1
|
Jeong S, Ko M, Nam S, Oh JH, Park SM, Do YR, Song JK. Enhancement mechanism of quantum yield in core/shell/shell quantum dots of ZnS-AgIn 5S 8/ZnIn 2S 4/ZnS. NANOSCALE ADVANCES 2024; 6:925-933. [PMID: 38298589 PMCID: PMC10825935 DOI: 10.1039/d3na01052j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024]
Abstract
To achieve a high quantum yield (QY) of nanomaterials suitable for optical applications, we improved the optical properties of AgIn5S8 (AIS) quantum dots (QDs) by employing an alloyed-core/inner-shell/outer-shell (ZAIS/ZIS/ZnS) structure. We also investigated the mechanism of optical transitions to clarify the improvement of QYs. In AIS, the low-energy absorption near the band edge region is attributed to the weakly allowed band gap transition, which gains oscillator strength through state intermixing and electron-phonon coupling. The main photoluminescence is also ascribed to the weakly allowed band gap transition with characteristics of self-trapped excitonic emission. With alloying/shelling processes, the weakly allowed transition is enhanced by the evolution of the electronic structures in the alloyed core, which improves the band gap emission. In shelled structures, the nonradiative process is reduced by the reconstructed lattice and passivated surface, ultimately leading to a high QY of 85% in ZAIS/ZIS/ZnS. These findings provide new insights into the optical transitions of AIS because they challenge previous conclusions. In addition, our work elucidates the mechanism behind the enhancement of QY accomplished through alloying/shelling processes, providing strategies to optimize nontoxic QDs for various applications using a green chemistry approach.
Collapse
Affiliation(s)
- Seonghyun Jeong
- Department of Chemistry, Kyung Hee University Seoul 02447 Korea
| | - Minji Ko
- Department of Chemistry, Kookmin University Seoul 02707 Korea
| | - Sangwon Nam
- Department of Chemistry, Kyung Hee University Seoul 02447 Korea
| | - Jun Hwan Oh
- Department of Chemistry, Kookmin University Seoul 02707 Korea
| | - Seung Min Park
- Department of Chemistry, Kyung Hee University Seoul 02447 Korea
| | - Young Rag Do
- Department of Chemistry, Kookmin University Seoul 02707 Korea
| | - Jae Kyu Song
- Department of Chemistry, Kyung Hee University Seoul 02447 Korea
| |
Collapse
|
2
|
Xue X, Li Y, Li X, Huang X, Yuan C, Cai P, Zhang X, Hu C. Understanding on the roles of oriented-assembly-constructed defects in design of efficient AIS-based photocatalysts for boosting photocatalytic H2 evolution. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
3
|
Torimoto T, Kameyama T, Uematsu T, Kuwabata S. Controlling Optical Properties and Electronic Energy Structure of I-III-VI Semiconductor Quantum Dots for Improving Their Photofunctions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Koga M, Masuoka K, Tsuneizumi S, Kameyama T, Ito S, Torimoto T, Miyasaka H. Direct Detection of Long-Range Interdomain Auger Recombination in Dumbbell-Shaped Quasi-Type-II Nanoparticle. J Phys Chem Lett 2022; 13:6845-6851. [PMID: 35861331 DOI: 10.1021/acs.jpclett.2c01077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multicarrier dynamics in heterostructured ZnS-AgInS2 (ZAIS) dumbbell-like nanoparticle (nanodumbell), which consists of two visible-light absorptive domains (ellipsoidal tip domains) directly linked to each end of a 22 nm length rod domain of the ZAIS nanodumbell with a quasi-type-II heterostructure, was investigated by femtosecond transient absorption spectroscopy under variable excitation intensities. Quantitative analysis together with the numerical simulations for the excitation intensity dependence of the dynamics revealed that only one electron-hole pair survived in the overall dumbbell as a consequence of Auger recombination, even though multiple carriers were formed on both terminal tip domains. This result strongly suggested carrier-carrier interaction between the tip domains, leading to the long-range Auger recombination via tunneling across a rod potential barrier.
