1
|
Sarma D, Nath KK, Biswas S, Ahmed GA, Nath P. Plasma treated bimetallic nanofibers as sensitive SERS platform and deep learning model for detection and classification of antibiotics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 327:125417. [PMID: 39541643 DOI: 10.1016/j.saa.2024.125417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Design of a sensitive, cost-effective SERS substrate is critical for probing analyte in trace concentration in real field environment. Present work reports the fabrication of an oxygen (O2) plasma treated bimetallic nanofibers as a sensitive SERS platform. In contrast to the conventional nanofiber-based SERS platform, the proposed plasma-treated bimetallic nanofibers-based SERS platform offers high sensitivity and reproducibility characteristics. On top, the use of bimetallic nanoparticles provides a synergistic effect, contributing to both electromagnetic and chemical enhancement to SERS performance and the plasma treatment contributes to the controlled exposure of the embedded nanoparticles (NPs) to the analyte thereby enhancing the overall sensitivity of the proposed technique. With standard Raman active probe molecules - 1,2-bis(4-pyridyl) ethylene (BPE) and rhodamine-6G (R6G) the limit of detection (LOD) and the limit of quantification (LOQ) of the proposed sensing platform are estimated to be 3.8 nM and 11.6 nM respectively. The enhancement factor (EF) of the designed sensing platform is calculated to be ∼108 with a maximum signal variations of 5 %. The applicability of the designed SERS substrate has been realized through detection of two antibiotics - fluconazole (FLU) and lincomycin (LIN) widely used in poultry farms. Furthermore, a deep learning model - artificial neural network (ANN) has been implemented for effective classification of the analyte molecules from a mixed sample.
Collapse
Affiliation(s)
- Dipjyoti Sarma
- Applied Photonics and Nanophotonics Laboratory, Department of Physics, Tezpur University, Napaam 784028, Assam, India
| | - Kaushik K Nath
- Optoelectronics and Photonics Research Laboratory, Tezpur University, Napaam 784028, Assam, India
| | - Sritam Biswas
- Applied Photonics and Nanophotonics Laboratory, Department of Physics, Tezpur University, Napaam 784028, Assam, India
| | - Gazi Ameen Ahmed
- Optoelectronics and Photonics Research Laboratory, Tezpur University, Napaam 784028, Assam, India
| | - Pabitra Nath
- Applied Photonics and Nanophotonics Laboratory, Department of Physics, Tezpur University, Napaam 784028, Assam, India.
| |
Collapse
|
2
|
Carreón R, Rodríguez-Hernández AG, Serrano de la Rosa LE, Calixto ME, Gervacio-Arciniega J, Krishnan SK. A Scalable Synthesis of Ag Nanoporous Film As an Efficient SERS-Substrates for Sensitive Detection of Nanoplastics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17476-17488. [PMID: 39102563 PMCID: PMC11340027 DOI: 10.1021/acs.langmuir.4c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
Nanoplastics pollution has led to a severe environmental crisis because of a large accumulation of these smaller nanoplastic particles in the aquatic environment and atmospheric conditions. Detection of these nanoplastics is crucial for food safety monitoring and human health. In this work, we report a simple and eco-friendly method to prepare a SERS-substrate-based nanoporous Ag nanoparticle (NP) film through vacuum thermal evaporation onto a vacuum-compatible deep eutectic solvent (DES) coated growth substrate for quantitative detection of nanoplastics in environmental samples. The nanoporous Ag NP films with controlled pores were achieved by the soft-templating role of DESs over the growth substrate, which enabled the self-assembly of deposited Ag NPs over the surface of DES. The optimized nanoporous Ag substrate provides high sensitivity in the detection of analyte molecules, crystal violet (CV), and rhodamine 6G (R6G) with a limit of detection (LOD) up to 1.5 × 10-13 M, excellent signal reproducibility, and storage stability. Moreover, we analyzed quantitative SERS detection of polyethene terephthalate (PET, size of 200 nm) and polystyrene (PS, size of 100 nm) nanoplastics with an LOD of 0.38 and 0.98 μg/mL, respectively. In addition, the SERS substrate efficiently detects PET and PS nanoplastics in real environmental samples, such as tap water, lake water, and diluted milk. The enhanced SERS sensing ability of the proposed nanoporous Ag NP film substrate holds immense potential for the sensitive detection of various nanoplastic contaminants present in environmental water.
