverages' colourants, from the oak barrels or added caramel colour. The collected quenching data were analysed by linear discriminant analysis (LDA) and principal component analysis (PCA) to achieve successful discrimination.
Collapse
Affiliation(s)
- Benhua Wang
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jinsong Han
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hao Zhang
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Markus Bender
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Aike Biella
- Versuchs- und Lehranstalt für Brauerei in Berlin (VLB) e.V., Research Institute for Beer and Beverage, Seestrasse 13, 13353, Berlin, Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
22
|
Wang B, Han J, Bojanowski NM, Bender M, Ma C, Seehafer K, Herrmann A, Bunz UHF. An Optimized Sensor Array Identifies All Natural Amino Acids. ACS Sens 2018; 3:1562-1568. [PMID: 29896952 DOI: 10.1021/acssensors.8b00371] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Wet-chemical discrimination of amino acids is still a challenge due to their structural similarity. Here, an optimized self-assembled eight-member sensor array is reported. The optimized sensor array stems from the combination of elements of different tongues, containing poly( para-phenyleneethynylene)s (PPE) and a supercharged green fluorescent protein (GFP) variant. The responsivity of the sensor dyes (PPEs and GFP) is enhanced in elements that contain adjuvants, such as metal salts but also cucurbit[7]uril (CB[7]) and acridine orange; a suitable and robust eight element array discriminates all of the 20 natural amino acids in water at 25 mM concentration with 100% accuracy. The results group well to the amino acid type, i.e., hydrophobic, polar, and aromatic ones.
Collapse
Affiliation(s)
- Benhua Wang
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Jinsong Han
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - N. Maximilian Bojanowski
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Markus Bender
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Chao Ma
- Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Kai Seehafer
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Andreas Herrmann
- Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Uwe H. F. Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- CAM, Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| |
Collapse
|
23
|
Bender M, Bojanowski NM, Seehafer K, Bunz UHF. Immobilized Poly(aryleneethynylene) pH Strips Discriminate Different Brands of Cola. Chemistry 2018; 24:13102-13105. [PMID: 29968971 DOI: 10.1002/chem.201803103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/02/2018] [Indexed: 01/04/2023]
Abstract
Fluorescent, water-soluble poly(p-aryleneethynylene)s (PAE) were immobilized on commercially available nylon membranes by using a slot plotter, creating fluorescent, barcode-like sensor strips. Digital imaging by using a standard digital camera, before and after immersion of the strips in buffers of different pH, displays a unique color for each pH value. Statistical evaluation, multivariate analysis of variance (MANOVA) and principal component analysis (PCA), of the acquired data revealed that the immobilized PAEs are superior to the identical fluorophores when dissolved. The pH sensor array discriminates 20 different brands of commercial-cola soft drinks through differences in pH and colorant-PAE interactions.
Collapse
Affiliation(s)
- Markus Bender
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - N Maximilian Bojanowski
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Centre for Advanced Materials, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| |
Collapse
|
24
|
Haque A, Al-Balushi RA, Al-Busaidi IJ, Khan MS, Raithby PR. Rise of Conjugated Poly-ynes and Poly(Metalla-ynes): From Design Through Synthesis to Structure-Property Relationships and Applications. Chem Rev 2018; 118:8474-8597. [PMID: 30112905 DOI: 10.1021/acs.chemrev.8b00022] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conjugated poly-ynes and poly(metalla-ynes) constitute an important class of new materials with potential application in various domains of science. The key factors responsible for the diverse usage of these materials is their intriguing and tunable chemical and photophysical properties. This review highlights fascinating advances made in the field of conjugated organic poly-ynes and poly(metalla-ynes) incorporating group 4-11 metals. This includes several important aspects of conjugated poly-ynes viz. synthetic protocols, bonding, electronic structure, nature of luminescence, structure-property relationships, diverse applications, and concluding remarks. Furthermore, we delineated the future directions and challenges in this particular area of research.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Rayya A Al-Balushi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Idris Juma Al-Busaidi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Muhammad S Khan
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Paul R Raithby
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| |
Collapse
|
25
|
Peng K, Pei T, Huang N, Yuan L, Liu X, Xia J. Functionalization of poly(bis-thiophene methine)s via facile C-C bulk polymerization and their application as chemosensors for acid detection. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Peng
- College of Chemistry and Molecular Science; Wuhan University; Wuhan 430072 China
| | - Tong Pei
