1
|
Sun M, Wang A, Zhang M, Zou S, Wang H. Interband and Intraband Hot Carrier-Driven Photocatalysis on Plasmonic Bimetallic Nanoparticles: A Case Study of Au-Cu Alloy Nanoparticles. ACS NANOSCIENCE AU 2024; 4:360-373. [PMID: 39430378 PMCID: PMC11487664 DOI: 10.1021/acsnanoscienceau.4c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 10/22/2024]
Abstract
Photoexcited nonthermal electrons and holes in metallic nanoparticles, known as hot carriers, can be judiciously harnessed to drive interesting photocatalytic molecule-transforming processes on nanoparticle surfaces. Interband hot carriers are generated upon direct photoexcitation of electronic transitions between different electronic bands, whereas intraband hot carriers are derived from nonradiative decay of plasmonic electron oscillations. Due to their fundamentally distinct photogeneration mechanisms, these two types of hot carriers differ strikingly from each other in terms of energy distribution profiles, lifetimes, diffusion lengths, and relaxation dynamics, thereby exhibiting remarkably different photocatalytic behaviors. The spectral overlap between plasmon resonances and interband transitions has been identified as a key factor that modulates the interband damping of plasmon resonances, which regulates the relative populations, energy distributions, and photocatalytic efficacies of intraband and interband hot carriers in light-illuminated metallic nanoparticles. As exemplified by the Au-Cu alloy nanoparticles investigated in this work, both the resonant frequencies of plasmons and the energy threshold for the d-to-sp interband transitions can be systematically tuned in bimetallic alloy nanoparticles by varying the compositional stoichiometries and particle sizes. Choosing photocatalytic degradation of Rhodamine B as a model reaction, we elaborate on how the variation of the particle sizes and compositional stoichiometries profoundly influences the photocatalytic efficacies of interband and intraband hot carriers in Au-Cu alloy nanoparticles under different photoexcitation conditions.
Collapse
Affiliation(s)
- Mengqi Sun
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Ankai Wang
- Department
of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Min Zhang
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Shengli Zou
- Department
of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Hui Wang
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
2
|
Luoshan MD, Yang Y, Dou ZL, Zhang FY, Yan HY, Zhou L, Wang QQ. Highly controlled synthesis of symmetrically branched tripod and pentapod nanocrystals with enhanced photocatalytic performance. J Colloid Interface Sci 2024; 669:1022-1030. [PMID: 38729809 DOI: 10.1016/j.jcis.2024.04.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
Anisotropic nanostructures with tunable optical properties induced by controllable size and symmetry have attracted much attention in many applications. Herein, we report a controlled synthesis of symmetrically branched AuCu alloyed nanocrystals. By varying Au:Cu atom ratio in precursor, Y-shaped tripods with three-fold symmetry and star-shaped pentapods with five-fold symmetry are synthesized, respectively. The growth mechanism of AuCu tripods from icosahedral seeds and AuCu pentapods from decahedral seeds is revealed. Aiming to excellent photocatalytic performance, CdS nanocrystals are controlled grown onto the sharp tips of AuCu tripods and pentapods. In addition, a carrier-selective blocking layer of Ag2S is introduced between AuCu and CdS, for achieving effective charge separation in AuCu-Ag2S-CdS nanohybrids. Through evaluating the photocatalytic performance by hydrogen generation experiments, the AuCu-Ag2S-CdS tripod nanocrystals exhibit an optimized hydrogen evolution rate of 2182 μmol·g-1·h-1. These findings will contribute greatly to the understanding of complex nanoparticle growth mechanism and provide a strategy for the design of anisotropic nanoalloys for widely photocatalytic applications.
