1
|
Huang D, Zou K, Wu Y, Li K, Zhang Z, Liu T, Chen W, Yan Z, Zhou S, Kong XY, Jiang L, Wen L. TRPM4-Inspired Polymeric Nanochannels with Preferential Cation Transport for High-Efficiency Salinity-Gradient Energy Conversion. J Am Chem Soc 2024. [PMID: 38842082 DOI: 10.1021/jacs.4c02629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Biological ion channels exhibit switchable cation transport with ultrahigh selectivity for efficient energy conversion, such as Ca2+-activated TRPM4 channels tuned by cation-π interactions, but achieving an analogous highly selective function is challenging in artificial nanochannels. Here, we design a TRPM4-inspired cation-selective nanochannel (CN) assembled by two poly(ether sulfone)s, respectively, with sulfonate acid and indole moieties, which act as cation-selective activators to manage Na+/Cl- selectivity via ionic and cation-π interactions. The cation selectivity of CNs can be activated by Na+, and thereby the Na+ transference number significantly improves from 0.720 to 0.982 (Na+/Cl- selectivity ratio from 2.6 to 54.6) under a 50-fold salinity gradient, surpassing the K+ transference number (0.886) and Li+ transference number (0.900). The TRPM4-inspired nanochannel membrane enabled a maximum output power density of 5.7 W m-2 for salinity-gradient power harvesting. Moreover, a record energy conversion efficiency of up to 46.5% is provided, superior to most nanochannel membranes (below 30%). This work proposes a novel strategy to biomimetic nanochannels for highly selective cation transport and high-efficiency salinity-gradient energy conversion.
Collapse
Affiliation(s)
- Dehua Huang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kehan Zou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuge Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ke Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhehua Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tianchi Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Weipeng Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zidi Yan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shengyang Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou Jiangsu 215123, PR China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei Anhui 230026, PR China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou Jiangsu 215123, PR China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei Anhui 230026, PR China
| |
Collapse
|
2
|
Liu L, Ma H, Khan M, Hsiao BS. Recent Advances and Challenges in Anion Exchange Membranes Development/Application for Water Electrolysis: A Review. MEMBRANES 2024; 14:85. [PMID: 38668113 PMCID: PMC11051812 DOI: 10.3390/membranes14040085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/27/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
In recent years, anion exchange membranes (AEMs) have aroused widespread interest in hydrogen production via water electrolysis using renewable energy sources. The two current commercial low-temperature water electrolysis technologies used are alkaline water electrolysis (AWE) and proton exchange membrane (PEM) water electrolysis. The AWE technology exhibited the advantages of high stability and increased cost-effectiveness with low hydrogen production efficiency. In contrast, PEM water electrolysis exhibited high hydrogen efficiency with low stability and cost-effectiveness, respectively. Unfortunately, the major challenges that AEMs, as well as the corresponding ion transportation membranes, including alkaline hydrogen separator and proton exchange membranes, still face are hydrogen production efficiency, long-term stability, and cost-effectiveness under working conditions, which exhibited critical issues that need to be addressed as a top priority. This review comprehensively presented research progress on AEMs in recent years, providing a thorough understanding of academic studies and industrial applications. It focused on analyzing the chemical structure of polymers and the performance of AEMs and established the relationship between the structure and efficiency of the membranes. This review aimed to identify approaches for improving AEM ion conductivity and alkaline stability. Additionally, future research directions for the commercialization of anion exchange membranes were discussed based on the analysis and assessment of the current applications of AEMs in patents.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyang Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Madani Khan
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Benjamin S. Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
3
|