Collapse
Affiliation(s)
- Rafael
Villamil Carreón
- Facultad
de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 18 sur., Puebla, Puebla 72570, México
| | - Ana G. Rodríguez-Hernández
- CONAHCyT-Centro
de Nanociencias and Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada
Apdo Postal 14, Ensenada, Baja California 22800, México
| | - Laura E. Serrano de la Rosa
- Instituto
de Física, Benemérita Universidad Autónoma de
Puebla, Av. San Claudio
y Blvd. 18 Sur, Col. San Manuel, Ciudad Universitaria, Puebla, Puebla 72570, México
| | - Ma. Estela Calixto
- Instituto
de Física, Benemérita Universidad Autónoma de
Puebla, Av. San Claudio
y Blvd. 18 Sur, Col. San Manuel, Ciudad Universitaria, Puebla, Puebla 72570, México
| | - J.J. Gervacio-Arciniega
- CONAHCyT—Facultad
de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla, Puebla 72570, México
| | - Siva Kumar Krishnan
- CONAHCyT—Instituto
de Física, Benemérita Universidad Autónoma de
Puebla, Av. San Claudio
y Blvd. 18 Sur, Col. San Manuel, Ciudad Universitaria, Puebla, Puebla 72570, México
| |
Collapse
|
3
|
Yuan C, Zhang D, Gan Y. Mechanistic Insights into Plasma Oxidation of Ag Nanofilms: Experimental and Theoretical Studies. ACS OMEGA 2024; 9:28912-28925. [PMID: 38973839 PMCID: PMC11223243 DOI: 10.1021/acsomega.4c03608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024]
Abstract
Plasma oxidation of metals has been studied extensively to fabricate nanoporous oxides with the merits of room temperature treatment and facile control of the oxidation rate. Plasma oxidation of Ag, motivated by studies on atomic oxygen corrosion of Ag, is one of the most studied systems. However, several important questions remain unaddressed and even overlooked traditionally: the critical role played by atomic O in promoting oxidation, evolution of microstructures during plasma exposure, and a sound framework for quantitative oxidation kinetic analyses. In this paper, the O2 plasma oxidation behavior of Ag films deposited on Si substrates was systematically studied both experimentally and theoretically. The effects of plasma pressure and power on the microstructural evolution and oxidation kinetics of Ag films of various thicknesses were investigated using comprehensive characterization, as well as numerical analysis of plasma chemistry for deriving atomic O concentration. The findings here provide a full picture and deep mechanistic insights into the morphology and microstructure evolution of Ag films and the growth of dense or porous Ag2O and AgO oxide layers by plasma oxidation, revealing the intricate interplay between atomic O, vacancy creation, Ag ion diffusion, Kirkendall effect, formation of pores, and interfacial void coalescence. The methodology developed here can be easily transferred to help understand the plasma oxidation behavior of other metals.
Collapse
Affiliation(s)
- ChengCheng Yuan
- School
of Chemistry and Chemical Engineering, Harbin
Institute of Technology, Harbin 150001, China
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Dan Zhang
- School
of Chemistry and Chemical Engineering, Harbin
Institute of Technology, Harbin 150001, China
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yang Gan
- School
of Chemistry and Chemical Engineering, Harbin
Institute of Technology, Harbin 150001, China
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
4
|
Chen Z, Gengenbach U, Koker L, Huang L, Mach TP, Reichert KM, Thelen R, Ungerer M. Systematic Investigation of Novel, Controlled Low-Temperature Sintering Processes for Inkjet Printed Silver Nanoparticle Ink. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306865. [PMID: 38126669 DOI: 10.1002/smll.202306865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Functional inks enable manufacturing of flexible electronic devices by means of printing technology. Silver nanoparticle (Ag NP) ink is widely used for printing conductive components. A sintering process is required to obtain sufficient conductivity. Thermal sintering is the most commonly used method, but the heat must be carefully applied to avoid damaging low-temperature substrates such as polymer films. In this work, two alternative sintering methods, damp heat sintering and water sintering are systematically investigated for inkjet-printed Ag tracks on polymer substrates. Both methods allow sintering polyvinyl pyrrolidone (PVP) capped Ag NPs at 85°C. In this way, the resistance is significantly reduced to only 1.7 times that of the samples on polyimide sintered in an oven at 250°C. The microstructure of sintered Ag NPs is analyzed. Taking the states of the capping layer under different conditions into account, the explanation of the sintering mechanism of Ag NPs at low temperatures is presented. Overall, both damp heat sintering and water sintering are viable options for achieving high conductivity of printed Ag tracks. They can broaden the range of substrates available for flexible electronic device fabrication while mitigating substrate damage risks. The choice between them depends on the specific application and the substrate used.
Collapse
Affiliation(s)
- Zehua Chen
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ulrich Gengenbach
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Liane Koker
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Liyu Huang
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Tim P Mach
- Institute for Applied Materials - Energy Storage Systems, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Klaus-Martin Reichert
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Richard Thelen
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martin Ungerer
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
5
|
Lv E, Wang T, Wang J, Sun R, Zhang C, Yu J, Li Z, Man B, Zhao X, Zhang C. Cascade Bowl Multicavity Structure for In Situ Surface-Enhanced Raman Scattering Detection of Organic Gas Molecules. J Phys Chem Lett 2024; 15:2247-2254. [PMID: 38380862 DOI: 10.1021/acs.jpclett.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
With the increasing emphasis on atmospheric environmental protection, it is crucial to find an efficient, direct, and accurate method to identify pollutant species in the atmosphere. To solve this problem, we designed and prepared the cascade multicavity (CMC) structure composed with silver nanoparticles (Ag NPs) as a surface-enhanced Raman scattering (SERS) substrate with favorable light transmittance and flexibility. The multicavity structure distributed on the surface introducing the homogeneous connecting holes endows the structure to more fully utilize the incident light while slowing the gas movement rate. Theoretical and experimental results have demonstrated that the Ag NPs/cascade multicavity (Ag-CMC) SERS substrate is a highly sensitive SERS substrate that can be used for in situ detection of gases under non-perpendicularly incident laser irradiation or bending of the substrate. We believe that the SERS substrate can provide a more efficient and feasible way for in situ detection of gaseous pollutants.
