1
|
Hsp70/Hsp90 Organising Protein (Hop): Coordinating Much More than Chaperones. Subcell Biochem 2023; 101:81-125. [PMID: 36520304 DOI: 10.1007/978-3-031-14740-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Hsp70/Hsp90 organising protein (Hop, also known as stress-inducible protein 1/STI1/STIP1) has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins, although recent evidence suggests that eukaryotic Hop is regulatory within chaperone complexes rather than essential. Consequently, Hop is implicated in many key signalling pathways, including aberrant pathways leading to cancer. Hop is also secreted, and it is now well established that Hop interacts with the prion protein, PrPC, to mediate multiple signalling events. The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrPC. While the various cellular functions of Hop have been described, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseased states.
Collapse
|
2
|
Hu Y, Wang Z, Chen Z, Pan L. Switching the activity of Taq polymerase using clamp-like triplex aptamer structure. Nucleic Acids Res 2020; 48:8591-8600. [PMID: 32644133 PMCID: PMC7470972 DOI: 10.1093/nar/gkaa581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/31/2020] [Accepted: 06/27/2020] [Indexed: 01/22/2023] Open
Abstract
In nature, allostery is the principal approach for regulating cellular processes and pathways. Inspired by nature, structure-switching aptamer-based nanodevices are widely used in artificial biotechnologies. However, the canonical aptamer structures in the nanodevices usually adopt a duplex form, which limits the flexibility and controllability. Here, a new regulating strategy based on a clamp-like triplex aptamer structure (CLTAS) was proposed for switching DNA polymerase activity via conformational changes. It was demonstrated that the polymerase activity could be regulated by either adjusting structure parameters or dynamic reactions including strand displacement or enzymatic digestion. Compared with the duplex aptamer structure, the CLTAS possesses programmability, excellent affinity and high discrimination efficiency. The CLTAS was successfully applied to distinguish single-base mismatches. The strategy expands the application scope of triplex structures and shows potential in biosensing and programmable nanomachines.
Collapse
Affiliation(s)
- Yingxin Hu
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China
| | - Zhiyu Wang
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhekun Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Linqiang Pan
- To whom correspondence should be addressed. Tel: +86 27 87556070; Fax: +86 27 87543130;
| |
Collapse
|
3
|
Sun Z, Jin H, Sun Y, Jiang X, Gui R. Mn-Doping-induced hierarchical petal growth of a flower-like 3D MOF assembled with black phosphorous nanosheets as an electrochemical aptasensor of human stress-induced phosphoprotein 1. NANOSCALE 2020; 12:14538-14548. [PMID: 32614006 DOI: 10.1039/d0nr02342f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we report the preparation of Mn-doped Ni-based metal-organic frameworks (Mn-MOF) with 3D hierarchical flower-like superstructures through solvothermal synthesis. The Mn-MOF was assembled with 2D black phosphorous nanosheets (BPNSs) to achieve novel 2D/3D BPNSs/Mn-MOF nanocomposites, followed by the direct coupling of methylene blue (MB)-labeled DNA aptamer on the interface of the nanocomposites-modified glassy carbon electrode (GCE). The aptamer/BPNSs/Mn-MOF/GCE platform was utilized for the capture and efficient detection of stress-induced phosphoprotein 1 (STIP1). Experimental results confirmed that Mn-doping-induced the hierarchical petal growth of the flower-like 3D MOF and its assembly with BPNSs. GCE surface modifications with various components were studied by measuring electrochemical curves. The morphologies, microstructures and spectra of products were characterized. The optimal conditions used for electrochemical measurements were assessed. A smart aptasensor was explored by the aptamer/BPNSs/Mn-MOF/GCE that had multiple attractive merits, including synergistic effects of components, porous superstructures of hierarchical flower-like 3D Mn-MOF and specific aptamer-target recognition. The merits endowed this aptasensor with selective and sensitive signal responses to STIP1 over interferences. This aptasensor enabled the efficient detection of STIP1 in a broad range of 2 × 10-3-1 × 104 ng mL-1, accompanied by a low limit of detection of 1 pg mL-1. This aptasensor realized the successful determination of STIP1 in practical samples, exhibiting high reliability and practicability.