Collapse
Affiliation(s)
- Masafumi Koga
- Division of Frontier Materials Science and Center for Promotion of Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ko Masuoka
- Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shuhei Tsuneizumi
- Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tatsuya Kameyama
- Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Syoji Ito
- Division of Frontier Materials Science and Center for Promotion of Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Research Institute for Light-Induced Acceleration System (RILACS), Osaka Prefecture University, 1-2, Sakai, Osaka 599-8570, Japan
| | - Tsukasa Torimoto
- Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Center for Promotion of Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
5
|
Kipkorir A, Kamat PV. Managing Photoinduced Electron Transfer in AgInS 2-CdS Heterostructures. J Chem Phys 2022; 156:174703. [DOI: 10.1063/5.0090875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ternary semiconductors such as AgInS2 with their interesting photocatalytic properties can serve as building blocks to design light harvesting assemblies. The intraband transitions created by the metal ions extend the absorption well beyond the bandgap transition. The interfacial electron transfer of AgInS2 with surface bound ethyl viologen under bandgap and sub band gap irradiation as probed by steady state photolysis and transient absorption spectroscopy offers new insights into the participation of conduction band and trapped electrons. Capping AgInS2 with CdS shifts emission maximum to the blue and increases the emission yield as the surface defects are remediated. CdS capping also promotes charge separation as evident from the efficiency of electron transfer to ethyl viologen, which increased from 14% to 29%. The transient absorption measurements which elucidate the kinetic aspects of electron transfer processes in AgInS2 and CdS capped AgInS2 are presented. The improved performance of CdS capped AgInS2 offers new opportunities to employ them as photocatalysts.
Collapse
|
6
|
Kowalik P, Bujak P, Penkala M, Maroń AM, Ostrowski A, Kmita A, Gajewska M, Lisowski W, Sobczak JW, Pron A. Indium(II) Chloride as a Precursor in the Synthesis of Ternary (Ag-In-S) and Quaternary (Ag-In-Zn-S) Nanocrystals. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:809-825. [PMID: 35095188 PMCID: PMC8794001 DOI: 10.1021/acs.chemmater.1c03800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Indexed: 06/14/2023]
Abstract
A new indium precursor, namely, indium(II) chloride, was tested as a precursor in the synthesis of ternary Ag-In-S and quaternary Ag-In-Zn-S nanocrystals. This new precursor, being in fact a dimer of Cl2In-InCl2 chemical structure, is significantly more reactive than InCl3, typically used in the preparation of these types of nanocrystals. This was evidenced by carrying out comparative syntheses under the same reaction conditions using these two indium precursors in combination with the same silver (AgNO3) and zinc (zinc stearate) precursors. In particular, the use of indium(II) chloride in combination with low concentrations of the zinc precursor yielded spherical-shaped (D = 3.7-6.2 nm) Ag-In-Zn-S nanocrystals, whereas for higher concentrations of this precursor, rodlike nanoparticles (L = 9-10 nm) were obtained. In all cases, the resulting nanocrystals were enriched in indium (In/Ag = 1.5-10.3). Enhanced indium precursor conversion and formation of anisotropic, longitudinal nanoparticles were closely related to the presence of thiocarboxylic acid type of ligands in the reaction mixture. These ligands were generated in situ and subsequently bound to surfacial In(III) cations in the growing nanocrystals. The use of the new precursor of enhanced reactivity facilitated precise tuning of the photoluminescence color of the resulting nanocrystals in the spectral range from ca. 730 to 530 nm with photoluminescence quantum yield (PLQY) varying from 20 to 40%. The fabricated Ag-In-S and Ag-In-Zn-S nanocrystals exhibited the longest, reported to date, photoluminescence lifetimes of ∼9.4 and ∼1.4 μs, respectively. It was also demonstrated for the first time that ternary (Ag-In-S) and quaternary (Ag-In-Zn-S) nanocrystals could be applied as efficient photocatalysts, active under visible light (green) illumination, in the reaction of aldehydes reduction to alcohols.