Collapse
Affiliation(s)
- Enze Lv
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Tao Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Junkun Wang
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Ruijing Sun
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Chengrui Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Jing Yu
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Zhen Li
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Xiaofei Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Chao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| |
Collapse
|
6
|
Ham JH, Park JS, Oh MK, Kim JH. Reusable Wrinkled Nanoporous Silver Film Fabricated by Plasma Treatment for Surface-Enhanced Raman Scattering Applications. ACS OMEGA 2023; 8:47146-47152. [PMID: 38107931 PMCID: PMC10720294 DOI: 10.1021/acsomega.3c07167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
A nanoporous silver film (npAgF), a promising structure for surface-enhanced Raman spectroscopy (SERS), can be fabricated by using successive O2 and Ar plasma treatments on a planar silver film. The common dealloying method for producing an npAgF involves annealing at high temperatures to produce an alloy film, as well as harsh etching using corrosive chemicals. By contrast, the plasma-based method can be applied directly to various functional substrates to produce more sophisticated npAgF structures. Herein, we report a facile fabrication method for a wrinkled npAgF (w-npAgF) for SERS applications using a thermally contractible polystyrene substrate. The w-npAgF had 3D wrinkles of the nanoporous structure and showed approximately 8 times higher SERS enhancement than did the flat npAgF. Moreover, the w-npAgF could be reused for multiple SERS measurements of different molecules by mild O2 and Ar plasma treatments after each use, in which the O2 plasma effectively removed the adsorbed organic molecules and the Ar plasma reduced silver oxide to pristine silver for subsequent SERS measurements. The wrinkled nanoporous structure was maintained after multiple mild plasma treatments for reuse. The simplicity of plasma-based fabrication and high sensitivity of w-npAgFs are promising features for the green production of low-cost and reusable 3D SERS substrates.
Collapse
Affiliation(s)
- Jin-Hyun Ham
- Advanced Photonics Research Institute
(APRI), Gwangju Institute of Science and
Technology, Gwangju 61005, Republic
of Korea
| | - Jung Su Park
- Advanced Photonics Research Institute
(APRI), Gwangju Institute of Science and
Technology, Gwangju 61005, Republic
of Korea
| | - Myoung-Kyu Oh
- Advanced Photonics Research Institute
(APRI), Gwangju Institute of Science and
Technology, Gwangju 61005, Republic
of Korea
| | - Joon Heon Kim
- Advanced Photonics Research Institute
(APRI), Gwangju Institute of Science and
Technology, Gwangju 61005, Republic
of Korea
| |
Collapse
|
7
|
Pinna A, Pia G, Licheri R, Pilia L. Effects of the Parent Alloy Microstructure on the Thermal Stability of Nanoporous Au. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6621. [PMID: 36233960 PMCID: PMC9571893 DOI: 10.3390/ma15196621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Nanoporous (NP) metals represent a unique class of materials with promising properties for a wide set of applications in advanced technology, from catalysis and sensing to lightweight structural materials. However, they typically suffer from low thermal stability, which results in a coarsening behavior not yet fully understood. In this work, we focused precisely on the coarsening process undergone by NP Au, starting from the analysis of data available in the literature and addressing specific issues with suitably designed experiments. We observe that annealing more easily induces densification in systems with short characteristic lengths. The NP Au structures obtained by dealloying of mechanically alloyed AuAg precursors exhibit lower thermal stability than several NP Au samples discussed in the literature. Similarly, NP Au samples prepared by annealing the precursor alloy before dealloying display enhanced resistance to coarsening. We suggest that the microstructure of the precursor alloy, and, in particular, the grain size of the metal phases, can significantly affect the thermal stability of the NP metal. Specifically, the smaller the grain size of the parent alloy, the lower the thermal stability.
Collapse
|
8
|
Choi HK, Park SM, Jeong J, Lee H, Yeon GJ, Kim DS, Kim ZH. Spatially Controlled Fabrication of Surface-Enhanced Raman Scattering Hot Spots through Photoinduced Dewetting of Silver Thin Films. J Phys Chem Lett 2022; 13:2969-2975. [PMID: 35343701 DOI: 10.1021/acs.jpclett.2c00403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A well-designed narrow gap between noble metal nanostructures plays a prominent role in surface-enhanced Raman scattering (SERS) to concentrate electromagnetic fields at the local point, called a "hot spot". However, SERS-active substrate fabrication remains a substantial hurdle due to the high process cost and the difficulty of engineering efficient plasmonic hot spots at the target area. In this study, we demonstrate a simple photolithographic method for generating ultrasensitive SERS hot spots at desired positions. The solid-state dewetting of a Ag thin film (thickness of ∼10 nm) using a continuous-wave laser (∼1 MW/cm2) generates a closely packed assembly of hemispherical Ag nanoislands. Some of these nanoislands provide substantial plasmonic-field enhancement that is sufficient for single-molecule detection and plasmon-catalyzed chemical reaction. Such hot spot structures can be patterned on the substrate with a spatial resolution of better than 1 μm. In integrated analytical devices, the patterned SERS hot spots can be used as position-specific chemical-sensing elements.