Collapse
Affiliation(s)
- Zejun Sun
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P.R. China.
| | | | | | | | | |
Collapse
|
4
|
Kou X, Zhang X, Shao X, Jiang C, Ning L. Recent advances in optical aptasensor technology for amplification strategies in cancer diagnostics. Anal Bioanal Chem 2020; 412:6691-6705. [PMID: 32642836 DOI: 10.1007/s00216-020-02774-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/25/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Aptamers are chemically synthetic single-stranded DNA or RNA molecules selected by molecular evolution. They have been widely used as attractive tools in biosensing and bioimaging because they can bind to a large variety of targets with high sensitivity and high affinity and specificity. As recognition elements, aptamers contribute in particular to cancer diagnostics by recognizing different cancer biomarkers, while they can also facilitate ultrasensitive detection by further employing signal amplification elements. Optical techniques have been widely used for direct and real-time monitoring of cancer-related biomolecules and bioprocesses due to the high sensitivity, quick response, and simple operation, which has greatly benefited cancer diagnostics. In this review, we highlight recent advances in optical platform-based sensing strategies for cancer diagnostics aided by aptamers. Limitations and current challenges are also discussed.
Collapse
Affiliation(s)
- Xinyue Kou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China
| | - Xujia Zhang
- Kangda College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, China
| | - Xuejun Shao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu, China
| | - Chenyu Jiang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China. .,Jinan Guokeyigong Science and Technology Development Co., Ltd., Jinan, 250103, Shandong, China.
| | - Limin Ning
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
5
|
da Fonseca ACC, Matias D, Geraldo LHM, Leser FS, Pagnoncelli I, Garcia C, do Amaral RF, da Rosa BG, Grimaldi I, de Camargo Magalhães ES, Cóppola-Segovia V, de Azevedo EM, Zanata SM, Lima FRS. The multiple functions of the co-chaperone stress inducible protein 1. Cytokine Growth Factor Rev 2020; 57:73-84. [PMID: 32561134 DOI: 10.1016/j.cytogfr.2020.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022]
Abstract
Stress inducible protein 1 (STI1) is a co-chaperone acting with Hsp70 and Hsp90 for the correct client proteins' folding and therefore for the maintenance of cellular homeostasis. Besides being expressed in the cytosol, STI1 can also be found both in the cell membrane and the extracellular medium playing several relevant roles in the central nervous system (CNS) and tumor microenvironment. During CNS development, in association with cellular prion protein (PrPc), STI1 regulates crucial events such as neuroprotection, neuritogenesis, astrocyte differentiation and survival. In cancer, STI1 is involved with tumor growth and invasion, is undoubtedly a pro-tumor factor, being considered as a biomarker and possibly therapeutic target for several malignancies. In this review, we discuss current knowledge and new findings on STI1 function as well as its role in tissue homeostasis, CNS and tumor progression.
Collapse
Affiliation(s)
| | - Diana Matias
- Molecular Bionics Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - Luiz Henrique Medeiros Geraldo
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil; Université de Paris, PARCC, INSERM, Paris, 75015, France
| | - Felipe Saceanu Leser
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Iohana Pagnoncelli
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Celina Garcia
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Rackele Ferreira do Amaral
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Barbara Gomes da Rosa
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Izabella Grimaldi
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Eduardo Sabino de Camargo Magalhães
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil; European Research Institute for the Biology of Aging, University of Groningen, Groningen, 9713 AV, Netherlands
| | - Valentín Cóppola-Segovia
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Evellyn Mayla de Azevedo
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Silvio Marques Zanata
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Flavia Regina Souza Lima
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil.
| |
Collapse
|
6
|
Pan L, Hu Y, Ding T, Xie C, Wang Z, Chen Z, Yang J, Zhang C. Aptamer-based regulation of transcription circuits. Chem Commun (Camb) 2019; 55:7378-7381. [PMID: 31173001 DOI: 10.1039/c9cc03141c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose synthetic DNA/RNA transcription circuits based on specific aptamer recognition. By mimicking transcription factor regulation, combined with specific enzyme/DNA aptamer binding, multiple biomolecules including DNA, RNA, polymerase, restriction enzymes and methylase were used as regulators. In addition, multi-level cascading networks and methylation-switch circuits were also established. This regulation strategy has the potential to expand the toolkit of in vitro synthetic biology.