Collapse
Affiliation(s)
- Patrycja Kowalik
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Faculty
of Chemistry, University of Warsaw, Pasteura 1 Street, PL-02-093 Warsaw, Poland
| | - Piotr Bujak
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Mateusz Penkala
- Institute
of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
| | - Anna M. Maroń
- Institute
of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
| | - Andrzej Ostrowski
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Angelika Kmita
- Academic
Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Marta Gajewska
- Academic
Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Wojciech Lisowski
- Institute
of Physical Chemistry, Polish Academy of
Science, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Janusz W. Sobczak
- Institute
of Physical Chemistry, Polish Academy of
Science, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Adam Pron
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
7
|
Qu S, Yuan X, Li Y, Li X, Zhou X, Xue X, Zhang K, Xu J, Yuan C. Aqueous synthesis of composition-tuned defects in CuInSe 2 nanocrystals for enhanced visible-light photocatalytic H 2 evolution. NANOSCALE ADVANCES 2021; 3:2334-2342. [PMID: 36133756 PMCID: PMC9418301 DOI: 10.1039/d1na00069a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/23/2021] [Indexed: 05/03/2023]
Abstract
The composition and defect tolerance of CuInSe2 (CISe) quantum dots (QDs) provide a scaffold to design defects via tailoring the elemental ratio or distributions for boosting photocatalytic H2 evolution (PHE). Herein, a ligand-assisted two-step aqueous method was developed to prepare defect CISe quantum dots for the first time. UV-vis, XPS, HRTEM, and HADDF investigations confirmed the typical double-absorption edges of copper vacancy defects and indium substituted at copper site defects in the structure constructed through initial synthesis tuned by Cu/In ratio and the ensued coarsening. The steady-transient PL suggested that the D-A recombination with prolonged PL lifetime dominated the emission of composition-optimized CuInSe2 with the Cu/In ratio of 1/4 (CISe-1/4). Further transient photocurrent and electrochemical impedance spectroscopy investigations demonstrated that surface defects in the structure favor the carriers' separation/transportation. The CISe-1/4 exhibited a superior PHE rate of 722 μmol g-1 h-1, about 23 times higher than that of the initially synthesized CISe-1/4 nucleus (31 μmol g-1 h-1), with a maximum apparent quantum efficiency (AQE) of 1.3%. The analysis of energy levels and the coulombic interaction energy of electron-hole (J e/h) based on Raman, extending UV-vis spectra investigations suggested that surface defects resulted in decreased J e/h of CISe-1/4, favoring the enhanced PHE of this structure. This work is expected to provide a reference for designing effective non-noble metal I-III-VI photocatalysts.
Collapse
Affiliation(s)
- Senlin Qu
- School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology Guilin 541004 People's Republic of China +86-773-2290810 +86-773-2290810
| | - Xin Yuan
- School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology Guilin 541004 People's Republic of China +86-773-2290810 +86-773-2290810
| | - Yu Li
- School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology Guilin 541004 People's Republic of China +86-773-2290810 +86-773-2290810
| | - Xingyang Li
- School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology Guilin 541004 People's Republic of China +86-773-2290810 +86-773-2290810
| | - Xiujuan Zhou
- School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology Guilin 541004 People's Republic of China +86-773-2290810 +86-773-2290810
| | - Xiaogang Xue
- School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology Guilin 541004 People's Republic of China +86-773-2290810 +86-773-2290810
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Kexiang Zhang
- School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology Guilin 541004 People's Republic of China +86-773-2290810 +86-773-2290810
| | - Juan Xu
- School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology Guilin 541004 People's Republic of China +86-773-2290810 +86-773-2290810
| | - Changlai Yuan
- School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology Guilin 541004 People's Republic of China +86-773-2290810 +86-773-2290810
| |
Collapse
|
8
|
Torres-Rivero K, Florido A, Bastos-Arrieta J. Recent Trends in the Improvement of the Electrochemical Response of Screen-Printed Electrodes by Their Modification with Shaped Metal Nanoparticles. SENSORS 2021; 21:s21082596. [PMID: 33917220 PMCID: PMC8067965 DOI: 10.3390/s21082596] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/04/2022]
Abstract
Novel sensing technologies proposed must fulfill the demands of wastewater treatment plants, the food industry, and environmental control agencies: simple, fast, inexpensive, and reliable methodologies for onsite screening, monitoring, and analysis. These represent alternatives to conventional analytical methods (ICP-MS and LC-MS) that require expensive and non-portable instrumentation. This needs to be controlled by qualified technicians, resulting moreover in a long delay between sampling and high-cost analysis. Electrochemical analysis based on screen-printed electrodes (SPEs) represents an excellent miniaturized and portable alternative due to their disposable character, good reproducibility, and low-cost commercial availability. SPEs application is widely extended, which makes it important to design functionalization strategies to improve their analytical response. In this sense, different types of nanoparticles (NPs) have been used to enhance the electrochemical features of SPEs. NPs size (1–100 nm) provides them with unique optical, mechanical, electrical, and chemical properties that give the modified SPEs increased electrode surface area, increased mass-transport rate, and faster electron transfer. Recent progress in nanoscale material science has led to the creation of reproducible, customizable, and simple synthetic procedures to obtain a wide variety of shaped NPs. This mini-review attempts to present an overview of the enhancement of the electrochemical response of SPEs when NPs with different morphologies are used for their surface modification
Collapse
Affiliation(s)
- Karina Torres-Rivero
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, BarcelonaTEch (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; (K.T.-R.); (A.F.)