Collapse
Affiliation(s)
- Meng-Dai Luoshan
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, PR China; School of Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Yang Yang
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, PR China; School of Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Zhen-Long Dou
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, PR China
| | - Feng-Yuan Zhang
- School of Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Hang-Yu Yan
- School of Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Li Zhou
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, PR China.
| | - Qu-Quan Wang
- Department of Physics, College of Science, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
3
|
Wang Z, Henriques A, Rouvière L, Callizot N, Tan L, Hotchkin MT, Rossignol R, Mortenson MG, Dorfman AR, Ho KS, Wang H. A Mechanism Underpinning the Bioenergetic Metabolism-Regulating Function of Gold Nanocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304082. [PMID: 37767608 DOI: 10.1002/smll.202304082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/17/2023] [Indexed: 09/29/2023]
Abstract
Bioenergetic deficits are known to be significant contributors to neurodegenerative diseases. Nevertheless, identifying safe and effective means to address intracellular bioenergetic deficits remains a significant challenge. This work provides mechanistic insights into the energy metabolism-regulating function of colloidal Au nanocrystals, referred to as CNM-Au8, that are synthesized electrochemically in the absence of surface-capping organic ligands. When neurons are subjected to excitotoxic stressors or toxic peptides, treatment of neurons with CNM-Au8 results in dose-dependent neuronal survival and neurite network preservation across multiple neuronal subtypes. CNM-Au8 efficiently catalyzes the conversion of an energetic cofactor, nicotinamide adenine dinucleotide hydride (NADH), into its oxidized counterpart (NAD+ ), which promotes bioenergy production by regulating the intracellular level of adenosine triphosphate. Detailed kinetic measurements reveal that CNM-Au8-catalyzed NADH oxidation obeys Michaelis-Menten kinetics and exhibits pH-dependent kinetic profiles. Photoexcited charge carriers and photothermal effect, which result from optical excitations and decay of the plasmonic electron oscillations or the interband electronic transitions in CNM-Au8, are further harnessed as unique leverages to modulate reaction kinetics. As exemplified by this work, Au nanocrystals with deliberately tailored structures and surfactant-free clean surfaces hold great promise for developing next-generation therapeutic agents for neurodegenerative diseases.
Collapse
Affiliation(s)
- Zixin Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | | | | | | | - Lin Tan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Rodrigue Rossignol
- Cellomet, CARF Center, University of Bordeaux, 146 rue Léo Saignat, Bordeaux, 33000, France
| | - Mark G Mortenson
- Clene Nanomedicine, Inc., Salt Lake City, UT, 84117, USA
- Clene Nanomedicine, Inc., North East, MD, 21901, USA
| | | | - Karen S Ho
- Clene Nanomedicine, Inc., Salt Lake City, UT, 84117, USA
| | - Hui Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
4
|
Wang Y, Wang W, Hu W, Zhang D, Guo G, Wang X. Dealloying of Pt 1Bi 2 intermetallic toward optimization of electrocatalysis on a Bi-continuous nanoporous core-shell structure. Chem Commun (Camb) 2023; 59:6730-6733. [PMID: 37191241 DOI: 10.1039/d3cc01206a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Noble metal nanoporous materials hold great potential in the field of catalysis, owing to their high open structures and numerous low coordination surface sites. However, the formation of porous nanoparticles is restricted by particle size. Herein, we utilized a Pt1Bi2 intermetallic nanocatalyst to develop a dealloying approach for preparing nanoparticles with a bi-continuous porous and core-shell structure and proposed a mechanism for the formation of pores. The particle size used to form the porous structure can be <10 nm, which enhances the nanocatalyst's performance for the oxygen reduction reaction (ORR). This study provides a new understanding of the formation of porous materials via a dealloying approach.
Collapse
Affiliation(s)
- Yacheng Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Wubin Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Wangyan Hu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Dongtang Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Guangsheng Guo
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
5
|
Scandura G, Kumari P, Palmisano G, Karanikolos GN, Orwa J, Dumée LF. Nanoporous Dealloyed Metal Materials Processing and Applications─A Review. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Gabriele Scandura
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Priyanka Kumari
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membrane and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Giovanni Palmisano
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membrane and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Georgios N. Karanikolos
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membrane and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separations (CeCaS), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Julius Orwa
- School of Engineering, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Ludovic F. Dumée
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membrane and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Recent Progress in High Entropy Alloys for Electrocatalysts. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Ni M, Sun L, Liu B. Mesoporous Gold Nanostructures: Synthesis and Beyond. J Phys Chem Lett 2022; 13:4410-4418. [PMID: 35549343 DOI: 10.1021/acs.jpclett.2c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mesoporous metal nanostructures have offered multiple advantages that cannot be realized elsewhere. These materials have been attracting more research attention in catalysis and electrocatalysis owing to their functional structures and compositions. Of the various mesoporous metals available, mesoporous gold (mesoAu) nanostructures are of special interest in surface-enhanced Raman scattering (SERS) and related applications because of their strong electromagnetic field (localized surface plasmon resonance). In the last few decades, various synthesis strategies have been developed to prepare mesoAu nanostructures with controllable morphologies that exhibit fascinating physicochemical properties and increase applications in SERS, catalysis, and electrocatalysis. In this Perspective, we systematically summarize recent advances in synthesis and applications of mesoAu nanostructures. Four synthesis strategies, including dealloying, nanocasting, electrochemical deposition, and intermediate template, are discussed in detail. Moreover, physicochemical properties and promising applications of mesoAu nanostructures are presented. Finally, we describe current challenges and give a general outlook to explore further directions in synthesis and applications of mesoAu nanostructures.