Collapse
Affiliation(s)
- Linqiang Pan
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Automation, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Molecular imaging of telomerase and the enzyme activity-triggered drug release by using a conformation-switchable nanoprobe in cancerous cells. Sci Rep 2018; 8:16341. [PMID: 30397241 PMCID: PMC6218543 DOI: 10.1038/s41598-018-34670-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/19/2018] [Indexed: 01/24/2023] Open
Abstract
So far, the development of a unique strategy for specific biomolecules activity monitoring and precise drugs release in cancerous cells is still challenging. Here, we designed a conformation-switchable smart nanoprobe to monitor telomerase activity and to enable activity-triggered drug release in cancerous cells. The straightforward nanoprobe contained a gold nanoparticle (AuNP) core and a dense layer of 5-carboxyfluorescein (FAM)-labeled hairpin DNA shell. The 3′ region of hairpin DNA sequence could function as the telomerase primer to be elongated in the presence of telomerase, resulting in the conformational switch of hairpin DNA. As a result, the FAM fluorescence was activated and the anticancer drug doxorubicin (Dox) molecules which intercalated into the stem region of the hairpin DNA sequence were released into cancerous cells simultaneously. The smart method could specifically distinguish cancerous cells from normal cells based on telomerase activity. It also showed a good performance for monitoring telomerase activity in the cytoplasm by molecular imaging and precise release of Dox triggered by telomerase activity in cancerous cells. These advantages may offer a great potential of this method for monitoring telomerase activity in cancer progression and estimating therapeutic effect.
Collapse
|
8
|
Das S, Mukhopadhyay S, Chatterjee S, Devi PS, Suresh Kumar G. Fluorescent ZnO-Au Nanocomposite as a Probe for Elucidating Specificity in DNA Interaction. ACS OMEGA 2018; 3:7494-7507. [PMID: 30087915 PMCID: PMC6068853 DOI: 10.1021/acsomega.7b02096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/08/2018] [Indexed: 05/10/2023]
Abstract
In this work, we report the interaction of a fluorescent ZnO-Au nanocomposite with deoxyribonucleic acid (DNA), leading to AT-specific DNA interaction, which is hitherto not known. For this study, three natural double-stranded (ds) DNAs having different AT:GC compositions were chosen and a ZnO-Au nanocomposite has been synthesized by anchoring a glutathione-protected gold nanocluster on the surface of egg-shell-membrane (ESM)-based ZnO nanoparticles. The ESM-based bare ZnO nanoparticles did not show any selective interaction toward DNA, whereas intrinsic fluorescence of the ZnO-Au nanocomposite shows an appreciable blue shift (Δλmax = 18 nm) in the luminescence wavelength of 520 nm in the presence of ds calf thymus (CT) DNA over other studied DNAs. In addition, the interaction of the nanocomposite through fluorescence studies with single-stranded (ss) CT DNA, synthetic polynucleotides, and nucleobases/nucleotides (adenine, thymine, deoxythymidine monophosphate, deoxyadenosine monophosphate) was also undertaken to delineate the specificity in interaction. A minor blue shift (Δλmax = 5 nm) in the emission wavelength at 520 nm was observed for single-stranded CT DNA, suggesting the proficiency of the nanocomposite for discriminating ss and ds CT DNA. More importantly, fluorescence signals from the nano-bio-interaction could be measured directly without any modification of the target, which is the foremost advantage emanated from this study compared with other previous reports. The AT base-pair-induced enhancement was also found to be highest for the melting temperature of CT DNA (ΔTmCT = 6.7 °C). Furthermore, spectropolarimetric experiments followed by calorimetric analysis provided evidence for specificity in AT-rich DNA interaction. This study would lead to establish the fluorescent ZnO-Au nanocomposite as a probe for nanomaterial-based DNA-binding study, featuring its specific interaction toward AT-rich DNA.