- Barcelona Research Center for Multiscale Science and Engineering, Av. Eduard Maristany 16, 08019 Barcelona, Spain
| | - Antonio Florido
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, BarcelonaTEch (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; (K.T.-R.); (A.F.)
- Barcelona Research Center for Multiscale Science and Engineering, Av. Eduard Maristany 16, 08019 Barcelona, Spain
| | - Julio Bastos-Arrieta
- Grup de Biotecnologia Molecular i Industrial, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Edifici Gaia TR14, 08222 Terrassa, Spain
- Correspondence:
| |
Collapse
|
9
|
Kowalik P, Mucha SG, Matczyszyn K, Bujak P, Mazur LM, Ostrowski A, Kmita A, Gajewska M, Pron A. Heterogeneity induced dual luminescence properties of AgInS 2 and AgInS 2–ZnS alloyed nanocrystals. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00566a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the PL spectra of heterogeneous nanocrystals (In2S3–AgInS2 and In2S3–AgInS2–ZnS) two distinctly different peaks could be found at 430 and 710–515 nm.
Collapse
Affiliation(s)
- Patrycja Kowalik
- Warsaw University of Technology
- Faculty of Chemistry
- 00-664 Warsaw
- Poland
- Faculty of Chemistry
| | - Sebastian G. Mucha
- Laboratoire Charles Coulomb (L2C)
- UMR5221
- University of Montpellier
- CNRS
- 34095 Montpellier
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group
- Faculty of Chemistry
- Wroclaw University of Science and Technology
- 50-370 Wroclaw
- Poland
| | - Piotr Bujak
- Warsaw University of Technology
- Faculty of Chemistry
- 00-664 Warsaw
- Poland
| | - Leszek M. Mazur
- Advanced Materials Engineering and Modelling Group
- Faculty of Chemistry
- Wroclaw University of Science and Technology
- 50-370 Wroclaw
- Poland
| | - Andrzej Ostrowski
- Warsaw University of Technology
- Faculty of Chemistry
- 00-664 Warsaw
- Poland
| | - Angelika Kmita
- AGH University of Science and Technology
- Academic Centre for Materials and Nanotechnology
- 30-059 Kraków
- Poland
| | - Marta Gajewska
- AGH University of Science and Technology
- Academic Centre for Materials and Nanotechnology
- 30-059 Kraków
- Poland
| | - Adam Pron
- Warsaw University of Technology
- Faculty of Chemistry
- 00-664 Warsaw
- Poland
| |
Collapse
|
10
|
Zheng Y, Hu X, Deng F, Li J, Dionysiou DD, Luo X. Enhanced photocatalytic oxidizing ability of Zn1-xIn2x/3S solid solution via band structure by composition regulation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Nevárez Martínez MC, Bajorowicz B, Klimczuk T, Żak A, Łuczak J, Lisowski W, Zaleska-Medynska A. Synergy between AgInS 2 quantum dots and ZnO nanopyramids for photocatalytic hydrogen evolution and phenol degradation. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:123250. [PMID: 32768851 DOI: 10.1016/j.jhazmat.2020.123250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/31/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Despite the unique properties of single semiconductor nanomaterials and quantum dots, poor photocatalytic activity has characterized them and the fabrication of nanocomposites has become necessary to enhance their photocatalytic performance. Thus, AgInS2 quantum dots (AIS QDs, 4.0 ± 1.6 nm), have been successfully prepared and loaded onto ZnO nanopyramids (ZnO NPy). The effect of the nominal amount of AIS QDs decorating ZnO NPy on the morphology, optical properties, structure and surface chemistry of the nanocomposites was systematically studied. Photocatalytic tests revealed that the 1%AIS@ZnO NPy sample reported the highest photoactivity for phenol degradation in aqueous phase (92 % after one hour of irradiation, λ > 350 nm) that was 4 and 68 times the reported for bare ZnO NPy and AIS QDs, respectively. Accordingly, the maximum photocatalytic hydrogen evolution, under UV-vis light, for the same sample corresponded to 17 and 21 times the estimated for pristine ZnO NPy and AIS QDs, respectively. Hence, the AIS QDs - ZnO system has been applied in the photocatalytic field for the first time in this work and a synergetic effect was confirmed owing to a strong heterojunction formation between both semiconductors that allows an enhanced charge carrier separation, improving the photocatalytic activity.