Collapse
Affiliation(s)
- Mei Ni
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Cheng W, Sun L, He X, Tian L. Recent advances in fuel cell reaction electrocatalysis based on porous noble metal nanocatalysts. Dalton Trans 2022; 51:7763-7774. [PMID: 35508098 DOI: 10.1039/d2dt00841f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
As the center of fuel cells, electrocatalysts play a crucial role in determining the conversion efficiency from chemical energy to electrical energy. Therefore, the development of advanced electrocatalysts with both high activity and stability is significant but challenging. Active site, mass transport, and charge transfer are three central factors influencing the catalytic performance of electrocatalysts. Endowed with rich available surface active sites, facilitated electron transfer and mass diffusion channels, and highly active components, porous noble metal nanomaterials are widely considered as promising electrocatalysts toward fuel cell-related reactions. The past decade has witnessed great achievements in the design and fabrication of advanced porous noble metal nanocatalysts in the field of electrocatalytic fuel oxidation reaction (FOR) and oxygen reduction reaction (ORR). Herein, the recent research advances regarding porous noble metal nanocatalysts for fuel cell-related reactions are reviewed. In the discussions, the inherent structural features of porous noble metal nanostructures for electrocatalytic reactions, advanced synthetic strategies for the fabrication of porous noble metal nanostructures, and the structure-performance relationships are also provided.
Collapse
Affiliation(s)
- Wenjing Cheng
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China. .,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Limei Sun
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Xiaoyan He
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China.
| | - Lin Tian
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China. .,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| |
Collapse
|
9
|
Self-Supported Defect-Rich Au-Based Nanostructures as Robust Bifunctional Catalysts for the Methanol Oxidation Reaction and Oxygen Reduction Reaction in an Alkaline Medium. NANOMATERIALS 2021; 11:nano11092193. [PMID: 34578509 PMCID: PMC8467196 DOI: 10.3390/nano11092193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
Recently, alkaline direct methanol fuel cells have made great progress with the development of alkaline electrocatalysis, and a wide variety of catalysts have been explored for methanol oxidation reaction (MOR)and oxygen reduction reaction (ORR). However, the slow kinetics of the MOR and ORR remain a great challenge. In this paper, self-supported defect-rich AuCu was obtained by a convenient one-pot strategy. Self-supported AuCu presented a branched, porous nanostructure. The nanobranch consisted of several 13 nm skeletons, which connected in the kink of the structure. Different growth directions co-existed at the kink, and the twin boundaries and dislocations as defects were observed. When the Au-based nanostructure functioned as an electrocatalyst, it showed robust MOR and ORR performance. For the MOR, the forward peak current was 2.68 times greater than that of Au/C; for the ORR, the activity was close to that of Pt/C and significantly better than that of Au/C. In addition, it possessed superior electrochemical stability for MOR and ORR. Finally, an in-depth exploration of the impact of surface defects and electrochemical Cu removal on MOR and ORR activity was carried out to explain the MOR and ORR’s catalytic performance.