Li X, Wang Z, Chen Y, Li Y, Guo J, Zheng J, Li S, Zhang S. Imidazolium-based AEMs with high dimensional and alkaline-resistance stabilities for extended temperature range of alkaline fuel cells. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Xie Y, Li S, Pang J, Jiang Z. Micro-block poly(arylene ether sulfone)s with densely quaternized units for anion exchange membranes: Effects of benzyl N-methylpiperidinium and benzyl trimethyl ammonium cations. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Chand K, Paladino O. Recent developments of membranes and electrocatalysts for the hydrogen production by Anion Exchange Membrane Water Electrolysers: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
6
|
The Influence of Various Cationic Group on Polynorbornene Based Anion Exchange Membranes with Hydrophobic Large Steric Hindrance Arylene Substituent. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2786-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Zhang G, Cai X, Li C, Yao J, Tian Z, Zhang F, Liu Y, Liu W, Zhang X. Design of co-continuous structure of cellulose/PAA-based alkaline solid polyelectrolyte for flexible zinc-air battery. Int J Biol Macromol 2022; 221:446-455. [PMID: 36084873 DOI: 10.1016/j.ijbiomac.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 11/15/2022]
Abstract
In order to prepare high ionic conductivity and robust mechanical properties of alkaline solid polyelectrolyte (ASPE) for applications in flexible wearable devices, a co-continuous structure membrane was designed using in-situ polymerization to introduce cross-linked polyacrylic acid (N-PAA) into the cellulose network constructed by regenerated degreasing cotton (RDC). The resultant ASPE membrane showed high ionic conductivity (430 mS·cm-1 at 25 °C), strong mechanical properties, and excellent alkaline stabilities, proving the viability of cellulose for use in energy storage systems. Surprisingly, the sandwich-shaped zinc-air battery assembled using RDC/N-PAA/KOH membranes as electrolytes exhibits superior values of cycling stability, discharge time, specific capacity (731.5 mAh·g-1), peak power density (40.25 mW·cm-2), and mechanical flexibility. Even under bending conditions, the zinc-air batteries still possess stable energy supply performance, suggesting this novel solid polyelectrolyte has promising application for wearable technology.
Collapse
Affiliation(s)
- Guotao Zhang
- School of Materials Science & Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoxia Cai
- School of Materials Science & Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Cong Li
- School of Materials Science & Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jinshui Yao
- School of Materials Science & Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhongjian Tian
- School of Materials Science & Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fengshan Zhang
- Shandong Huatai Paper Industry Shareholding Co., Ltd., Dongying 257335, China
| | - Yanshao Liu
- Shandong Huatai Paper Industry Shareholding Co., Ltd., Dongying 257335, China
| | - Weiliang Liu
- School of Materials Science & Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xian Zhang
- School of Materials Science & Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
8
|
Abstract
This Review provides an overview of the emerging concepts of catalysts, membranes, and membrane electrode assemblies (MEAs) for water electrolyzers with anion-exchange membranes (AEMs), also known as zero-gap alkaline water electrolyzers. Much of the recent progress is due to improvements in materials chemistry, MEA designs, and optimized operation conditions. Research on anion-exchange polymers (AEPs) has focused on the cationic head/backbone/side-chain structures and key properties such as ionic conductivity and alkaline stability. Several approaches, such as cross-linking, microphase, and organic/inorganic composites, have been proposed to improve the anion-exchange performance and the chemical and mechanical stability of AEMs. Numerous AEMs now exceed values of 0.1 S/cm (at 60-80 °C), although the stability specifically at temperatures exceeding 60 °C needs further enhancement. The oxygen evolution reaction (OER) is still a limiting factor. An analysis of thin-layer OER data suggests that NiFe-type catalysts have the highest activity. There is debate on the active-site mechanism of the NiFe catalysts, and their long-term stability needs to be understood. Addition of Co to NiFe increases the conductivity of these catalysts. The same analysis for the hydrogen evolution reaction (HER) shows carbon-supported Pt to be dominating, although PtNi alloys and clusters of Ni(OH)2 on Pt show competitive activities. Recent advances in forming and embedding well-dispersed Ru nanoparticles on functionalized high-surface-area carbon supports show promising HER activities. However, the stability of these catalysts under actual AEMWE operating conditions needs to be proven. The field is advancing rapidly but could benefit through the adaptation of new in situ techniques, standardized evaluation protocols for AEMWE conditions, and innovative catalyst-structure designs. Nevertheless, single AEM water electrolyzer cells have been operated for several thousand hours at temperatures and current densities as high as 60 °C and 1 A/cm2, respectively.