- College of Chemistry and Molecular Science; Wuhan University; Wuhan 430072 China
| | - Ni Huang
- College of Chemistry and Molecular Science; Wuhan University; Wuhan 430072 China
| | - Liangjie Yuan
- College of Chemistry and Molecular Science; Wuhan University; Wuhan 430072 China
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Science; Wuhan University; Wuhan 430072 China
| | - Xinghai Liu
- School of Printing & Packaging; Wuhan University; Wuhan 430072 China
| | - Jiangbin Xia
- College of Chemistry and Molecular Science; Wuhan University; Wuhan 430072 China
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Science; Wuhan University; Wuhan 430072 China
| |
Collapse
|
26
|
Zhao P, Wu Y, Feng C, Wang L, Ding Y, Hu A. Conjugated Polymer Nanoparticles Based Fluorescent Electronic Nose for the Identification of Volatile Compounds. Anal Chem 2018. [PMID: 29526080 DOI: 10.1021/acs.analchem.8b00273] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A fluorescence sensing array (or fluorescent electronic nose) is designed on a disposable paper card using 36 sets of soluble conjugated polymeric nanoparticles (SCPNs) as sensors to easily identify wide ranges of volatile analytes, including explosives and toxic industrial chemicals (amines and pungent acids). A 108-dimensional vector obtained from the fluorescent color change in the sensing array is defined and directly treated as an index in a standard chemical library (30 kinds of volatile analytes and a control group). Hierarchical clustering analysis (HCA) and principal component analysis (PCA) indicated the diversity in electronic structures; saturated vapor pressure and miscibility of analytes are keys in differentiating the analytes, with electron-rich arenes and alkylamines enhancing fluorescence and electron-deficient analytes attenuating fluorescence. A support vector machine (SVM) works well to predict an unknown sample, reaching 99.5% accuracy. The excellent fluorescence stability (no fluorescence quenching after being exposed in air for one month) and high sensitivity (emission color changes within minutes when exposed to analytes) suggest that the fluorescent polymer-based electronic nose will play an important role in field detection and identification of a wide spreading of hazardous substances.
Collapse
Affiliation(s)
- Peng Zhao
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Yusen Wu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Chuying Feng
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Lili Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
27
|
Bojanowski NM, Hainer F, Bender M, Seehafer K, Bunz UHF. An Optical Sensor Array Discriminates Syrups and Honeys. Chemistry 2018; 24:4255-4258. [DOI: 10.1002/chem.201706099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 12/11/2022]
Affiliation(s)
- N. Maximilian Bojanowski
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Felix Hainer
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Markus Bender
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Uwe H. F. Bunz
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Center for Advanced Materials; Im Neuenheimer Feld 225 69120 Heidelberg Germany
| |
Collapse
|
28
|
Han J, Cheng H, Wang B, Braun MS, Fan X, Bender M, Huang W, Domhan C, Mier W, Lindner T, Seehafer K, Wink M, Bunz UHF. A Polymer/Peptide Complex-Based Sensor Array That Discriminates Bacteria in Urine. Angew Chem Int Ed Engl 2017; 56:15246-15251. [DOI: 10.1002/anie.201706101] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/15/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Jinsong Han
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Haoran Cheng
- Institute of Pharmacy and Molecular Biotechnology; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Benhua Wang
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Markus Santhosh Braun
- Institute of Pharmacy and Molecular Biotechnology; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Xiaobo Fan
- Institute of Pharmacy and Molecular Biotechnology; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
- Diognostics Department; Medical School Southeast University; Nanjing 210009 China
| | - Markus Bender
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Wei Huang
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Cornelius Domhan
- Institute of Pharmacy and Molecular Biotechnology; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Walter Mier
- Department of Nuclear Medicine; Heidelberg University; Im Neuenheimer Feld 400 69120 Heidelberg Germany
| | - Thomas Lindner
- Department of Nuclear Medicine; Heidelberg University; Im Neuenheimer Feld 400 69120 Heidelberg Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Uwe H. F. Bunz
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre of Advanced Materials; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 225 69120 Heidelberg Germany
| |
Collapse
|
29
|
Han J, Cheng H, Wang B, Braun MS, Fan X, Bender M, Huang W, Domhan C, Mier W, Lindner T, Seehafer K, Wink M, Bunz UHF. A Polymer/Peptide Complex-Based Sensor Array That Discriminates Bacteria in Urine. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jinsong Han
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Haoran Cheng
- Institute of Pharmacy and Molecular Biotechnology; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Benhua Wang
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Markus Santhosh Braun