Collapse
|
10
|
Wang H, Zhao W, Zhao Y, Xu CH, Xu JJ, Chen HY. Real-Time Tracking the Electrochemical Synthesis of Au@Metal Core–Shell Nanoparticles toward Photo Enhanced Methanol Oxidation. Anal Chem 2020; 92:14006-14011. [DOI: 10.1021/acs.analchem.0c02913] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yang Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cong-Hui Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Wang J, Chen F, Jin Y, Guo L, Gong X, Wang X, Johnston RL. In situ high-potential-driven surface restructuring of ternary AgPd-Pt dilute aerogels with record-high performance improvement for formate oxidation electrocatalysis. NANOSCALE 2019; 11:14174-14185. [PMID: 31210227 DOI: 10.1039/c9nr03266e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Engineering nanoparticle surfaces driven by various gas atmospheres has attracted intensive attention in the design of efficient electrocatalysts for sustainable energy applications. However, the development of a more facile and efficient in situ engineering strategy under electrochemical testing conditions to achieve surface-reconstruction-induced high performance is significantly lacking. Herein, for the first time, we report in situ high-potential-driven restructuring in ternary AgPdPt aerogels with dilute Pt (AgPd-Ptdilute) during the electrochemical cyclic voltammetry testing for the alkaline formate oxidation reaction (FOR), in which the upper potential limit is ingeniously extended to the Ag redox region. Impressively, the resulting AgPd-Ptdilute aerogel displayed remarkable structural and compositional reconstruction in an alkaline environment. Our comprehensive results revealed that the high-potential cycling induces unique Ag outward diffusion to form an enriched PdPt metallic surface atomically coupled with amorphous Ag2O, which provides more opportunities to expose abundant active sites and induce robust electronic structure modulation. Notably, the surface-restructured AgPd-Ptdilute aerogel achieved record-high activity for FOR when the upper potential limit was extended to 1.3 V, exhibiting an unprecedented 5-fold improvement in activity compared to that of the commercial Pd/C. Moreover, it also offered greatly enhanced electrochemical stability with negligible activity decay after 500 cycles. This work gives a good understanding of surface reconstruction during such a novel high-potential-driven cycling process and opens a new door to designing more efficient electrocatalysts for FOR and beyond.
Collapse
Affiliation(s)
- Jiali Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Li GG, Wang Z, Blom DA, Wang H. Tweaking the Interplay among Galvanic Exchange, Oxidative Etching, and Seed-Mediated Deposition toward Architectural Control of Multimetallic Nanoelectrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23482-23494. [PMID: 31179681 DOI: 10.1021/acsami.9b05385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoscale galvanic exchange confined by metallic nanoparticles is an intriguing structure-remodeling process that transforms geometrically simple solid nanoparticles into multimetallic hollow nanoparticles with increased structural complexity and compositional diversity. Using liquid polyols with intrinsic reducing capabilities as the reaction medium for nanoparticle-templated galvanic exchange represents an interesting paradigm shift, allowing us to interface galvanic exchange with oxidative etching and seed-mediated deposition without introducing any additional oxidizing or reducing agents. By kinetically maneuvering the interplay among galvanic Cu-Pt exchange, oxidative Cu etching, and seed-mediated Pt deposition, we have been able to selectively transform AuCu3 alloy nanoparticles into two architecturally distinct multimetallic heteronanostructures, namely, Au-Pt alloy skin-covered spongy nanoparticles and Pt nanodendrite-covered hollow nanoparticles, both of which exhibit unique structural features highly desirable for high-performance electrocatalysis. Using the formic acid oxidation and hydrogen evolution reactions in acidic electrolytes as model electrocatalytic reactions, we show that the multimetallic nanoparticles derived from AuCu3 alloy nanoparticles through polyol-mediated galvanic exchange reactions markedly outperform the commercial Pt/C benchmark catalysts in terms of both activity and durability. This work not only provides important mechanistic insights on how galvanic exchange dynamically interplays with other redox processes to rigorously dictate the versatile structural transformations of multimetallic nanoparticles but also sheds light on the detailed structure-property relationships underpinning the intriguing electrocatalytic behaviors of architecturally complex multimetallic heteronanostructures.