Collapse
Affiliation(s)
- Naiying Du
- National
Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
- Energy,
Mining and Environment Research Centre, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Claudie Roy
- Energy,
Mining and Environment Research Centre, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
- National
Research Council of Canada, 2620 Speakman Drive, Mississauga, Ontario L5K 1B1, Canada
| | - Retha Peach
- Forschungszentrum
Jülich GmbH, Helmholtz Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstaße 1, 91058 Erlangen, Germany
| | - Matthew Turnbull
- National
Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
- Energy,
Mining and Environment Research Centre, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Simon Thiele
- Forschungszentrum
Jülich GmbH, Helmholtz Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstaße 1, 91058 Erlangen, Germany
- Department
Chemie- und Bioingenieurwesen, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Christina Bock
- National
Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
- Energy,
Mining and Environment Research Centre, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
9
|
Liang M, Peng J, Cao K, Shan C, Liu Z, Wang P, Hu W, Liu B. Multiply quaternized poly(phenylene oxide)s bearing β-cyclodextrin pendants as “assisting moiety” for high-performance anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Elucidating the role of alkyl chain in poly(aryl piperidinium) copolymers for anion exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120341] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Li L, Zhang N, Wang JA, Ma L, Bai L, Zhang A, Chen Y, Hao C, Yan X, Zhang F, He G. Stable alkoxy chain enhanced anion exchange membrane and its fuel cell. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Vinodh R, Atchudan R, Kim HJ, Yi M. Recent Advancements in Polysulfone Based Membranes for Fuel Cell (PEMFCs, DMFCs and AMFCs) Applications: A Critical Review. Polymers (Basel) 2022; 14:300. [PMID: 35054706 PMCID: PMC8777856 DOI: 10.3390/polym14020300] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 01/12/2023] Open
Abstract
In recent years, ion electrolyte membranes (IEMs) preparation and properties have attracted fabulous attention in fuel cell usages owing to its high ionic conductivity and chemical resistance. Currently, perfluorinatedsulfonicacid (PFSA) membrane has been widely employed in the membrane industry in polymer electrolyte membrane fuel cells (PEMFCs); however, NafionTM suffers reduced proton conductivity at a higher temperature, requiring noble metal catalyst (Pt, Ru, and Pt-Ru), and catalyst poisoning by CO. Non-fluorinated polymers are a promising substitute. Polysulfone (PSU) is an aromatic polymer with excellent characteristics that have attracted membrane scientists in recent years. The present review provides an up-to-date development of PSU based electrolyte membranes and its composites for PEMFCs, alkaline membrane fuel cells (AMFCs), and direct methanol fuel cells (DMFCs) application. Various fillers encapsulated in the PEM/AEM moiety are appraised according to their preliminary characteristics and their plausible outcome on PEMFC/DMFC/AMFC. The key issues associated with enhancing the ionic conductivity and chemical stability have been elucidated as well. Furthermore, this review addresses the current tasks, and forthcoming directions are briefly summarized of PEM/AEMs for PEMFCs, DMFCs, AMFCs.
Collapse
Affiliation(s)
- Rajangam Vinodh
- Department of Electronics Engineering, Pusan National University, Busan 46241, Korea;
| | - Raji Atchudan
- Department of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Hee-Je Kim
- Department of Electrical and Computer Engineering, Pusan National University, Busan 46241, Korea
| | - Moonsuk Yi
- Department of Electronics Engineering, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
13
|
Li J, Tian X, Xia C, Duan Y, Sun YN, Liu B, Wu L, Ru C, Zhang ST, Zhao C. Construction of Proton Transport Highways Induced by Polarity-Driving in Proton Exchange Membranes to Enhance the Performance of Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40673-40684. [PMID: 34410701 DOI: 10.1021/acsami.1c11715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The approach to constructing proton transport channels via direct adjustments, including hydrophilia and analytical acid concentration in hydrophilic domains, has been proved to be circumscribed when encouraging the flatter hydrophilic-hydrophobic microphase separation structures and reducing conductivity activation energy. Here, we propose a constructive solution by regulating the polarity of hydrophobic domains, which indirectly varies the aggregation and connection of hydrophilic ion clusters during membrane formation, enabling orderly self-assembly and homogeneously distributed microphase structures. Accordingly, a series of comb-shaped polymers were synthesized with diversified optimization, and more uniformly distributed ion cluster lattices were subsequently observed using high-resolution transmission electron microscopy. Simultaneously, combining with density functional theory calculations, we analyzed the mechanism of membrane degradations caused by hydroxyl radical attacks. Experimental results demonstrated that, facilitated by proper molecule polarity, beneficial changes of bond dissociation energy could extend the membrane lifetime more than the protection from side chains near ether bonds, which were deemed to reduce the probability of attacks by the steric effect. With the optimal strategy chosen among various trials, the maximum power density of direct methanol fuel cell and H2/air proton exchange membrane fuel cell was enhanced to 95 and 485 mW cm-2, respectively.