- Institute of Pharmacy and Molecular Biotechnology; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Xiaobo Fan
- Institute of Pharmacy and Molecular Biotechnology; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
- Diognostics Department; Medical School Southeast University; Nanjing 210009 China
| | - Markus Bender
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Wei Huang
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Cornelius Domhan
- Institute of Pharmacy and Molecular Biotechnology; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Walter Mier
- Department of Nuclear Medicine; Heidelberg University; Im Neuenheimer Feld 400 69120 Heidelberg Germany
| | - Thomas Lindner
- Department of Nuclear Medicine; Heidelberg University; Im Neuenheimer Feld 400 69120 Heidelberg Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Uwe H. F. Bunz
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre of Advanced Materials; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 225 69120 Heidelberg Germany
| |
Collapse
|
30
|
Wang B, Han J, Ma C, Bender M, Seehafer K, Herrmann A, Bunz UHF. A Simple Optoelectronic Tongue Discriminates Amino Acids. Chemistry 2017; 23:12471-12474. [PMID: 28745413 DOI: 10.1002/chem.201702826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Indexed: 12/12/2022]
Abstract
A self-assembled nine-element optoelectronic tongue consisting of a positively charged water-soluble poly(para-phenyleneethynylene) and three metal ions (Fe2+ , Co2+ , and Cu2+ ) at three different pH values (7, 10, and 13) discriminates all of the 20 natural amino acids in water. Unknown identification was not ideal. Addition of a highly positively charged green fluorescent protein in the presence of Fe2+ , Co2+ , and Cu2+ increased the unknown identification to above 86 %. Linear discriminant analysis (LDA) orders the responses according to the amino acid type, that is, hydrophobic, polar, anionic, or cationic.
Collapse
Affiliation(s)
- Benhua Wang
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jinsong Han
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Chao Ma
- Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Markus Bender
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Andreas Herrmann
- Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
31
|
Abstract
We report the uses of conjugated polymers in multisensory applications and in chemical and optoelectronic tongues. We look at the potential of single polymers to discriminate multiple analytes and into small libraries of conjugated polymers that represent sensors. These small libraries combine several barely selective, promiscuous sensor elements and react with the analytes in a fairly non-selective fashion by change of color, emission wavelength, or emission intensity. In such optoelectronic noses and tongues, response of a single element is not specific or particularly useful at all, but the response pattern after the combination of several sensor elements is often specific for an analyte and allows discrimination and identification without any problem. These types of tongues and noses are well suited for quality control of foodstuff, beverages, and biological species such as proteins or cells. The discriminative process is often not well understood but it is powerful, particularly if the obtained data are analyzed by sophisticated statistical methods, i.e., linear discriminant analysis and/or principal component analysis. This added layer of analysis extracts the hidden information/patterns out of the data and allows visualization of the results.
Collapse
|
32
|
Wang B, Han J, Bender M, Seehafer K, Bunz UHF. Array-Based Sensing of Explosives by Water-Soluble Poly(p-phenyleneethynylene)s. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00738] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Benhua Wang
- Organisch-Chemisches
Institut and ‡CAM, Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Jinsong Han
- Organisch-Chemisches
Institut and ‡CAM, Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Markus Bender
- Organisch-Chemisches
Institut and ‡CAM, Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Kai Seehafer
- Organisch-Chemisches
Institut and ‡CAM, Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Uwe H. F. Bunz
- Organisch-Chemisches
Institut and ‡CAM, Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
33
|
Han J, Wang B, Bender M, Pfisterer J, Huang W, Seehafer K, Yazdani M, Rotello VM, Rotello CM, Bunz UHF. Fingerprinting antibiotics with PAE-based fluorescent sensor arrays. Polym Chem 2017; 8:2723-2732. [PMID: 29081844 DOI: 10.1039/c7py00227k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We outline an evolution process for tongue elements composed of poly(p-aryleneethynylene)s (PAE) and detergents, resulting in a chemical tongue (24 elements) that discerns antibiotics. Cross-breeding of this new tongue with tongue elements that consist of simple poly(p-phenyleneethynylene)s (PPE) at different pH-values leads to an enlarged sensor array, composed of 30 elements. This tongue was pruned, employing principal component analysis. We find that a filial tongue featuring three elements from each original array (i.e. a six element tongue) is superior to either of the prior tongues and the composite tongue in the discrimination of structurally different antibiotics. Such a selection process should be general and give an idea how to successfully generate powerful low-selectivity sensor elements and configure them into discriminative chemical tongues.