Collapse
|
13
|
Koch R, Li G, Pandey S, Phillpot S, Wang H, Misture ST. Thermally induced transformations of Au@Cu2O core–shell nanoparticles into Au–Cu nanoparticles from temperature-programmed in situ powder X-ray diffraction. J Appl Crystallogr 2019. [DOI: 10.1107/s1600576719004497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Temperature-programmed in situ X-ray diffraction with whole-powder-pattern modeling is used to investigate the reaction of Au@Cu2O core–shell nanoparticles to form nanocrystalline bimetallic Cu
x
Au1−x
alloys (x = 0, 0.25, 0.5, 0.75, 1.0) in a reducing atmosphere. The mechanisms of the reactions are key to informed design of tailored non-equilibrium nanostructures for catalytic and plasmonic materials. The Au@Cu2O reaction is initiated by reduction of the Cu2O cuprite shell to form nanocrystalline metallic Cu at about 413 K. Alloying begins immediately upon formation of metallic Cu at 413 K, with the nucleation of an Au-rich alloy phase which reaches the nominal Cu content of the overall system stoichiometry by 493 K. All bimetallic alloys form a transient ordered Cu3Au intermetallic compound at intermediate temperatures, with the onset of ordering and subsequent disordering varying by composition. No evidence for an ordered Au3Cu intermetallic is found for any composition. Significant crystal growth in the bimetallic phase is apparent at higher temperatures, with the onset temperature increasing with Cu concentration and initial Cu-shell thickness. The reduction of the cuprite phase is slowed by the presence of the core–shell interface, and crystal growth in the Cu shell is completely suppressed within the alloy systems.
Collapse
|
14
|
Li GG, Sun M, Villarreal E, Pandey S, Phillpot SR, Wang H. Galvanic Replacement-Driven Transformations of Atomically Intermixed Bimetallic Colloidal Nanocrystals: Effects of Compositional Stoichiometry and Structural Ordering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4340-4350. [PMID: 29566338 DOI: 10.1021/acs.langmuir.8b00448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Galvanic replacement reactions dictated by deliberately designed nanoparticulate templates have emerged as a robust and versatile approach that controllably transforms solid monometallic nanocrystals into a diverse set of architecturally more sophisticated multimetallic hollow nanostructures. The galvanic atomic exchange at the nanoparticle/liquid interfaces induces a series of intriguing structure-transforming processes that interplay over multiple time and length scales. Using colloidal Au-Cu alloy and intermetallic nanoparticles as structurally and compositionally fine-tunable bimetallic sacrificial templates, we show that atomically intermixed bimetallic nanocrystals undergo galvanic replacement-driven structural transformations remarkably more complicated than those of their monometallic counterparts. We interpret the versatile structure-transforming behaviors of the bimetallic nanocrystals in the context of a unified mechanistic picture that rigorously interprets the interplay of three key structure-evolutionary pathways: dealloying, Kirkendall diffusion, and Ostwald ripening. By deliberately tuning the compositional stoichiometry and atomic-level structural ordering of the Au-Cu bimetallic nanocrystals, we have been able to fine-maneuver the relative rates of dealloying and Kirkendall diffusion with respect to that of Ostwald ripening through which an entire family of architecturally distinct complex nanostructures are created in a selective and controllable manner upon galvanic replacement reactions. The insights gained from our systematic comparative studies form a central knowledge framework that allows us to fully understand how multiple classic effects and processes interplay within the confinement by a colloidal nanocrystal to synergistically guide the structural transformations of complex nanostructures at both the atomic and nanoparticulate levels.
Collapse
Affiliation(s)
- Guangfang Grace Li
- Department of Chemistry and Biochemistry, Center for Hierarchical Waste Form Materials , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Mengqi Sun
- Department of Chemistry and Biochemistry, Center for Hierarchical Waste Form Materials , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Esteban Villarreal
- Department of Chemistry and Biochemistry, Center for Hierarchical Waste Form Materials , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Shubham Pandey
- Department of Materials Science and Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | - Simon R Phillpot
- Department of Materials Science and Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | - Hui Wang
- Department of Chemistry and Biochemistry, Center for Hierarchical Waste Form Materials , University of South Carolina , Columbia , South Carolina 29208 , United States
| |
Collapse
|
15
|
Zhang T, Sun Y, Hang L, Li H, Liu G, Zhang X, Lyu X, Cai W, Li Y. Periodic Porous Alloyed Au-Ag Nanosphere Arrays and Their Highly Sensitive SERS Performance with Good Reproducibility and High Density of Hotspots. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9792-9801. [PMID: 29480010 DOI: 10.1021/acsami.7b17461] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Periodic porous alloyed Au-Ag nanosphere (NS) arrays with different periodic lengths and tunable composition ratios were prepared on Si substrates on a large scale (∼cm2) using stepwise metal deposition-annealing and subsequent chemical corrosion from a monolayer of colloidal polystyrene (PS) microspheres as the initial template. The porous alloyed Au-Ag NSs possessed a high porosity and bicontinuous morphology composed of hierarchically interconnected ligaments, which were obtained from an optimized dealloying process in nitric acid. Interestingly, when the dealloying time was prolonged, the average size of the porous alloyed NSs slightly decreased, and the width of the ligaments gradually increased. The periodic length of the array could be facilely changed by controlling the initial particle size of the PS template. Moreover, the porous alloyed Au-Ag NS arrays were explored as a platform for the surface-enhanced Raman scattering (SERS) detection of 4-aminothiophenol (4-ATP) and exhibited excellent reproducibility and high sensitivity because of the periodic structure of the arrays and the abundance of inherent "hotspots". After optimization experiments, a low concentration of 10-10 M 4-ATP could be detected on these porous Au-Ag NS array substrates. Such highly reproducible SERS activity is meaningful for improving the practical application of portable Raman detection equipment.
