1
|
Xiao Z, Xiao J, Sun Q, Wang Y, Pan L, Shi C, Zhang X, Zou JJ. Interface Engineering of Conjugated Polymer-Based Composites for Photocatalysis. Chemistry 2022; 28:e202202593. [PMID: 36106822 DOI: 10.1002/chem.202202593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 12/29/2022]
Abstract
Photocatalysis can create a green way to produce clean energy resources, degrade pollutants and achieve carbon neutrality, making the construction of efficient photocatalysts significant in solving environmental issues. Conjugated polymers (CPs) with adjustable band structures have superior light-absorption capacity and flexible morphology that facilitate contact with other components to form advanced heterojunctions. Interface engineering can strengthen the interfacial contact between the components and further enlarge the interfacial contact area, enhance light absorption, accelerate charge transfer and improve the reusability of the composites. In order to throw some new light on heterojunction interface regulation at a molecular level, herein we summarize CP-based composites with improved photocatalytic performance according to the types of interactions (covalent bonding, hydrogen bonding, electrostatic interactions, π-π stacking, and other polar interactions) between the components and introduce the corresponding interface building methods, identifying techniques. Then the roles of interfaces in different photocatalytic applications are discussed. Finally, we sum up the existing problems in interface engineering of CP-based composites and look forward to the possible solutions.
Collapse
Affiliation(s)
- Ziheng Xiao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China.,Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201 (P. R., China
| | - Jie Xiao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China.,Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201 (P. R., China
| | - Qian Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yifan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China.,Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201 (P. R., China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China.,Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201 (P. R., China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China.,Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201 (P. R., China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China.,Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201 (P. R., China
| |
Collapse
|
2
|
Bagasse Cellulose Composite Superabsorbent Material with Double-Crosslinking Network Using Chemical Modified Nano-CaCO 3 Reinforcing Strategy. NANOMATERIALS 2022; 12:nano12091459. [PMID: 35564167 PMCID: PMC9104651 DOI: 10.3390/nano12091459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 01/13/2023]
Abstract
To improve the salt resistance of superabsorbent materials and the gel strength of superabsorbent materials after water absorption, a bagasse cellulose-based network structure composite superabsorbent (CAAMC) was prepared via graft copolymerization of acrylamide/acrylic acid (AM/AA) onto bagasse cellulose using silane coupling agent modified nano-CaCO3 (MNC) and N,N′-methylene bisacrylamide (MBA) as a double crosslinker. The acrylamide/acrylic acid was chemically crosslinked with modified nano-CaCO3 by C-N, and a stable double crosslinked (DC) network CAAMC was formed under the joint crosslinking of N,N′-methylene bisacrylamide and modified nano-CaCO3. Modified nano-CaCO3 plays a dual role of crosslinking agent and the filler, and the gel strength of composite superabsorbent is two times higher than that of N,N′-methylene bisacrylamide single crosslinking. The maximum absorbency of CAAMC reached 712 g/g for deionized water and 72 g/g for 0.9 wt% NaCl solution. The adsorption process of CAAMC was simulated by materials studio, and the maximum adsorption energy of amino and carboxyl groups for water molecules is −2.413 kJ/mol and −2.240 kJ/mol, respectively. According to the results of CAAMC soil water retention, a small amount of CAAMC can greatly improve the soil water retention effect.
Collapse
|
3
|
Deimling M, Kousik SR, Abitaev K, Frey W, Sottmann T, Koynov K, Laschat S, Atanasova P. Hierarchical Silica Inverse Opals as a Catalyst Support for Asymmetric Molecular Heterogeneous Catalysis with Chiral Rh‐diene Complexes. ChemCatChem 2021. [DOI: 10.1002/cctc.202001997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Max Deimling
- Institute of Organic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Shravan R. Kousik
- Institute for Materials Science University of Stuttgart Heisenbergstraße 3 70569 Stuttgart Germany
| | - Karina Abitaev
- Institute of Physical Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Wolfgang Frey
- Institute of Organic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Thomas Sottmann
- Institute of Physical Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Kaloian Koynov
- Max-Planck-Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Sabine Laschat
- Institute of Organic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Petia Atanasova
- Institute for Materials Science University of Stuttgart Heisenbergstraße 3 70569 Stuttgart Germany
| |
Collapse
|
4
|