Collapse
Affiliation(s)
- Jinsong Han
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Benhua Wang
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Markus Bender
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Jessica Pfisterer
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Wei Huang
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Mahdieh Yazdani
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA
| | - Caren M Rotello
- Department of Psychology, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, USA
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.,CAM, Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Huang W, Smarsly E, Han J, Bender M, Seehafer K, Wacker I, Schröder RR, Bunz UHF. Truxene-Based Hyperbranched Conjugated Polymers: Fluorescent Micelles Detect Explosives in Water. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3068-3074. [PMID: 28051292 DOI: 10.1021/acsami.6b12419] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report two hyperbranched conjugated polymers (HCP) with truxene units as core and 1,4-didodecyl-2,5-diethynylbenzene as well as 1,4-bis(dodecyloxy)-2,5-diethynylbenzene as comonomers. Two analogous poly(para-phenyleneethynylene)s (PPE) are also prepared as comparison to demonstrate the difference between the truxene and the phenyl moieties in their optical properties and their sensing performance. The four polymers are tested for nitroaromatic analytes and display different fluorescence quenching responses. The quenching efficiencies are dependent upon the spectral overlap between the absorbance of the analyte and the emission of the fluorescent polymer. Optical fingerprints are obtained, based on the unique response patterns of the analytes toward the polymers. With this small sensor array, one can distinguish nine nitroaromatic analytes with 100% accuracy. The amphiphilic polymer F127 (a polyethylene glycol-polypropylene glycol block copolymer) carries the hydrophobic HCPs and self-assembles into micelles in water, forming highly fluorescent HCP micelles. The micelle-bound conjugated polymers detect nitroaromatic analytes effectively in water and show an increased sensitivity compared to the sensing of nitroaromatics in organic solvents. The nitroarenes are also discriminated in water using this four-element chemical tongue.
Collapse
Affiliation(s)
- Wei Huang
- Organisch-Chemisches Institut, ‡CAM, Centre for Advanced Materials, and §Cell Networks, Bioquant, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Emanuel Smarsly
- Organisch-Chemisches Institut, ‡CAM, Centre for Advanced Materials, and §Cell Networks, Bioquant, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Jinsong Han
- Organisch-Chemisches Institut, ‡CAM, Centre for Advanced Materials, and §Cell Networks, Bioquant, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Markus Bender
- Organisch-Chemisches Institut, ‡CAM, Centre for Advanced Materials, and §Cell Networks, Bioquant, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut, ‡CAM, Centre for Advanced Materials, and §Cell Networks, Bioquant, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Irene Wacker
- Organisch-Chemisches Institut, ‡CAM, Centre for Advanced Materials, and §Cell Networks, Bioquant, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Rasmus R Schröder
- Organisch-Chemisches Institut, ‡CAM, Centre for Advanced Materials, and §Cell Networks, Bioquant, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, ‡CAM, Centre for Advanced Materials, and §Cell Networks, Bioquant, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
35
|
Han J, Wang B, Bender M, Kushida S, Seehafer K, Bunz UHF. Poly(aryleneethynylene) Tongue That Identifies Nonsteroidal Anti-Inflammatory Drugs in Water: A Test Case for Combating Counterfeit Drugs. ACS APPLIED MATERIALS & INTERFACES 2017; 9:790-797. [PMID: 27982567 DOI: 10.1021/acsami.6b11690] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report a sensor array composed of a highly fluorescent positively charged poly(para-phenyleneethynylene) P1 and its complex C with a negatively charged pyridine-containing poly(para-aryleneethynylene) P2 (quencher) at pH 10 and pH 13; a sensor field composed of four elements, P1 (pH 10), P1 (pH 13), C (pH 10), and C (pH 13), results. The elements of this small sensor field experience either fluorescence turn on or fluorescence quenching upon exposure toward nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, ibuprofen, diclofenac, or naproxen. The combined responses of the sensor field are analyzed by linear discriminant analysis (LDA). All of the NSAIDs were identified and discriminated, and the sensing mechanism, hydrophobic versus electrostatic, was discussed.
Collapse
Affiliation(s)
- Jinsong Han
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Benhua Wang
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Markus Bender
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Soh Kushida
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- CAM, Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| |
Collapse
|
36
|
Zhao Y, He L, Qin S, Tao GH. Tunable luminescence of lanthanide (Ln = Sm, Eu, Tb) hydrophilic ionic polymers based on poly(N-methyl-4-vinylpyridinium-co-styrene) cations. Polym Chem 2016. [DOI: 10.1039/c6py01472k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hydrophilic luminescent lanthanide-containing ionic polymers poly-[MVPS]2[Ln(NO3)5] were prepared, which can be utilized as reversible colorimetric water-responsive sensors.
Collapse
Affiliation(s)
- Ying Zhao
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Ling He
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Song Qin
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Guo-Hong Tao
- College of Chemistry
- Sichuan University
- Chengdu
- China
| |
Collapse
|