Collapse
Affiliation(s)
- Han-Kyu Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sang-Min Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jeeyoon Jeong
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Hankyul Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Gyu Jin Yeon
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Dai-Sik Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
- Department of Physics and Center for Atom Scale Electromagnetism, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Zee Hwan Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
9
|
A simple and reliable approach for the fabrication of nanoporous silver patterns for surface-enhanced Raman spectroscopy applications. Sci Rep 2021; 11:22295. [PMID: 34785690 PMCID: PMC8595463 DOI: 10.1038/s41598-021-01727-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/26/2021] [Indexed: 11/27/2022] Open
Abstract
The fabrication of plasmonic nanostructures with a reliable, low cost and easy approach has become a crucial and urgent challenge in many fields, including surface-enhanced Raman spectroscopy (SERS) based applications. In this frame, nanoporous metal films are quite attractive, due to their intrinsic large surface area and high density of metal nanogaps, acting as hot-spots for Raman signal enhancement. In this paper, we report a detailed study on the fabrication of nanoporous silver-based SERS substrates, obtained by the application of two successive treatments with an Inductively Coupled Plasma (ICP) system, using synthetic air and Ar as feeding gases. The obtained substrates exhibit a quite broad plasmonic response, covering the Vis–NIR range, and an enhancement factor reaching 6.5 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\times\, 10^7$$\end{document}×107, estimated by using 4-mercaptobenzoic acid (4-MBA) as probe molecule at 532 nm. Moreover, the substrates exhibit a quite good spatial reproducibility on a centimeter scale, which assures a good signal stability for analytical measurements. Globally, the developed protocol is easy and cost effective, potentially usable also for mass production thanks to the remarkable inter-batches reproducibility. As such, it holds promise for its use in SERS-based sensing platforms for sensitive detection of targets molecules.
Collapse
|
10
|
Harroun SG, Zhang Y, Chen TH, Chang HT, Vallée-Bélisle A. Silver oxide model surface improves computational simulation of surface-enhanced Raman spectroscopy on silver nanoparticles. Phys Chem Chem Phys 2021; 23:15480-15484. [PMID: 34263277 DOI: 10.1039/d1cp01498f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) coupled with density functional theory (DFT) computations can characterise the adsorption orientation of a molecule on a nanoparticle surface. When using DFT to simulate SERS on a silver surface, one typically employs an atom (Ag), ion (Ag+), or cluster (Agx or Agx+) as the model surface. Here, by examining the nucleobase 2,6-diaminopurine (2,6-DAP) and then generalising our strategy to three other molecules, we show that employing silver oxide (Ag2O) as the model surface can quantitatively improve the accuracy of simulated SERS.
Collapse
Affiliation(s)
- Scott G Harroun
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Yaoting Zhang
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Tzu-Heng Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan. and Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Alexis Vallée-Bélisle
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada. and Département de Biochimie et Médicine Moléculaire, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
11
|
Kulik NP, Shurov NI, Tkachev NK. Selective Anodic Dissolution of Ag–Zn Alloys in the Eutectic Melt of Alkali Metal Chlorides at 300°С. RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193521050086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Koya A, Zhu X, Ohannesian N, Yanik AA, Alabastri A, Proietti Zaccaria R, Krahne R, Shih WC, Garoli D. Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis. ACS NANO 2021; 15:6038-6060. [PMID: 33797880 PMCID: PMC8155319 DOI: 10.1021/acsnano.0c10945] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/29/2021] [Indexed: 05/04/2023]
Abstract
The field of plasmonics is capable of enabling interesting applications in different wavelength ranges, spanning from the ultraviolet up to the infrared. The choice of plasmonic material and how the material is nanostructured has significant implications for ultimate performance of any plasmonic device. Artificially designed nanoporous metals (NPMs) have interesting material properties including large specific surface area, distinctive optical properties, high electrical conductivity, and reduced stiffness, implying their potentials for many applications. This paper reviews the wide range of available nanoporous metals (such as Au, Ag, Cu, Al, Mg, and Pt), mainly focusing on their properties as plasmonic materials. While extensive reports on the use and characterization of NPMs exist, a detailed discussion on their connection with surface plasmons and enhanced spectroscopies as well as photocatalysis is missing. Here, we report on different metals investigated, from the most used nanoporous gold to mixed metal compounds, and discuss each of these plasmonic materials' suitability for a range of structural design and applications. Finally, we discuss the potentials and limitations of the traditional and alternative plasmonic materials for applications in enhanced spectroscopy and photocatalysis.
Collapse
Affiliation(s)
| | - Xiangchao Zhu
- Department
of Electrical and Computer Engineering, University of California, Santa
Cruz, California 95064, United States
| | - Nareg Ohannesian
- Department
of Electrical and Computer Engineering, University of Houston, Houston Texas 77204, United States
| | - A. Ali Yanik
- Department
of Electrical and Computer Engineering, University of California, Santa
Cruz, California 95064, United States
| | - Alessandro Alabastri
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Remo Proietti Zaccaria
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
- Cixi
Institute of Biomedical Engineering, Ningbo Institute of Materials
Technology and Engineering, Chinese Academy
of Sciences, Zhejiang 315201, China
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
| | - Wei-Chuan Shih
- Department
of Electrical and Computer Engineering, University of California, Santa
Cruz, California 95064, United States
| | - Denis Garoli
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
- Faculty of
Science and Technology, Free University
of Bozen, Piazza Università
5, 39100 Bolzano, Italy
| |
Collapse
|
13
|
Jia J, Ellis JF, Cao T, Fu K, Morales-Soto N, Shrout JD, Sweedler JV, Bohn PW. Biopolymer Patterning-Directed Secretion in Mucoid and Nonmucoid Strains of Pseudomonas aeruginosa Revealed by Multimodal Chemical Imaging. ACS Infect Dis 2021; 7:598-607. [PMID: 33620198 DOI: 10.1021/acsinfecdis.0c00765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quinolone, pyocyanin, and rhamnolipid production were studied in Pseudomonas aeruginosa by spatially patterning mucin, a glycoprotein important to infection of lung epithelia. Mass spectrometric imaging and confocal Raman microscopy are combined to probe P. aeruginosa biofilms from mucoid and nonmucoid strains grown on lithographically defined patterns. Quinolone signatures from biofilms on patterned vs unpatterned and mucin vs mercaptoundecanoic acid (MUA) surfaces were compared. Microbial attachment is accompanied by secretion of 2-alkyl-4-quinolones as well as rhamnolipids from the mucoid and nonmucoid strains. Pyocyanin was also detected both in the biofilm and in the supernatant in the mucoid strain only. Significant differences in the spatiotemporal distributions of secreted factors are observed between strains and among different surface patterning conditions. The mucoid strain is sensitive to composition and patterning while the nonmucoid strain is not, and in promoting community development in the mucoid strain, nonpatterned surfaces are better than patterned, and mucin is better than MUA. Also, the mucoid strain secretes the virulence factor pyocyanin in a way that correlates with distress. A change in the relative abundance for two rhamnolipids is observed in the mucoid strain during exposure to mucin, whereas minimal variation is observed in the nonmucoid strain. Differences between mucoid and nonmucoid strains are consistent with their strain-specific phenology, in which the mucoid strain develops highly protected and withdrawn biofilms that achieve Pseudomonas quinolone signal production under limited conditions.