Collapse
Affiliation(s)
- María C Nevárez Martínez
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland.
| | - Beata Bajorowicz
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland.
| | - Tomasz Klimczuk
- Department of Solid State Physics, Gdansk University of Technology, 80-233 Gdansk, Poland.
| | - Andrzej Żak
- Electron Microscopy Laboratory, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland.
| | - Justyna Łuczak
- Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland.
| | - Wojciech Lisowski
- Institute of Physical Chemistry, Polish Academy of Science, 01-224 Warsaw, Poland.
| | - Adriana Zaleska-Medynska
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland.
| |
Collapse
|
12
|
Kowalik P, Bujak P, Wróbel Z, Penkala M, Kotwica K, Maroń A, Pron A. From Red to Green Luminescence via Surface Functionalization. Effect of 2-(5-Mercaptothien-2-yl)-8-(thien-2-yl)-5-hexylthieno[3,4- c]pyrrole-4,6-dione Ligands on the Photoluminescence of Alloyed Ag-In-Zn-S Nanocrystals. Inorg Chem 2020; 59:14594-14604. [PMID: 32941018 PMCID: PMC7586334 DOI: 10.1021/acs.inorgchem.0c02468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A semiconducting molecule containing a thiol anchor group, namely 2-(5-mercaptothien-2-yl)-8-(thien-2-yl)-5-hexylthieno[3,4-c]pyrrole-4,6-dione (abbreviated as D-A-D-SH), was designed, synthesized, and used as a ligand in nonstoichiometric quaternary nanocrystals of composition Ag1.0In3.1Zn1.0S4.0(S6.1) to give an inorganic/organic hybrid. Detailed NMR studies indicate that D-A-D-SH ligands are present in two coordination spheres in the organic part of the hybrid: (i) inner in which the ligand molecules form direct bonds with the nanocrystal surface and (ii) outer in which the ligand molecules do not form direct bonds with the inorganic core. Exchange of the initial ligands (stearic acid and 1-aminooctadecane) for D-A-D-SH induces a distinct change of the photoluminescence. Efficient red luminescence of nanocrystals capped with initial ligands (λmax = 720 nm, quantum yield = 67%) is totally quenched and green luminescence characteristic of the ligand appears (λmax = 508 nm, quantum yield = 10%). This change of the photoluminescence mechanism can be clarified by a combination of electrochemical and spectroscopic investigations. It can be demonstrated by cyclic voltammetry that new states appear in the hybrid as a consequence of D-A-D-SH binding to the nanocrystals surface. These states are located below the nanocrystal LUMO and above its HOMO, respectively. They are concurrent to deeper donor and acceptor states governing the red luminescence. As a result, energy transfer from the nanocrystal HOMO and LUMO levels to the ligand states takes place, leading to effective quenching of the red luminescence and appearance of the green one.
Collapse
Affiliation(s)
- Patrycja Kowalik
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.,Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland
| | - Piotr Bujak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Zbigniew Wróbel
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Mateusz Penkala
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
| | - Kamil Kotwica
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.,Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anna Maroń
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
| | - Adam Pron
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
13
|
Zhang M, Li X, Fan S, Yin Z, Li J, Zeng L, Tadé MO, Liu S. Novel Two-Dimensional AgInS 2/SnS 2/RGO Dual Heterojunctions: High Spatial Charge and Toxicity Evaluation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9709-9718. [PMID: 32787058 DOI: 10.1021/acs.langmuir.0c01072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A single semiconductor employed into photo(electro)catalysis is not sufficient for charge carrier separation. Designing a multiple heterojunction system is a practical method for photo(electro)catalysis. Herein, novel two-dimensional AgInS2/SnS2/RGO (AISR) photocatalysts with multiple junctions were prepared by a simple hydrothermal method. The synthesized AISR heterojunctions showed superior photoelectrochemical performance and photocatalytic degradation of norfloxacin, with a high degradation rate reaching 95%. More importantly, the toxicity of photocatalytic products decreased within the reaction process. High spatial separation efficiency of photogenerated electron-hole pairs was evidenced by optical and photoelectrochemical characterizations. Furthermore, a laser flash photolysis technique was carried on investigating the lifetime of the charge carrier of the fabricated dual heterostructures. In addition, sulfur and oxygen vacancies existed in AISR heterojunctions could largely constrain the recombination of electron-hole pairs. Density functional theory calculations were carried out to analyze the mechanism of photoinduced interfacial redox reactions, showing that reduced graphene oxide and AgInS2 act as electron and hole trappers in the photocatalytic reaction, respectively. Due to the interfacial electric field formed from AISR dual heterojunctions, the effective spatial charge separation and transfer contributed to the boosting photo(electro)catalytic performance.