Collapse
Affiliation(s)
- Tao Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics , Chinese Academy of Sciences , Hefei 230031 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Yiqiang Sun
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics , Chinese Academy of Sciences , Hefei 230031 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Lifeng Hang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics , Chinese Academy of Sciences , Hefei 230031 , P. R. China
| | - Huilin Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics , Chinese Academy of Sciences , Hefei 230031 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Guangqiang Liu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics , Chinese Academy of Sciences , Hefei 230031 , P. R. China
| | - Xiaomin Zhang
- College of Materials and Mineral Resources , Xi'an University of Architecture and Technology , Xi'an 710055 , P. R. China
| | - Xianjun Lyu
- College of Chemical and Environmental Engineering , Shandong University of Science and Technology , Qingdao 266590 , P. R. China
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics , Chinese Academy of Sciences , Hefei 230031 , P. R. China
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics , Chinese Academy of Sciences , Hefei 230031 , P. R. China
| |
Collapse
|
16
|
Li S, Tang F, Wang H, Feng J, Jin Z. Au-Ag and Pt-Ag bimetallic nanoparticles@halloysite nanotubes: morphological modulation, improvement of thermal stability and catalytic performance. RSC Adv 2018; 8:10237-10245. [PMID: 35540453 PMCID: PMC9078928 DOI: 10.1039/c8ra00423d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/01/2018] [Indexed: 11/21/2022] Open
Abstract
In this study, Au-Ag and Pt-Ag bimetallic nanocages were loaded on natural halloysite nanotubes (HNTs) via galvanic exchange based on Ag@HNT. By changing the ratio of Au to Ag or Pt to Ag in exchange processes, Au-Ag@HNT and Pt-Ag@HNT with different nanostructures were generated. Both Au-Ag@HNT and Pt-Ag@HNT systems showed significantly improved efficiency as peroxidase-like catalysts in the oxidation of o-phenylenediamine compared with monometallic Au@HNT and Pt@HNT, although inert Ag is dominant in the composition of both Au-Ag and Pt-Ag nanocages. On the other hand, loading on HNTs enhanced the thermal stability for every system, whether monometallic Ag nanoparticles, bimetallic Au-Ag or Pt-Ag nanocages. Ag@HNT sustained thermal treatment at 400 °C in nitrogen with improved catalytic performance, while Au-Ag@HNT and Pt-Ag@HNT maintained or even had slightly enhanced catalytic efficiency after thermal treatment at 200 °C in nitrogen. This study demonstrated that natural halloysite nanotubes are a good support for various metallic nanoparticles, improving their catalytic efficiency and thermal stability.