Collapse
Affiliation(s)
- Jin Jia
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Joanna F. Ellis
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801,United States
| | - Tianyuan Cao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kaiyu Fu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Nydia Morales-Soto
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556,United States
| | - Joshua D. Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556,United States
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jonathan V. Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801,United States
| | - Paul W. Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
14
|
Wang Y, Ma S, Yu H, Liu Y, Gao J, Yang L, Zhang M, He G, Sun Z. Effect of TiO 2 arrays on surface enhanced Raman scattering (SERS) performance for Ag/TiO 2 substrates. NANOTECHNOLOGY 2021; 32:075708. [PMID: 33120370 DOI: 10.1088/1361-6528/abc5f4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ag/TiO2 nanostructure arrays were constructed on fluorine-doped tin oxide (FTO) via a controllable hydrothermal route and a magnetron sputtering method with a variety of TiO2 arrays decorated by Ag nanoparticles. Effects of different TiO2 arrays on the microstructure, composition, and optical properties of the samples were revealed. As surface enhanced Raman scattering (SERS) active substrates, we discussed the sensitivity and reproducibility of Ag/TiO2 nanostructure arrays for Rhodamine 6G (R6G) molecule detection. It was found that TiO2 nanosheet (TiO2(S)) array as a supporting made Ag nanoparticles have a uniform and continuous distribution, which achieved much higher SERS signals. The obtained Ag/TiO2(S) substrate had an improved enhancement factor of 4.31 × 105 compared with the other Ag/TiO2 nanostructure arrays of nanorods, nanotubes, and nanotrees. Furthermore, Ag/TiO2(S) active substrate showed good reproducibility with low relative standard deviation values. Such a remarkable SERS activity could be due to the synergistic effect of electromagnetic enhancement and charge transfer enhancement. Moreover, the TiO2(S) array with high-exposed {101} facets provided a large adhesion area and generated a strong interaction with external atoms, which would produce high-density 'hot spots' of SERS.
Collapse
Affiliation(s)
- Yanfen Wang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, People's Republic of China
| | - Shuai Ma
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, People's Republic of China
| | - Hai Yu
- School of Physics & Materials Science, Anhui University, Hefei 230601, People's Republic of China
| | - Yin Liu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, People's Republic of China
| | - Juan Gao
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, People's Republic of China
| | - Lei Yang
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, People's Republic of China
| | - Miao Zhang
- School of Physics & Materials Science, Anhui University, Hefei 230601, People's Republic of China
| | - Gang He
- School of Physics & Materials Science, Anhui University, Hefei 230601, People's Republic of China
| | - Zhaoqi Sun
- School of Physics & Materials Science, Anhui University, Hefei 230601, People's Republic of China
| |
Collapse
|
15
|
Capaccio A, Sasso A, Tarallo O, Rusciano G. Coral-like plasmonic probes for tip-enhanced Raman spectroscopy. NANOSCALE 2020; 12:24376-24384. [PMID: 33179660 DOI: 10.1039/d0nr05107a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tip-enhanced Raman spectroscopy is a powerful tool for the analysis of system interfaces, enabling access to chemical information with nanometric spatial resolution and sensitivity up to the single molecule level. Such features are due to the presence of proper metallic nanostructures at the TERS probe apex, which, via the excitation of a plasmonic field, confine light to a nanometric region. The nano-sized characteristic of such metallic structures intrinsically renders the fabrication of high performing and reproducible TERS probes still a challenge. In this paper, we present a facile, rapid and effective approach to prepare Ag-based TERS probes. The fabrication process proposed herein is based on spinodal dewetting of Ag-coated AFM-probes through a RF plasma treatment. The obtained probes appear covered with a coral-like silver nanotexture, endowed with an excellent plasmonic activity. Intriguingly, such a texture can be easily tuned by changing some process parameters, such as Ag film thickness and exposure time to the plasma. The as-prepared TERS probes show a high TERS enhancement, reaching 107, and allow a good spatial resolution, down to 10 nm. Finally, we suggest an easy and effective procedure to restore oxidized TERS tips following exposure to ambient air, which can be applied to all types of Ag-based TERS tips.