Collapse
Affiliation(s)
- Mingmei Zhang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinyong Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Shiying Fan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhifan Yin
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jianan Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Libin Zeng
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Moses O Tadé
- Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Shaomin Liu
- Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
14
|
Ga-Doped AgInS2 Modified with Co–Pi Co–catalyst for Efficient Photoelectrochemical Water Splitting. Catal Letters 2019. [DOI: 10.1007/s10562-019-03021-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Sobiech M, Bujak P, Luliński P, Pron A. Semiconductor nanocrystal-polymer hybrid nanomaterials and their application in molecular imprinting. NANOSCALE 2019; 11:12030-12074. [PMID: 31204762 DOI: 10.1039/c9nr02585e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Quantum dots (QDs) are attractive semiconductor fluorescent nanomaterials with remarkable optical and electrical properties. The broad absorption spectra and high stability of QD transducers are advantageous for sensing and bioimaging. Molecular imprinting is a technique for manufacturing synthetic polymeric materials with a high recognition ability towards a target analyte. The high selectivity of the molecularly imprinted polymers (MIPs) is a result of the fabrication process based on the template-tailored polymerization of functional monomers. The three-dimensional cavities formed in the polymer network can serve as the recognition elements of sensors because of their specificity and stability. Appending specific molecularly imprinted layers to QDs is a promising strategy to enhance the stability, sensitivity, and selective fluorescence response of the resulting sensors. By merging the benefits of MIPs and QDs, inventive optical sensors are constructed. In this review, the recent synthetic strategies used for the fabrication of QD nanocrystals emphasizing various approaches to effective functionalization in aqueous environments are discussed followed by a detailed presentation of current advances in QD conjugated MIPs (MIP-QDs). Frontiers in manufacturing of specific imprinted layers of these nanomaterials are presented and factors affecting the specific behaviour of an MIP shell are identified. Finally, current limitations of MIP-QDs are defined and prospects are outlined to amplify the capability of MIP-QDs in future sensing.
Collapse
Affiliation(s)
- Monika Sobiech
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Piotr Bujak
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Piotr Luliński
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Adam Pron
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
16
|
Feng J, Yang X, Li R, Yang X, Feng G. The Composition-Dependent Photoluminescence Properties of Non-Stoichiometric Zn xAg yInS 1.5+x+0.5y Nanocrystals. MICROMACHINES 2019; 10:mi10070439. [PMID: 31266136 PMCID: PMC6680743 DOI: 10.3390/mi10070439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 11/16/2022]
Abstract
A facile hot injection approach to synthesize high-quality non-stoichiometric ZnxAgyInS1.5+x+0.5y nanocrystals (NCs) in the size range of 2.8–3.1 nm was presented. The fluorescence spectra had single band gap features, and indicated the formation of alloy states rather than simple composite structures. The chemical compositions, photoluminescence (PL) emission wavelengths, and quantum yields of ZnxAgyInS1.5+x+0.5y nanocrystals were significantly influenced by the concentration of an organic capping agent. The appropriate proportion of 1-dodecanthiol in the precursor prevented the precipitation, increased the fluorescence quantum yield, and improved their optical properties. The proper ratio of capping agent allowed Zn, Ag, and In to form a better crystallinity and compositional homogeneity of ZnxAgyInS1.5+x+0.5y nanocrystals. The photoluminescence was tunable from blue to red in the range of 450–700 nm as the Ag content changed independently. The PL and absorption spectra of ZnxAgyInS1.5+x+0.5y nanocrystals showed a significant blue shift with the decrease of Ag content in the precursor. As there were no obvious differences on the average particle sizes of ZnxAgyInS1.5+x+0.5y samples, these results fully revealed the composition-dependent photoluminescence properties of ZnxAgyInS1.5+x+0.5y nanocrystals. The relative quantum yield reached 35%. The fluorescence lifetimes (τ1=115–148 ns and τ2=455–483 ns) were analogous to those of AgInS2 and (AgIn)xZn2(1−x)S2.