Collapse
Affiliation(s)
- Sumita Das
- Sensor
and Actuator Division, CSIR-Central Glass
and Ceramic Research Institute, Kolkata 700032, India
| | - Soumita Mukhopadhyay
- Sensor
and Actuator Division, CSIR-Central Glass
and Ceramic Research Institute, Kolkata 700032, India
| | - Sabyasachi Chatterjee
- Biophysical
Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Parukuttyamma Sujatha Devi
- Sensor
and Actuator Division, CSIR-Central Glass
and Ceramic Research Institute, Kolkata 700032, India
- E-mail: , . Phone: +91-33-2483
8082. Fax: 91-33-2473 0957
| | - Gopinatha Suresh Kumar
- Biophysical
Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
9
|
Chen T, Ren L, Liu X, Zhou M, Li L, Xu J, Zhu X. DNA Nanotechnology for Cancer Diagnosis and Therapy. Int J Mol Sci 2018; 19:ijms19061671. [PMID: 29874867 PMCID: PMC6032219 DOI: 10.3390/ijms19061671] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/27/2018] [Accepted: 06/01/2018] [Indexed: 01/03/2023] Open
Abstract
Cancer is one of the leading causes of mortality worldwide, because of the lack of accurate diagnostic tools for the early stages of cancer. Thus, early diagnosis, which provides important information for a timely therapy of cancer, is of great significance for controlling the development of the disease and the proliferation of cancer cells and for improving the survival rates of patients. To achieve the goals of early diagnosis and timely therapy of cancer, DNA nanotechnology may be effective, since it has emerged as a valid technique for the fabrication of various nanoscale structures and devices. The resultant DNA-based nanoscale structures and devices show extraordinary performance in cancer diagnosis, owing to their predictable secondary structures, small sizes, and high biocompatibility and programmability. In particular, the rapid development of DNA nanotechnologies, such as molecular assembly technologies, endows DNA-based nanomaterials with more functionalization and intellectualization. Here, we summarize recent progress made in the development of DNA nanotechnology for the fabrication of functional and intelligent nanomaterials and highlight the prospects of this technology in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Tianshu Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
- Institute of Biomedical Engineering, School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China.
| | - Lingjie Ren
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Xiaohao Liu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Mengru Zhou
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Lingling Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Jingjing Xu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
- Institute of Biomedical Engineering, School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China.
| | - Xiaoli Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
10
|
Ding S, Gu Z, Yan R, Tang Y, Miao P. A novel mode of DNA assembly at electrode and its application to protein quantification. Anal Chim Acta 2018; 1029:24-29. [PMID: 29907286 DOI: 10.1016/j.aca.2018.04.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 02/08/2023]
Abstract
Sensitive and specific detection of protein is of great significance for early diagnosis and prognosis of many diseases. However, great challenges remain unsolved including relative low sensitivity, high cost, long testing time, complicated instrument and laborious operation. To improve the performance of protein detection methods, development of fine reaction interface for recognition and signal amplification is of great importance. In this work, we construct a novel mode of DNA assembly at electrode interface based on a tripodal surface anchor and an electrochemical aptasensor for protein assay is developed. The orientation of the immobilized DNA is optimized, which promises the efficiency of protein recognition. In addition, hybridization chain reaction is employed for further signal amplification. Therefore, this detection method shows high sensitivity with excellent specificity. The strategy can be universally applicable by simply modifying the sequences of used DNA probes.
Collapse
Affiliation(s)
- Shaohua Ding
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, People's Republic of China
| | - Zhipeng Gu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ruhong Yan
- Department of Clinical Laboratory, Suzhou Science and Technology Town Hospital, Suzhou, 215153, People's Republic of China
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, People's Republic of China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, People's Republic of China.