Collapse
Affiliation(s)
- Siyu Li
- Department of Chemistry, Renmin University of China Beijing 100872 P. R. China
| | - Feng Tang
- Department of Chemistry, Renmin University of China Beijing 100872 P. R. China
| | - Huixin Wang
- Department of Chemistry, Renmin University of China Beijing 100872 P. R. China
| | - Junran Feng
- Department of Chemistry, Renmin University of China Beijing 100872 P. R. China
| | - Zhaoxia Jin
- Department of Chemistry, Renmin University of China Beijing 100872 P. R. China
| |
Collapse
|
17
|
Fang J, Zhang L, Li J, Lu L, Ma C, Cheng S, Li Z, Xiong Q, You H. A general soft-enveloping strategy in the templating synthesis of mesoporous metal nanostructures. Nat Commun 2018; 9:521. [PMID: 29410431 PMCID: PMC5802826 DOI: 10.1038/s41467-018-02930-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 01/09/2018] [Indexed: 11/11/2022] Open
Abstract
Metal species have a relatively high mobility inside mesoporous silica; thus, it is difficult to introduce the metal precursors into silica mesopores and suppress the migration of metal species during a reduction process. Therefore, until now, the controlled growth of metal nanocrystals in a confined space, i.e., mesoporous channels, has been very challenging. Here, by using a soft-enveloping reaction at the interfaces of the solid, liquid, and solution phases, we successfully control the growth of metallic nanocrystals inside a mesoporous silica template. Diverse monodispersed nanostructures with well-defined sizes and shapes, including Ag nanowires, 3D mesoporous Au, AuAg alloys, Pt networks, and Au nanoparticle superlattices are successfully obtained. The 3D mesoporous AuAg networks exhibit enhanced catalytic activities in an electrochemical methanol oxidation reaction. The current soft-enveloping synthetic strategy offers a robust approach to synthesize diverse mesoporous metal nanostructures that can be utilized in catalysis, optics, and biomedicine applications.
Collapse
Affiliation(s)
- Jixiang Fang
- Key Laboratory of Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shannxi, 710049, China.
| | - Lingling Zhang
- Key Laboratory of Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shannxi, 710049, China
| | - Jiang Li
- Key Laboratory of Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shannxi, 710049, China
| | - Lu Lu
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, Shannxi, 710049, China
| | - Chuansheng Ma
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, Shannxi, 710049, China
| | - Shaodong Cheng
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, Shannxi, 710049, China
| | - Zhiyuan Li
- College of Physics and Optoelectronic Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qihua Xiong
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Hongjun You
- Key Laboratory of Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shannxi, 710049, China.
| |
Collapse
|
18
|
Zhang H, Wang C, Li H, Jiang L, Men D, Wang J, Xiang J. Physical process-aided fabrication of periodic Au–M (M = Ag, Cu, Ag–Cu) alloyed nanoparticle arrays with tunable localized surface plasmon resonance and diffraction peaks. RSC Adv 2018; 8:9134-9140. [PMID: 35541865 PMCID: PMC9078608 DOI: 10.1039/c7ra13567j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/25/2018] [Indexed: 01/15/2023] Open
Abstract
An interesting and facile physical route is proposed to fabricate multi-elemental alloyed nanoparticle arrays with controllable size, composition and periodicity.
Collapse
Affiliation(s)
- Honghua Zhang
- Jiangxi Key Laboratory of Surface Engineering
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Chu Wang
- Jiangxi Key Laboratory of Surface Engineering
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Huilin Li
- Key Lab of Materials Physics
- Anhui Key Lab of Nanomaterials and Nanotechnology
- Institute of Solid State Physics
- Chinese Academy of Sciences
- Hefei 230031
| | - Longfa Jiang
- Comprehensive Technology Center
- Jiangxi Entry-Exit Inspection and Quarantine Bureau
- Nanchang 330031
- P. R. China
| | - Dandan Men
- Jiangxi Key Laboratory of Surface Engineering
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Jun Wang
- Jiangxi Key Laboratory of Surface Engineering
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Junhuai Xiang
- Jiangxi Key Laboratory of Surface Engineering
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| |
Collapse
|
19
|
Xu H, Wang J, Yan B, Li S, Wang C, Shiraishi Y, Yang P, Du Y. Facile construction of fascinating trimetallic PdAuAg nanocages with exceptional ethylene glycol and glycerol oxidation activity. NANOSCALE 2017; 9:17004-17012. [PMID: 29082407 DOI: 10.1039/c7nr06737b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Highly open metallic nanocages represent a novel class of nanostructures for advanced catalytic applications in direct liquid fuels cells due to their specific capability of providing easy access to reactants in both internal and external active sites and also desirable electronic structures for the adsorption of molecules, which render superior catalytic performances. However, to date, the rational design of trimetallic nanocages with tunable compositions remains a challenge. Herein, we demonstrate a facile method combining seed mediated and galvanic replacement for the preparation of unique trimetallic Pd-Au-Ag nanocages catalysts with tunable compositions. A series of controlled experiments reveal that the reaction time plays a crucial role in affecting the morphology of the final product. Importantly, the newly-generated Pd-Au-Ag nanocages are high-performance electrocatalysts for the oxidation of both ethylene glycol and glycerol with mass activities of 7578.2 and 5676.1 mA mg-1, respectively, which are far superior to that of commercial Pd/C. We firmly believe that the strategy and enhanced electrocatalysts developed in this study can be well applied to boost the commercial development of fuel cell technologies.