Collapse
Affiliation(s)
- Jian Feng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou, China
- Department of Chemistry, School of Basic Medical Science, Guizhou Medical University, 9 Beijing Road, Guiyang 550004, Guizhou, China
| | - Xiaosheng Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou, China
| | - Rong Li
- Department of Chemistry, School of Basic Medical Science, Guizhou Medical University, 9 Beijing Road, Guiyang 550004, Guizhou, China
| | - Xianjiong Yang
- Department of Chemistry, School of Basic Medical Science, Guizhou Medical University, 9 Beijing Road, Guiyang 550004, Guizhou, China
| | - Guangwei Feng
- Department of Chemistry, School of Basic Medical Science, Guizhou Medical University, 9 Beijing Road, Guiyang 550004, Guizhou, China.
| |
Collapse
|
17
|
Bujak P, Wróbel Z, Penkala M, Kotwica K, Kmita A, Gajewska M, Ostrowski A, Kowalik P, Pron A. Highly Luminescent Ag–In–Zn–S Quaternary Nanocrystals: Growth Mechanism and Surface Chemistry Elucidation. Inorg Chem 2019; 58:1358-1370. [DOI: 10.1021/acs.inorgchem.8b02916] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Piotr Bujak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Zbigniew Wróbel
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Mateusz Penkala
- Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
| | - Kamil Kotwica
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Angelika Kmita
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Andrzej Ostrowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Patrycja Kowalik
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland
| | - Adam Pron
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
18
|
Kameyama T, Kishi M, Miyamae C, Sharma DK, Hirata S, Yamamoto T, Uematsu T, Vacha M, Kuwabata S, Torimoto T. Wavelength-Tunable Band-Edge Photoluminescence of Nonstoichiometric Ag-In-S Nanoparticles via Ga 3+ Doping. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42844-42855. [PMID: 30508368 DOI: 10.1021/acsami.8b15222] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The nonstoichiometry of I-III-VI semiconductor nanoparticles, especially the ratio of group I to group III elements, has been utilized to control their physicochemical properties. We report the solution-phase synthesis of nonstoichiometric Ag-In-S and Ag-In-Ga-S nanoparticles and results of the investigation of their photoluminescence (PL) properties in relation to their chemical compositions. While stoichiometric AgInS2 nanoparticles simply exhibited only a broad PL band originating from defect sites in the particles, a narrow band edge PL peak newly appeared with a decrease in the Ag fraction in the nonstoichiometric Ag-In-S nanoparticles. The relative PL intensity of this band edge emission with respect to the defect-site emission was optimal at a Ag/(Ag + In) value of ca. 0.4. The peak wavelength of the band edge emission was tunable from 610 to 500 nm by increased doping with Ga3+ into Ag-In-S nanoparticles due to an increase of the energy gap. Furthermore, surface coating of Ga3+-doped Ag-In-S nanoparticles, that is, Ag-In-Ga-S nanoparticles, with a GaS x shell drastically and selectively suppressed the broad defect-site PL peak and, at the same time, led to an increase in the PL quantum yield (QY) of the band edge emission peak. The optimal PL QY was 28% for Ag-In-Ga-S@GaS x core-shell particles, with green band-edge emission at 530 nm and a full width at half-maximum of 181 meV (41 nm). The observed wavelength tunability of the band-edge PL peak will facilitate possible use of these toxic-element-free I-III-VI-based nanoparticles in a wide area of applications.