Collapse
Affiliation(s)
- Jialin Li
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xuzhou Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Chunlei Xia
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yuting Duan
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yi-Nan Sun
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Binghui Liu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Liming Wu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Chunyu Ru
- Powertrain Department, General Institute of FAW, Changchun 130012, P. R. China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Chengji Zhao
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Key Laboratory of Advanced Batteries Physics and Technology (Ministry of Education), Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
14
|
Yu W, Zhang J, Liang X, Ge X, Wei C, Ge Z, Zhang K, Li G, Song W, Shehzad MA, Wu L, Xu T. Anion exchange membranes with fast ion transport channels driven by cation-dipole interactions for alkaline fuel cells. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119404] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Jheng LC, Cheng CW, Ho KS, Hsu SLC, Hsu CY, Lin BY, Ho TH. Dimethylimidazolium-Functionalized Polybenzimidazole and Its Organic-Inorganic Hybrid Membranes for Anion Exchange Membrane Fuel Cells. Polymers (Basel) 2021; 13:2864. [PMID: 34502904 PMCID: PMC8456347 DOI: 10.3390/polym13172864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 01/15/2023] Open
Abstract
A quaternized polybenzimidazole (PBI) membrane was synthesized by grafting a dimethylimidazolium end-capped side chain onto PBI. The organic-inorganic hybrid membrane of the quaternized PBI was prepared via a silane-induced crosslinking process with triethoxysilylpropyl dimethylimidazolium chloride. The chemical structure and membrane morphology were characterized using NMR, FTIR, TGA, SEM, EDX, AFM, SAXS, and XPS techniques. Compared with the pristine membrane of dimethylimidazolium-functionalized PBI, its hybrid membrane exhibited a lower swelling ratio, higher mechanical strength, and better oxidative stability. However, the morphology of hydrophilic/hydrophobic phase separation, which facilitates the ion transport along hydrophilic channels, only successfully developed in the pristine membrane. As a result, the hydroxide conductivity of the pristine membrane (5.02 × 10-2 S cm-1 at 80 °C) was measured higher than that of the hybrid membrane (2.22 × 10-2 S cm-1 at 80 °C). The hydroxide conductivity and tensile results suggested that both membranes had good alkaline stability in 2M KOH solution at 80 °C. Furthermore, the maximum power densities of the pristine and hybrid membranes of dimethylimidazolium-functionalized PBI reached 241 mW cm-2 and 152 mW cm-2 at 60 °C, respectively. The fuel cell performance result demonstrates that these two membranes are promising as AEMs for fuel cell applications.
Collapse
Affiliation(s)
- Li-Cheng Jheng
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (L.-C.J.); (K.-S.H.); (C.-Y.H.)
| | - Cheng-Wei Cheng
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Ko-Shan Ho
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (L.-C.J.); (K.-S.H.); (C.-Y.H.)
| | - Steve Lien-Chung Hsu
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Chung-Yen Hsu
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (L.-C.J.); (K.-S.H.); (C.-Y.H.)
| | - Bi-Yun Lin
- Instrument Center of National Cheng Kung University, Tainan 70101, Taiwan;
| | - Tsung-Han Ho
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (L.-C.J.); (K.-S.H.); (C.-Y.H.)