Collapse
Affiliation(s)
- Angela Capaccio
- Department of Physics "E. Pancini", University of Naples Federico II, Complesso Univesitario Monte S.Angelo, Via Cintia, I-80126 Naples, Italy.
| | | | | | | |
Collapse
|
16
|
Chi H, Wang C, Wang Z, Zhu H, Mesias VSD, Dai X, Chen Q, Liu W, Huang J. Highly reusable nanoporous silver sheet for sensitive SERS detection of pesticides. Analyst 2020; 145:5158-5165. [PMID: 32725005 DOI: 10.1039/d0an00999g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) enables pesticide detection at the point-of-need, but its practical application is limited by expensive and disposable SERS substrates. Here, we report a reusable nanoporous silver (NPAg) sheet for the SERS detection of organochlorine pesticides, aiming to maximize the cost-efficiency of substrate regeneration. The NPAg sheet is prepared by a reduction-induced decomposition method without chemical induced random aggregations. This SERS substrate is sensitive to various analytes regardless of their affinity to a metal surface such as rhodamine B, dichlorodiphenyl-trichloroethane (DDT), and lindane due to its large surface area and the coral rock-like morphology. The SERS signal of lindane, a typical organochlorine pesticide, is identified and quantified with a minimum detectable concentration of 3 × 10-7 M (87 ppb), which is below the maximum residue limits in various foods set by the regulators across the world. More importantly, after a few minutes of ultrasonic cleaning in water, the NPAg sheet can be reused at least 20 times with a reproducible SERS activity. Furthermore, the NPAg sheet remains stable in terms of its sensitivity and reusability after several months of bare strorage. Therefore, the NPAg sheet as a SERS substrate holds great promise for mass production and convenient applications in low-cost pesticide analysis.
Collapse
Affiliation(s)
- Huanyu Chi
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, Hi-tech Park, Nanshan, Shenzhen 518057, China. .,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Congcheng Wang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhien Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hongni Zhu
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, Hi-tech Park, Nanshan, Shenzhen 518057, China. .,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Vince St Dollente Mesias
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xin Dai
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Qing Chen
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, Hi-tech Park, Nanshan, Shenzhen 518057, China. .,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wei Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jinqing Huang
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, Hi-tech Park, Nanshan, Shenzhen 518057, China. .,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
17
|
Li Z, Li C, Yu J, Li Z, Zhao X, Liu A, Jiang S, Yang C, Zhang C, Man B. Aluminum nanoparticle films with an enhanced hot-spot intensity for high-efficiency SERS. OPTICS EXPRESS 2020; 28:9174-9185. [PMID: 32225529 DOI: 10.1364/oe.389886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The weak plasmonic coupling intensity in an aluminum (Al) nanostructure has limited potential applications in excellent low-cost surface-enhanced Raman scattering (SERS) substrates and light harvesting. In this report, we aim to elevate the plasmonic coupling intensity by fabricating an Al nanoparticle (NP)-film system. In the system, the Al NP are fabricated directly on different Al film layers, and the nanoscale-thick alumina interlayer obtained between neighboring Al films acts as natural dielectric gaps. Interestingly, as the number of Al film layers increase, the plasmonic couplings generated between the Al NP and Al film increase as well. It is demonstrated that the confined gap plasmon modes stimulated in the nanoscale-thick alumina region between the adjacent Al films contribute significantly to elevating the plasmonic coupling intensity. The finite-difference time-domain (FDTD) method is used to carry out the simulations and verifies this result.
Collapse
|
18
|
SERS-Active Substrates Nanoengineering Based on e-Beam Evaporated Self-Assembled Silver Films. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9193988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been intensely studied as a possible solution in the fields of analytical chemistry and biosensorics for decades. Substantial research has been devoted to engineering signal enhanced SERS-active substrates based on semi-continuous nanostructured silver and gold films, or agglomerates of micro- and nanoparticles in solution. Herein, we demonstrate the high-amplitude spectra of myoglobin precipitated out of ultra-low concentration solutions (below 10 μg/mL) using e-beam evaporated continuous self-assembled silver films. We observe up to 105 times Raman signal amplification with purposefully designed SERS-active substrates in comparison with the control samples. SERS-active substrates are obtained by electron beam evaporation of silver thin films with well controlled nanostructured surface morphology. The characteristic dimensions of the morphology elements vary in the range from several to tens of nanometers. Using optical confocal microscopy we demonstrate that proteins form a conformation on the surface of the self-assembled silver film, which results in an effective enhancement of giant Raman scattering signal. We investigate the various SERS substrates surface morphologies by means of atomic force microscopy (AFM) in combination with deep data analysis with Gwyddion software and a number of machine learning techniques. Based on these results, we identify the most significant film surface morphology patterns and evaporation recipe parameters to obtain the highest amplitude SERS spectra. Moreover, we demonstrate the possibility of automated selection of suitable morphological parameters to obtain the high-amplitude spectra. The developed AFM data auto-analysis procedures are used for smart optimization of SERS-active substrates nanoengineering processes.