Collapse
Affiliation(s)
- Tatsuya Kameyama
- Graduate School of Engineering , Nagoya University , Chikusa-ku, Nagoya 464-8603 , Japan
| | - Marino Kishi
- Graduate School of Engineering , Nagoya University , Chikusa-ku, Nagoya 464-8603 , Japan
| | - Chie Miyamae
- Graduate School of Engineering , Nagoya University , Chikusa-ku, Nagoya 464-8603 , Japan
| | - Dharmendar Kumar Sharma
- Department of Materials Science and Engineering , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro, Tokyo 152-8552 , Japan
| | - Shuzo Hirata
- Department of Materials Science and Engineering , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro, Tokyo 152-8552 , Japan
| | - Takahisa Yamamoto
- Graduate School of Engineering , Nagoya University , Chikusa-ku, Nagoya 464-8603 , Japan
| | - Taro Uematsu
- Graduate School of Engineering , Osaka University , 2-1 Yamada-oka , Suita , Osaka 565-0871 , Japan
| | - Martin Vacha
- Department of Materials Science and Engineering , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro, Tokyo 152-8552 , Japan
| | - Susumu Kuwabata
- Graduate School of Engineering , Osaka University , 2-1 Yamada-oka , Suita , Osaka 565-0871 , Japan
| | - Tsukasa Torimoto
- Graduate School of Engineering , Nagoya University , Chikusa-ku, Nagoya 464-8603 , Japan
| |
Collapse
|
19
|
KAMEYAMA T. Advances in Colloidal I-III-VI 2-Based Semiconductor Quantum Dots toward Tailorable Photofunctional Materials. ELECTROCHEMISTRY 2018. [DOI: 10.5796/electrochemistry.18-6-e2670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Multinary metal chalcogenides with tetrahedral structures for second-order nonlinear optical, photocatalytic, and photovoltaic applications. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.014] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Stroyuk O, Raevskaya A, Gaponik N. Solar light harvesting with multinary metal chalcogenide nanocrystals. Chem Soc Rev 2018; 47:5354-5422. [PMID: 29799031 DOI: 10.1039/c8cs00029h] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The paper reviews the state of the art in the synthesis of multinary (ternary, quaternary and more complex) metal chalcogenide nanocrystals (NCs) and their applications as a light absorbing or an auxiliary component of light-harvesting systems. This includes solid-state and liquid-junction solar cells and photocatalytic/photoelectrochemical systems designed for the conversion of solar light into the electric current or the accumulation of solar energy in the form of products of various chemical reactions. The review discusses general aspects of the light absorption and photophysical properties of multinary metal chalcogenide NCs, the modern state of the synthetic strategies applied to produce the multinary metal chalcogenide NCs and related nanoheterostructures, and recent achievements in the metal chalcogenide NC-based solar cells and the photocatalytic/photoelectrochemical systems. The review is concluded by an outlook with a critical discussion of the most promising ways and challenging aspects of further progress in the metal chalcogenide NC-based solar photovoltaics and photochemistry.
Collapse
Affiliation(s)
- Oleksandr Stroyuk
- L.V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine, 03028 Kyiv, Ukraine.
| | | | | |
Collapse
|
22
|
Understanding size-dependent properties of BiOCl nanosheets and exploring more catalysis. J Colloid Interface Sci 2017. [DOI: 10.1016/j.jcis.2017.06.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
TORIMOTO T. Nanostructure Engineering of Size-Quantized Semiconductor Particles for Photoelectrochemical Applications. ELECTROCHEMISTRY 2017. [DOI: 10.5796/electrochemistry.85.534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Lv J, Zhang J, Dai K, Liang C, Zhu G, Wang Z, Li Z. Controllable synthesis of inorganic–organic Zn1−xCdxS-DETA solid solution nanoflowers and their enhanced visible-light photocatalytic hydrogen-production performance. Dalton Trans 2017; 46:11335-11343. [DOI: 10.1039/c7dt01892d] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sustainable photocatalytic hydrogen evolution (PHE) of water splitting has been utilized to solve the serious environmental pollution and energy shortage problems over the last decade.
Collapse
Affiliation(s)
- Jiali Lv
- College of Physics and Electronic Information
- Anhui Key Laboratory of Energetic Materials
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Jinfeng Zhang
- College of Physics and Electronic Information
- Anhui Key Laboratory of Energetic Materials
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Kai Dai
- College of Physics and Electronic Information
- Anhui Key Laboratory of Energetic Materials
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Changhao Liang
- College of Physics and Electronic Information
- Anhui Key Laboratory of Energetic Materials
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Guangping Zhu
- College of Physics and Electronic Information
- Anhui Key Laboratory of Energetic Materials
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Zhongliao Wang
- College of Physics and Electronic Information
- Anhui Key Laboratory of Energetic Materials
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Zhen Li
- College of Physics and Electronic Information
- Anhui Key Laboratory of Energetic Materials
- Huaibei Normal University
- Huaibei
- P. R. China
| |
Collapse
|