| |
Collapse
|
16
|
Abdi ZG, Chen J, Chiu T, Yang H, Yu H. Synthesis of ionic polybenzimidazoles with broad ion exchange capacity range for anion exchange membrane fuel cell application. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zelalem Gudeta Abdi
- Department of Materials Science and Engineering National Taiwan University of Science and Technology Taipei Taiwan
| | - Jyh‐Chien Chen
- Department of Materials Science and Engineering National Taiwan University of Science and Technology Taipei Taiwan
| | - Tse‐Han Chiu
- Department of Materials Science and Engineering National Taiwan University of Science and Technology Taipei Taiwan
| | - Hsiharng Yang
- Graduate Institute of Precision Engineering National Chung Hsing University Taichung City Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA) National Chung Hsing University Taichung City Taiwan
| | - Hsuan‐Hung Yu
- Graduate Institute of Precision Engineering National Chung Hsing University Taichung City Taiwan
| |
Collapse
|
17
|
Zhu H, Sun Z, Cao H, Wang B, Zhao J, Pan J, Xu G, Jin Z, Yan F. Highly Conductive and Dimensionally Stable Anion Exchange Membranes Based on Poly(dimethoxybenzene- co-methyl 4-formylbenzoate) Ionomers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hairong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhe Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Huixing Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Bowen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Junliang Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ji Pan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Guodong Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhiyu Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Feng Yan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
18
|
Wang K, Zhang Z, Li S, Zhang H, Yue N, Pang J, Jiang Z. Side-Chain-Type Anion Exchange Membranes Based on Poly(arylene ether sulfone)s Containing High-Density Quaternary Ammonium Groups. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23547-23557. [PMID: 33979135 DOI: 10.1021/acsami.1c00889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To obtain anion exchange membranes with both high ionic conductivity and good dimensional stability, a series of side-chain-type poly(arylene ether sulfone)s (PAES-QDTPM-x) were designed and synthesized. Quaternary ammonium (QA) groups were densely aggregated and grafted onto the main chain via flexible hydrophobic spacers. Well-defined microphase separation was confirmed by small-angle X-ray scattering. PAES-QDTPM-0.30 exhibited reasonably high conductivity (39.4 mS cm-1 at 20 °C and 76.1 mS cm-1 at 80 °C) and excellent dimensional stability at 80 °C (11.9% in length, 11.2% in thickness) due to the concentration of ion clusters and the side-chain-type structure. All membranes maintained over 82% of the conductivity after alkali treatment for 14 days. In the H2/O2 fuel cell performance test, the maximum power density of PAES-QDTPM-0.30 at 60 °C was 225.8 mW cm-2.
Collapse
Affiliation(s)
- Kaiqi Wang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Zhenpeng Zhang
- Shenyang Rubber Research & Design Institute Company Limited, Shenyang 110021, People's Republic of China
| | - Su Li
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Haibo Zhang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Nailin Yue
- School of Materials Science and Engineering & Electron Microscopy Center, Jilin University, Changchun 130012, People's Republic of China
| | - Jinhui Pang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Zhenhua Jiang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
19
|
Chu X, Liu J, Miao S, Liu L, Huang Y, Tang E, Liu S, Xing X, Li N. Crucial role of side-chain functionality in anion exchange membranes: Properties and alkaline fuel cell performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119172] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Chen Y, Li Y, Xu J, Chen S, Chen D. Densely Quaternized Fluorinated Poly(fluorenyl ether)s with Excellent Conductivity and Stability for Vanadium Redox Flow Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18923-18933. [PMID: 33852269 DOI: 10.1021/acsami.1c04250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cationic group distribution and elemental composition are two key factors determining the conductivity and stability of anion exchange membranes (AEMs) for vanadium redox flow batteries (VRFBs). Herein, fluorinated tetra-dimethylaminomethyl-poly(fluorenyl ether)s (TAPFE)s were designed as the polymer precursors, which were reacted with 6-bromo-N,N,N-trimethylhexan-1-aminium bromide to introduce di-quaternary ammonium (DQA) containing side chains. The resultant DQA-TAPFEs with a rigid fluorinated backbone and flexible multi-cationic side chains exhibited distinct micro-phase separation as probed by small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM). DQA-TAPFE-20 with an ion exchange capacity (IEC) of 1.55 mmol g-1 exhibited a SO42- conductivity of 10.1 mS cm-1 at room temperature, much higher than that of a control AEM with an identical backbone but spaced out cationic groups, which had a similar IEC of 1.60 mmol g-1 but a SO42- conductivity of only 3.2 mS cm-1. Due to the Donnan repulsion effect, the DQA-TAPFEs exhibited significantly lower VO2+ permeability than Nafion 212. The VRFB assembled with DQA-TAPFE-20 achieved an energy efficiency of 80.4% at 80 mA cm-1 and a capacity retention rate of 82.9% after the 50th cycling test, both higher than those of the VRFB assembled with Nafion 212 and other AEMs in the literature. Therefore, the rationally designed DQA-TAPFEs are promising candidates for VRFB applications.