| |
Collapse
|
11
|
Wang HS, Tsai CL, Chang PY, Chao A, Wu RC, Chen SH, Wang CJ, Yen CF, Lee YS, Wang TH. Positive associations between upregulated levels of stress-induced phosphoprotein 1 and matrix metalloproteinase-9 in endometriosis/adenomyosis. PLoS One 2018; 13:e0190573. [PMID: 29304094 PMCID: PMC5755831 DOI: 10.1371/journal.pone.0190573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 12/18/2017] [Indexed: 12/05/2022] Open
Abstract
Stress-induced phosphoprotein-1 (STIP1), an adaptor protein that coordinates the functions of HSP70 and HSP90 in protein folding, has been implicated in the development of human gynecologic malignancies. This case-control study investigates STIP1 serum levels and tissue expression in relation to endometriosis/adenomyosis in Taiwanese population. Female patients with surgically confirmed endometriosis/adenomyosis were compared with women free of endometriosis/adenomyosis. Serum STIP1 levels were measured using an enzyme-linked immunosorbent assay and surgical tissues were analyzed by immunohistochemistry. Both epithelial and stromal cells in surgical tissues of endometriosis and adenomyosis expressed STIP1 and MMP-9. Notably, MMP-9 expression was significantly decreased when STIP1 expression was knocked-down. In vitro experiments revealed that STIP1 was capable of binding to the MMP-9 promoter and enhanced its transcriptional expression. The preoperative serum STIP1 levels of patients with endometriosis/adenomyosis were significantly higher than those of the controls. In brief, our data suggest an association between STIP1 levels and endometriosis/adenomyosis.
Collapse
Affiliation(s)
- Hsin-Shih Wang
- Department of Obstetrics and Gynecology, LinKou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chia-Lung Tsai
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pi-Yueh Chang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Angel Chao
- Department of Obstetrics and Gynecology, LinKou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Gynecologic Cancer Research Centre, LinKou Medical Center, Chang Gung Memorial Hospital, Taoyuan Taiwan
| | - Ren-Chin Wu
- Department of Clinical Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shun-Hua Chen
- Graduate Institutes of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Jung Wang
- Department of Obstetrics and Gynecology, LinKou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chih-Feng Yen
- Department of Obstetrics and Gynecology, LinKou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Yun-Shien Lee
- Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan
| | - Tzu-Hao Wang
- Department of Obstetrics and Gynecology, LinKou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Gynecologic Cancer Research Centre, LinKou Medical Center, Chang Gung Memorial Hospital, Taoyuan Taiwan
- Graduate Institutes of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail:
| |
Collapse
|
12
|
A glassy carbon electrode modified with carbon nanotubes and reduced graphene oxide decorated with platinum-gold nanoparticles for voltammetric aptasensing of urea. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Anderson K, Poulter B, Dudgeon J, Li SE, Ma X. A Highly Sensitive Nonenzymatic Glucose Biosensor Based on the Regulatory Effect of Glucose on Electrochemical Behaviors of Colloidal Silver Nanoparticles on MoS₂†. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1807. [PMID: 28783068 PMCID: PMC5579834 DOI: 10.3390/s17081807] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 11/16/2022]
Abstract
A novel and highly sensitive nonenzymatic glucose biosensor was developed by nucleating colloidal silver nanoparticles (AgNPs) on MoS₂. The facile fabrication method, high reproducibility (97.5%) and stability indicates a promising capability for large-scale manufacturing. Additionally, the excellent sensitivity (9044.6 μA mM-1 cm-2), low detection limit (0.03 μM), appropriate linear range of 0.1-1000 μM, and high selectivity suggests that this biosensor has a great potential to be applied for noninvasive glucose detection in human body fluids, such as sweat and saliva.
Collapse
Affiliation(s)
- Kash Anderson
- Department of Chemistry, Idaho State University, Pocatello, ID 83201, USA.
| | - Benjamin Poulter
- Department of Chemistry, Idaho State University, Pocatello, ID 83201, USA.
| | - John Dudgeon
- Department of Anthropology, Idaho State University, Pocatello, ID 83201, USA.
| | - Shu-En Li
- Department of Chemistry, Idaho State University, Pocatello, ID 83201, USA.
| | - Xiang Ma
- Department of Chemistry, Idaho State University, Pocatello, ID 83201, USA.
- Present address: Department of Chemistry, Grand View University, Des Moines, IA 50316, USA.
| |
Collapse
|