Collapse
|
19
|
Do H, Kwon SR, Fu K, Morales-Soto N, Shrout JD, Bohn PW. Electrochemical Surface-Enhanced Raman Spectroscopy of Pyocyanin Secreted by Pseudomonas aeruginosa Communities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7043-7049. [PMID: 31042392 PMCID: PMC8006532 DOI: 10.1021/acs.langmuir.9b00184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pyocyanin (PYO) is one of many toxins secreted by the opportunistic human pathogenic bacterium Pseudomonas aeruginosa. Direct detection of PYO in biofilms is crucial because PYO can provide important information about infection-related virulence mechanisms in P. aeruginosa. Because PYO is both redox-active and Raman-active, we seek to simultaneously acquire both spectroscopic and redox state information about PYO. The combination of surface-enhanced Raman spectroscopy (SERS) and voltammetry is used here to provide insights into the molecular redox behavior of PYO while controlling the SERS and electrochemical (EC) response of PYO with external stimuli, such as pH and applied potential. Furthermore, PYO secretion from biofilms of different P. aeruginosa strains is compared. Both SERS spectra and EC behavior are observed to change with pH, and several pH-dependent bands are identified in the SERS spectra, which can potentially be used to probe the local environment. Comparison of the voltammetric behavior of wild-type and a PYO-deficient mutant unequivocally identifies PYO as a major component of the secretome. Spectroelectrochemical studies of the PYO standard reveal decreasing SERS intensities of PYO bands under reducing conditions. Extending these experiments to pellicle biofilms shows similar behavior with applied potential, and SERS imaging indicates that secreted PYO is localized in regions approximately the size of P. aeruginosa cells. The in situ spectroelectrochemical biofilm characterization approach developed here suggests that EC-SERS monitoring of secreted molecules can be used diagnostically and correlated with the progress of infection.
Collapse
Affiliation(s)
- Hyein Do
- Department of Chemistry and Biochemistry,
University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Seung-Ryong Kwon
- Department of Chemical and Biomolecular
Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United
States
| | - Kaiyu Fu
- Department of Chemistry and Biochemistry,
University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Nydia Morales-Soto
- Department of Civil and Environmental
Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana
46556, United States
| | - Joshua D. Shrout
- Department of Civil and Environmental
Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana
46556, United States
- Department of Biological Sciences, University of
Notre Dame, Notre Dame, Indiana 46556, United States
| | - Paul W. Bohn
- Department of Chemistry and Biochemistry,
University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular
Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United
States
- Corresponding Author
| |
Collapse
|
20
|
Okeil S, Schneider JJ. Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2813-2831. [PMID: 30498654 PMCID: PMC6244324 DOI: 10.3762/bjnano.9.263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/30/2018] [Indexed: 05/02/2023]
Abstract
The design of efficient substrates for surface-enhanced Raman spectroscopy (SERS) for large-scale fabrication at low cost is an important issue in further enhancing the use of SERS for routine chemical analysis. Here, we systematically investigate the effect of different radio frequency (rf) plasmas (argon, hydrogen, nitrogen, air and oxygen plasma) as well as combinations of these plasmas on the surface morphology of thin silver films. It was found that different surface structures and different degrees of surface roughness could be obtained by a systematic variation of the plasma type and condition as well as plasma power and treatment time. The differently roughened silver surfaces act as efficient SERS substrates showing greater enhancement factors compared to as prepared, sputtered, but untreated silver films when using rhodamine B as Raman probe molecule. The obtained roughened silver films were fully characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron (XPS and Auger) and ultraviolet-visible spectroscopy (UV-vis) as well as contact angle measurements. It was found that different morphologies of the roughened Ag films could be obtained under controlled conditions. These silver films show a broad range of tunable SERS enhancement factors ranging from 1.93 × 102 to 2.35 × 105 using rhodamine B as probe molecule. The main factors that control the enhancement are the plasma gas used and the plasma conditions, i.e., pressure, power and treatment time. Altogether this work shows for the first time the effectiveness of a plasma treatment for surface roughening of silver thin films and its profound influence on the interface-controlled SERS enhancement effect. The method can be used for low-cost, large-scale production of SERS substrates.
Collapse
Affiliation(s)
- Sherif Okeil
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 12, 64287 Darmstadt, Germany
| | - Jörg J Schneider
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 12, 64287 Darmstadt, Germany
| |
Collapse
|
21
|
Liu C, Xu X, Hu W, Yang X, Zhou P, Qiu G, Ye W, Li Y, Jiang C. Synthesis of Clean Cabbagelike (111) Faceted Silver Crystals for Efficient Surface-Enhanced Raman Scattering Sensing of Papaverine. Anal Chem 2018; 90:9805-9812. [PMID: 30051706 DOI: 10.1021/acs.analchem.8b01735] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Clean cabbagelike (111) faceted silver crystals were synthesized via a facile galvanic replacement reaction of [Ag(NH3)2]OH and a commercial aluminum foil, a surfactant-free formation process. The cabbagelike silver crystals consisted of interconnected nanoplates and exhibited a single-crystal structure along with preferential (111) facet oriented growth. These silver crystals showed high and reliable surface-enhanced Raman scattering (SERS) activity due to electromagnetic mechanism, and they could be easily transferred onto other rigid or flexible surfaces, making their SERS applications more versatile. Since Ag (111) with low surface energy could preferentially adsorb papaverine molecules, which was verified by molecular dynamics simulation, the cabbagelike silver crystals were further employed as a promising SERS assay for efficient sensing of papaverine, a nonnarcotic alkaloid. A linear range of 0.1-1000 μM was achieved, along with a detection limit of 10 nM and good selectivity relative to other excitability drugs. This SERS assay has successfully been used to determine the concentration of papaverine in hot pot seasonings and drugs with satisfactory recoveries and relative standard deviations.