Collapse
Affiliation(s)
- Yu Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yanyan Li
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jiaqi Xu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Shaoyun Chen
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Dongyang Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
21
|
Li L, Wang J, Hussain M, Ma L, Qaisrani NA, Ma S, Bai L, Yan X, Deng X, He G, Zhang F. Side-chain manipulation of poly (phenylene oxide) based anion exchange membrane: Alkoxyl extender integrated with flexible spacer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119088] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
He Z, Wang G, Wang C, Guo L, Wei R, Song G, Pan D, Das R, Naik N, Hu Z, Guo Z. Overview of Anion Exchange Membranes Based on Ring Opening Metathesis Polymerization (ROMP). POLYM REV 2021. [DOI: 10.1080/15583724.2021.1881792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhenfeng He
- School of Chemical Engineering and Technology, North University of China, Taiyuan, China
| | - Guoqing Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, China
| | - Chao Wang
- College of Materials Science and Engineering, North University of China, Taiyuan, China
| | - Li Guo
- Advanced Energy Materials and Systems Institute, North University of China, Taiyuan, China
| | - Renbo Wei
- School of Chemical Engineering, Northwest University, Xi’an, China
| | - Gang Song
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
| | - Duo Pan
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Rajib Das
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Nithesh Naik
- Department of Mechanical & Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Zhuolin Hu
- Advanced Energy Materials and Systems Institute, North University of China, Taiyuan, China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
23
|
Wang F, Li Y, Li C, Zhu H. Preparation and study of spirocyclic cationic side chain functionalized polybiphenyl piperidine anion exchange membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118919] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Li Z, Guo J, Zheng J, Sherazi TA, Li S, Zhang S. A Microporous Polymer with Suspended Cations for Anion Exchange Membrane Fuel Cells. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ziqin Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jing Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jifu Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Tauqir A. Sherazi
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Shenghai Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Suobo Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
25
|
Zhang F, Li T, Chen W, Yan X, Wu X, Jiang X, Zhang Y, Wang X, He G. High-Performance Anion Exchange Membranes with Para-Type Cations on Electron-Withdrawing C═O Links Free Backbone. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01710] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tiantian Li
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wanting Chen
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaoming Yan
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xuemei Wu
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Zhang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaozhou Wang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
26
|
Chu JY, Lee KH, Kim AR, Yoo DJ. Improved electrochemical performance of composite anion exchange membranes for fuel cells through cross linking of the polymer chain with functionalized graphene oxide. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118385] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Liu G, Tsen WC, Jang SC, Hu F, Zhong F, Zhang B, Wang J, Liu H, Wang G, Wen S, Gong C. Composite membranes from quaternized chitosan reinforced with surface-functionalized PVDF electrospun nanofibers for alkaline direct methanol fuel cells. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118242] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
|
29
|
Trant C, Hwang S, Bae C, Lee S. Synthesis and Characterization of Anion-Exchange Membranes Using Semicrystalline Triblock Copolymers in Ordered and Disordered States. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carrie Trant
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Chulsung Bae
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Sangwoo Lee
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
30
|
Luo W, Wang L, Feng R, Zhao C, Wang J, Cai T. Preparation of composite anion exchange membranes based on in‐situ copolymerization of N‐vinyl formamide and divinylbenzene in porous PTFE. J Appl Polym Sci 2020. [DOI: 10.1002/app.49872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wanjie Luo