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Thota S, Zhou Y, Chen S, Zou S, Zhao J. Formation of bimetallic dumbbell shaped particles with a hollow junction during galvanic replacement reaction. NANOSCALE 2017; 9:6128-6135. [PMID: 28447694 DOI: 10.1039/c7nr00917h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The galvanic replacement reaction (GRR) has been shown to be an effective method to fine tune the structure of monometallic nanoparticles by controlling the precursor concentration and surface ligands. However, the structural evolution of nanoparticles is not well understood in multimetallic systems, where along with oxidation, dealloying and diffusion occur simultaneously. Here, we demonstrate that by controlling the rate of GRR in AuCu alloy nanorods, they can be transformed into either AuCu hollow rods or AuCu@Au core-shell spheroids. Interestingly, the transformation of rods into spheroids involved a critical intermediate state with a hollow junction and dumbbell shape. The formation of a hollow junction region was attributed to preferential diffusion of Cu atoms to the tips caused by the polycrystallinity and high curvature of the tips of the initial template. This structural transformation was also monitored in situ by single particle scattering spectroscopy. The coupling between the two ends of the dumbbell-shaped intermediate connected with a hollow metallic junction gives rise to additional plasmonic features compared with regular rods. Electrodynamic simulations showed that varying the dimensions of the hollow part by even one nanometer altered the plasmon resonance wavelength and lineshape drastically. This study shows that single particle plasmon resonance can be used as an exquisite tool to probe the internal structure of the nanoscale junctions.
Collapse
Affiliation(s)
- Sravan Thota
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, USA.
| | | | | | | | | |
Collapse
|
21
|
Li GG, Lin Y, Wang H. Residual Silver Remarkably Enhances Electrocatalytic Activity and Durability of Dealloyed Gold Nanosponge Particles. NANO LETTERS 2016; 16:7248-7253. [PMID: 27690465 DOI: 10.1021/acs.nanolett.6b03685] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Percolation dealloying of multimetallic alloys entangles the selective dissolution of the less-noble elements with nanoscale restructuring of the more-noble components, resulting in the formation of spongelike, nanoporous architectures with a unique set of structural characteristics highly desirable for heterogeneous catalysis. Although the dealloyed nanoporous materials are compositionally dominated by the more-noble elements, they inevitably contain residual less-noble elements that cannot be completely removed through the percolation dealloying process. How to employ the less-noble elements to rationally guide the structural evolution and optimize the catalytic performances of the dealloyed noble metal nanocatalysts still remains largely unexplored. Here, we have discovered that incorporation of Ag into Au-Cu binary alloy nanoparticles substantially enhances the Cu leaching kinetics while effectively suppressing the ligament coarsening during the nanoporosity-evolving percolation dealloying of the alloy nanoparticles. The controlled coleaching of Ag and Cu from Au-Ag-Cu ternary alloy nanoparticles provides a unique way to optimize both the surface area-to-mass ratios and specific activities of the dealloyed nanosponge particles for the electrocatalytic oxidation of alcohols. The residual Ag in the fully dealloyed nanosponge particles plays crucial roles in stabilizing the surface active sites and maintaining the nanoporous architectures during the electrocatalytic reactions, thereby greatly enhancing the durability of the electrocatalysts. The insights gained from this work shed light on the underlying roles of residual less-noble elements that are crucial to the rational optimization of electrocatalysis on noble-metal nanostructures.
Collapse
Affiliation(s)
- Guangfang Grace Li
- Department of Chemistry and Biochemistry and ‡Department of Chemical Engineering, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Ye Lin
- Department of Chemistry and Biochemistry and ‡Department of Chemical Engineering, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Hui Wang
- Department of Chemistry and Biochemistry and ‡Department of Chemical Engineering, University of South Carolina , Columbia, South Carolina 29208, United States
| |
Collapse
|