Atanasova P, Dou M, Kousik SR, Bill J, Fyta M. Adsorption of azide-functionalized thiol linkers on zinc oxide surfaces. RSC Adv 2021; 11:5466-5478. [PMID: 35423087 PMCID: PMC8694732 DOI: 10.1039/d0ra05127f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
A comprehensive understanding of the interactions between organic molecules and a metal oxide surface is essential for an efficient surface modification and the formation of organic-inorganic hybrids with technological applications ranging from heterogeneous catalysis and biomedical templates up to functional nanoporous matrices. In this work, first-principles calculations supported by experiments are used to provide the microstructural characteristics of (101̄0) surfaces of zinc oxide single crystals modified by azide terminated hydrocarbons, which graft on the oxide through a thiol group. On the computational side, we evaluate the specific interactions between the surface and the molecules with the chemical formula N3(CH2) n SH, with n = 1, 3, 6, 9. We demonstrate that the molecules chemisorb on the bridge site of ZnO(101̄0). Upon adsorption, the N3(CH2) n SH molecules break the neutral (Zn δ+-O δ-) dimers on ZnO(101̄0) resulting in a structural distortion of the ZnO(101̄0) substrate. The energy decomposition analysis revealed that such structure distortion favors the adsorption of the molecules on the surface leading to a strong correlation between the surface distortion energy and the interaction energy of the molecule. An azide-terminated thiol with three methylene groups in the hydrocarbon chain N3(CH2)3SH was synthesized, and the assembly of this linker on ZnO surfaces was confirmed through atomic force microscopy. The bonding to the inorganic surface was examined via X-ray photoelectron spectroscopy (XPS). Clear signatures of the organic components on the oxide substrates were observed underlying the successful realization of thiol-grafting on the metal oxide. Temperature-dependent and angle-resolved XPS were applied to examine the thermal stability and to determine the thickness of the grafted SAMs, respectively. We discuss the high potential of our hybrid materials in providing further functionalities towards heterocatalysis and medical applications.
Collapse
Affiliation(s)
- Petia Atanasova
- Institute for Materials Science, University of Stuttgart Heisenbergstr. 3 70569 Stuttgart Germany
| | - Maofeng Dou
- Institute for Computational Physics, University of Stuttgart Allmandring 3 70569 Stuttgart Germany
| | - Shravan R Kousik
- Institute for Materials Science, University of Stuttgart Heisenbergstr. 3 70569 Stuttgart Germany
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart Heisenbergstr. 3 70569 Stuttgart Germany
| | - Maria Fyta
- Institute for Computational Physics, University of Stuttgart Allmandring 3 70569 Stuttgart Germany
| |
Collapse
|
5
|
Kousik SR, Sipp D, Abitaev K, Li Y, Sottmann T, Koynov K, Atanasova P. From Macro to Mesoporous ZnO Inverse Opals: Synthesis, Characterization and Tracer Diffusion Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:196. [PMID: 33466679 PMCID: PMC7828802 DOI: 10.3390/nano11010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 11/16/2022]
Abstract
Oxide inverse opals (IOs) with their high surface area and open porosity are promising candidates for catalyst support applications. Supports with confined mesoporous domains are of added value to heterogeneous catalysis. However, the fabrication of IOs with mesoporous or sub-macroporous voids (<100 nm) continues to be a challenge, and the diffusion of tracers in quasi-mesoporous IOs is yet to be adequately studied. In order to address these two problems, we synthesized ZnO IOs films with tunable pore sizes using chemical bath deposition and template-based approach. By decreasing the size of polystyrene (PS) template particles towards the mesoporous range, ZnO IOs with 50 nm-sized pores and open porosity were synthesized. The effect of the template-removal method on the pore geometry (spherical vs. gyroidal) was studied. The infiltration depth in the template was determined, and the factors influencing infiltration were assessed. The crystallinity and photonic stop-band of the IOs were studied using X-Ray diffraction and UV-Vis, respectively. The infiltration of tracer molecules (Alexa Fluor 488) in multilayered quasi-mesoporous ZnO IOs was confirmed via confocal laser scanning microscopy, while fluorescence correlation spectroscopy analysis revealed two distinct diffusion times in IOs assigned to diffusion through the pores (fast) and adsorption on the pore walls (slow).
Collapse
Affiliation(s)
- Shravan R. Kousik
- Institute for Materials Science, University of Stuttgart, 70569 Stuttgart, Germany; (S.R.K.); (D.S.); (Y.L.)
| | - Diane Sipp
- Institute for Materials Science, University of Stuttgart, 70569 Stuttgart, Germany; (S.R.K.); (D.S.); (Y.L.)
| | - Karina Abitaev
- Institute of Physical Chemistry, University of Stuttgart, 70569 Stuttgart, Germany; (K.A.); (T.S.)
| | - Yawen Li
- Institute for Materials Science, University of Stuttgart, 70569 Stuttgart, Germany; (S.R.K.); (D.S.); (Y.L.)
| | - Thomas Sottmann
- Institute of Physical Chemistry, University of Stuttgart, 70569 Stuttgart, Germany; (K.A.); (T.S.)
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Petia Atanasova
- Institute for Materials Science, University of Stuttgart, 70569 Stuttgart, Germany; (S.R.K.); (D.S.); (Y.L.)
| |
Collapse
|