- Department of Safety and Environmental Protection, School of Petroleum and Chemical Technology, College of Chemical Engineering and Environmental Engineering Liaoning Shihua University Fushun China
| | - Lulu Wang
- Department of Safety and Environmental Protection, School of Petroleum and Chemical Technology, College of Chemical Engineering and Environmental Engineering Liaoning Shihua University Fushun China
| | - Ruijiang Feng
- Department of Safety and Environmental Protection, School of Petroleum and Chemical Technology, College of Chemical Engineering and Environmental Engineering Liaoning Shihua University Fushun China
| | - Chongfeng Zhao
- Department of Safety and Environmental Protection, School of Petroleum and Chemical Technology, College of Chemical Engineering and Environmental Engineering Liaoning Shihua University Fushun China
| | - Jilin Wang
- Department of Safety and Environmental Protection, School of Petroleum and Chemical Technology, College of Chemical Engineering and Environmental Engineering Liaoning Shihua University Fushun China
| | - Tianzhou Cai
- PetroChina Sichuan Petrochemical. Co., LTD Chengdu China
| |
Collapse
|
31
|
Izraylit V, Hommes-Schattmann PJ, Neffe AT, Gould OE, Lendlein A. Polyester urethane functionalizable through maleimide side-chains and cross-linkable by polylactide stereocomplexes. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Zhang S, Wang Y, Liu P, Wang X, Zhu X. Photo-cross-linked poly(N-allylisatin biphenyl)-co-poly(alkylene biphenyl)s with pendant N-cyclic quaternary ammonium as anion exchange membranes for direct borohydride/hydrogen peroxide fuel cells. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Khan MI, Fernandez-Garcia J, Zhu QL. Fabrication of doubly charged anion-exchange membranes for enhancing hydroxide conductivity. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1781896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Muhammad Imran Khan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | | | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| |
Collapse
|
34
|
Liu FH, Yang Q, Gao XL, Wu HY, Zhang QG, Zhu AM, Liu QL. Anion exchange membranes with dense N-spirocyclic cations as side-chain. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117560] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Improving fuel cell performance of an anion exchange membrane by terminal pending bis-cations on a flexible side chain. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117483] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Salma U, Zhang D, Nagao Y. Imidazolium‐Functionalized Fluorene‐Based Anion Exchange Membrane (AEM) for Fuel Cell Applications. ChemistrySelect 2020. [DOI: 10.1002/slct.201903246] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Umme Salma
- School of Materials ScienceJapan Advanced Institute of Science and Technology, 1–1 Asahidai, Nomi Ishikawa 923-1292 Japan
- Department of ChemistryMawlana Bhashani Science and Technology University, Santosh Tangail 1902 Bangladesh
| | - Dishen Zhang
- School of Materials ScienceJapan Advanced Institute of Science and Technology, 1–1 Asahidai, Nomi Ishikawa 923-1292 Japan
| | - Yuki Nagao
- School of Materials ScienceJapan Advanced Institute of Science and Technology, 1–1 Asahidai, Nomi Ishikawa 923-1292 Japan
| |
Collapse
|
37
|
Li S, Zhang H, Wang K, Yang F, Han Y, Sun Y, Pang J, Jiang Z. Micro-block versus random quaternized poly(arylene ether sulfones) with highly dense quaternization units for anion exchange membranes. Polym Chem 2020. [DOI: 10.1039/c9py01951k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A systematic study was carried out to investigate the effect of different distributions of conducting groups in segments for poly(arylene ether sulfone)s.
Collapse
Affiliation(s)
- Su Li
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Haibo Zhang
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Kaiqi Wang
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Fan Yang
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Yuntao Han
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Yirong Sun
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Jinhui Pang
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Zhenhua Jiang
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
38
|
Peng J, Liang M, Liu Z, Wang P, Shi C, Hu W, Liu B. Poly(arylene ether sulfone) crosslinked networks with pillar[5]arene units grafted by multiple long-chain quaternary ammonium salts for anion exchange membranes. Chem Commun (Camb) 2020; 56:928-931. [DOI: 10.1039/c9cc07105a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For the first time, high-molecular-weight pillar[5]arene-containing aromatic polymers were synthesized and further modified for application as anion exchange membranes.