Collapse
Affiliation(s)
| | - Xiaohui Xu
- Lanzhou Institutes for Food and Drug Control , Lanzhou 730000 , China
| | | | | | | | - Guoyu Qiu
- Lanzhou Institutes for Food and Drug Control , Lanzhou 730000 , China
| | | | | | - Chaoyang Jiang
- Department of Chemistry and Center for Fluorinated Functional Materials , University of South Dakota , Vermillion , South Dakota 57069 , United States
| |
Collapse
|
22
|
Ma C, Fu K, Trujillo MJ, Gu X, Baig N, Bohn PW, Camden JP. In Situ Probing of Laser Annealing of Plasmonic Substrates with Surface-Enhanced Raman Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:11031-11037. [PMID: 31073354 PMCID: PMC6503518 DOI: 10.1021/acs.jpcc.8b01443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In this work, we in situ monitor the laser annealing of template-fabricated silver substrates using surface-enhanced Raman scattering (SERS) and 4-mercaptobenzoic acid (4-MBA) as a molecular probe. The annealing process, which exhibits a strong dependence on the laser power, yields a large (>50×) increase in the SERS of the immobilized 4-MBA. This increased SERS response is correlated with the changing substrate morphology using optical and scanning electron microscope images. We attribute the large enhancement to the formation of nanogaps facilitated by binding of the 4-MBA through both thiol and COO- groups in a sandwich structure, resulting in both electromagnetic and chemical enhancement. This annealing effect, associated with the continuous increase of SERS intensity, was not limited to the AgNP arrays but included Ag films deposited on a variety of nanoporous templates. This study provides a simple strategy for in situ optimization of plasmonic SERS substrates.
Collapse
Affiliation(s)
- Chaoxiong Ma
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kaiyu Fu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Michael J Trujillo
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Xin Gu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Nameera Baig
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
23
|
Lu H, Zhu L, Zhang C, Chen K, Cui Y. Mixing Assisted “Hot Spots” Occupying SERS Strategy for Highly Sensitive In Situ Study. Anal Chem 2018. [DOI: 10.1021/acs.analchem.7b04929] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hui Lu
- Advanced Photonics Center, Southeast University, Nanjing, Jiangsu 210096, China
| | - Li Zhu
- Advanced Photonics Center, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chuanlong Zhang
- Advanced Photonics Center, Southeast University, Nanjing, Jiangsu 210096, China
| | - Kexiang Chen
- Advanced Photonics Center, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
24
|
Yang L, Sang Q, Du J, Yang M, Li X, Shen Y, Han X, Jiang X, Zhao B. A Ag synchronously deposited and doped TiO2 hybrid as an ultrasensitive SERS substrate: a multifunctional platform for SERS detection and photocatalytic degradation. Phys Chem Chem Phys 2018; 20:15149-15157. [DOI: 10.1039/c8cp01680a] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We proposed a Ag synchronously deposited and doped TiO2 hybrid as a dual-function platform for ultrasensitive SERS detection and efficient photocatalytic degradation.
Collapse
Affiliation(s)
- Libin Yang
- College of Pharmacy
- Jiamusi University
- Jiamusi 154007
- People's Republic of China
| | - Qinqin Sang
- College of Pharmacy
- Jiamusi University
- Jiamusi 154007
- People's Republic of China
| | - Juan Du
- College of Pharmacy
- Jiamusi University
- Jiamusi 154007
- People's Republic of China
| | - Ming Yang
- College of Pharmacy
- Jiamusi University
- Jiamusi 154007
- People's Republic of China
| | - Xiuling Li
- College of Pharmacy
- Jiamusi University
- Jiamusi 154007
- People's Republic of China
| | - Yu Shen
- College of Pharmacy
- Jiamusi University
- Jiamusi 154007
- People's Republic of China
| | - Xiaoxia Han
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Xin Jiang
- College of Pharmacy
- Jiamusi University
- Jiamusi 154007
- People's Republic of China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- People's Republic of China
| |
Collapse
|
25
|
Mikac L, Ivanda M, Gotić M, Janicki V, Zorc H, Janči T, Vidaček S. Surface-enhanced Raman spectroscopy substrate based on Ag-coated self-assembled polystyrene spheres. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Fabrication of Non-woven Fabric-Based SERS Substrate for Direct Detection of Pesticide Residues in Fruits. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0035-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Ji X, Griesing F, Yan R, Sun B, Pauer W, Zhu M, Sun Y, Moritz HU. One-pot preparation of poly(styrene-co-divinylbenzene)/silver nanoparticles composite microspheres with tunable porosity and their catalytic degradation of methylene blue in aqueous solution. RSC Adv 2017. [DOI: 10.1039/c7ra10111b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Porous poly(styrene-co-divinylbenzene)/silver nanoparticle composite spheres with tunable porosity were synthesized by seed swelling polymerization method and show a great catalytic degradation of methylene blue within NaBH4.
Collapse
Affiliation(s)
- Xiaohuan Ji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai
- P. R. China
| | - Franziska Griesing
- Institute for Technical and Macromolecular Chemistry
- University of Hamburg
- Hamburg
- Germany
| | - Ruijia Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai
- P. R. China
| | - Bin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai
- P. R. China
| | - Werner Pauer
- Institute for Technical and Macromolecular Chemistry
- University of Hamburg
- Hamburg
- Germany
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai
- P. R. China
| | - Yushan Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai
- P. R. China
| | - Hans-Ulrich Moritz
- Institute for Technical and Macromolecular Chemistry
- University of Hamburg
- Hamburg
- Germany
| |
Collapse
|