Collapse
Affiliation(s)
- Jinwu Peng
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| | - Minhui Liang
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| | - Zhenchao Liu
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| | - Peng Wang
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| | - Chengying Shi
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| | - Wei Hu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Baijun Liu
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| |
Collapse
|
39
|
Vijayakumar V, Son TY, Kim HJ, Nam SY. A facile approach to fabricate poly(2,6-dimethyl-1,4-phenylene oxide) based anion exchange membranes with extended alkaline stability and ion conductivity for fuel cell applications. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117314] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Gao XL, Yang Q, Wu HY, Sun QH, Zhu ZY, Zhang QG, Zhu AM, Liu QL. Orderly branched anion exchange membranes bearing long flexible multi-cation side chain for alkaline fuel cells. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117247] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Wang X, Sheng W, Shen Y, Liu L, Dai S, Li N. N-cyclic quaternary ammonium-functionalized anion exchange membrane with improved alkaline stability enabled by aryl-ether free polymer backbones for alkaline fuel cells. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.059] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
|
43
|
Comb-shaped anion exchange membrane with densely grafted short chains or loosely grafted long chains? J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Hydrophobic side chains to enhance hydroxide conductivity and physicochemical stabilities of side-chain-type polymer AEMs. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.066] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
45
|
A mechanically robust multication double-network polymer as an anion-exchange membrane: High ion conductivity and excellent chemical stability. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Wei H, Li Y, Wang S, Tao G, Wang T, Cheng S, Yang S, Ding Y. Side-chain-type imidazolium-functionalized anion exchange membranes: The effects of additional hydrophobic side chains and their hydrophobicity. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.058] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Zhu L, Yu X, Peng X, Zimudzi TJ, Saikia N, Kwasny MT, Song S, Kushner DI, Fu Z, Tew GN, Mustain WE, Yandrasits MA, Hickner MA. Poly(olefin)-Based Anion Exchange Membranes Prepared Using Ziegler–Natta Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02756] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Liang Zhu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xuedi Yu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiong Peng
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Tawanda J. Zimudzi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nayan Saikia
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Michael T. Kwasny
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Shaofei Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Douglas I. Kushner
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhisheng Fu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Gregory N. Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - William E. Mustain
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Michael A. Yandrasits
- Corporate Research Laboratory, Electrochemical Components Lab, 3M Center, St. Paul, Minnesota 55144-1000, United States
| | - Michael A. Hickner
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
48
|
Sana B, Das A, Jana T. Polybenzimidazole as alkaline anion exchange membrane with twin hydroxide ion conducting sites. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Hnát J, Kodým R, Denk K, Paidar M, Žitka J, Bouzek K. Design of a Zero‐Gap Laboratory‐Scale Polymer Electrolyte Membrane Alkaline Water Electrolysis Stack. CHEM-ING-TECH 2019. [DOI: 10.1002/cite.201800185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jaromír Hnát
- University of Chemistry and Technology, PragueDepartment of Inorganic Technology Technická 5 16628 Prague 6 Czech Republic
| | - Roman Kodým
- University of Chemistry and Technology, PragueDepartment of Inorganic Technology Technická 5 16628 Prague 6 Czech Republic
| | - Karel Denk
- University of Chemistry and Technology, PragueDepartment of Inorganic Technology Technická 5 16628 Prague 6 Czech Republic
| | - Martin Paidar
- University of Chemistry and Technology, PragueDepartment of Inorganic Technology Technická 5 16628 Prague 6 Czech Republic
| | - Jan Žitka
- Czech Academy of SciencesInstitute of Macromolecular Chemistry Heyrovského nám. 2 16206 Prague 6 Czech Republic
| | - Karel Bouzek
- University of Chemistry and Technology, PragueDepartment of Inorganic Technology Technická 5 16628 Prague 6 Czech Republic
| |
Collapse
|
50
|
Synthesized Geminal-imidazolium-type ionic liquids applying for PVA-FP/[DimL][OH] anion exchange membranes for fuel cells. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|