1
|
Lin L, Wang C, Deng Y, Geng Y. Isomerically Pure Oxindole-Terminated Quinoids for n-Type Organic Thin-Film Transistors Enabled by the Chlorination of Quinoidal Core. Chemistry 2023; 29:e202203336. [PMID: 36456528 DOI: 10.1002/chem.202203336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
Quinoidal compounds have great potential utility as high-performance organic semiconducting materials because of their rigid planar structures and extended π-conjugation. However, the existence of E and Z isomers adversely affects the charge-transport properties of quinoidal compounds. In this study, three isomerically pure oxindole-terminated quinoids were developed by introducing chlorine atoms in the quinoidal core. The synthesized quinoids were confirmed to have a Z,Z configuration by means of 1 H NMR spectroscopy, density functional theory calculations, and single-crystal X-ray analysis. Importantly, the strategy of chlorination allowed to maintain low-lying frontier molecular orbital energy levels and ensure favorable intermolecular packing. Consequently, all three quinoidal compounds showed n-type transport characteristics in organic thin-film transistors, with electron mobilities up to 0.35 cm2 V-1 s-1 , which is the highest value reported to date for oxindole-terminated quinoids. Our study can provide new guidelines for the design of isomerically pure quinoids with high electron mobilities.
Collapse
Affiliation(s)
- Linlin Lin
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
2
|
Abstract
Ambipolar transistor properties have been observed in various small-molecule materials. Since a small energy gap is necessary, many types of molecular designs including extended π-skeletons as well as the incorporation of donor and acceptor units have been attempted. In addition to the energy levels, an inert passivation layer is important to observe ambipolar transistor properties. Ambipolar transport has been observed in extraordinary π-electron systems such as antiaromatic compounds, biradicals, radicals, metal complexes, and hydrogen-bonded materials. Several donor/acceptor cocrystals show ambipolar transport as well.
Collapse
Affiliation(s)
- Toshiki Higashino
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Takehiko Mori
- Department of Materials Science and Engineering, Tokyo Institute of Technology, O-okayama 2-12-1, Meguro-ku, 152-8552, Japan.
| |
Collapse
|
3
|
Magdesieva T. Ambipolar diarylnitroxides: Molecular design and electrochemical testing. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Tatiana Magdesieva
- Department of Chemistry Lomonosov Moscow State University Moscow Russian Federation
| |
Collapse
|
4
|
Levitskiy OA, Bogdanov AV, Klimchuk IA, Magdesieva TV. Pyridine-Containing Donor-Acceptor Diarylnitroxides: Noncovalent Stabilization of the Redox States. Chempluschem 2021; 87:e202100508. [PMID: 34967145 DOI: 10.1002/cplu.202100508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/09/2021] [Indexed: 11/09/2022]
Abstract
A series of new pyridyl- or 2-pyridyloxide-containing donor-acceptor diarylnitroxides was obtained and characterized; high stability of the ortho-2-pyridyl-containing diarylnitroxides was determined by kinetic measurements (τ1/2 =1733 h in benzene). Comparative voltammetric study of new nitroxides and their analog in which the Py replaces the Ph group revealed both through-bond and through-space stabilization of the NO redox states with the pyridyl/ 2-pyridyloxide moiety, providing reversibility of both oxidation and reduction processes. Adaptive conformational behavior of new pyridyl/pyridyloxide containing nitroxides upon one-electron oxidation and reduction was confirmed by DFT calculations. Stimuli-responsive conformational changes allow switching on/off dispersion and electrostatic interactions within the molecule and increase stability of the redox states. Spectroelectrochemical measurements provided experimental evidence for reversibility of the through-space stabilization of the oxidized state of the nitroxides with the neighboring pyridine lone pair.
Collapse
Affiliation(s)
- Oleg A Levitskiy
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991, Moscow, Russian Federation
| | - Alexey V Bogdanov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991, Moscow, Russian Federation
| | - Ivan A Klimchuk
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991, Moscow, Russian Federation
| | - Tatiana V Magdesieva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991, Moscow, Russian Federation
| |
Collapse
|
5
|
Mok Y, Kim Y, Moon Y, Park JJ, Choi Y, Kim DY. Quinoidal Small Molecule Containing Ring-Extended Termini for Organic Field-Effect Transistors. ACS OMEGA 2021; 6:27305-27314. [PMID: 34693151 PMCID: PMC8529684 DOI: 10.1021/acsomega.1c04120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
In this work, we synthesized and characterized two quinoidal small molecules based on benzothiophene modified and original isatin terminal units, benzothiophene quinoidal thiophene (BzTQuT) and quinoidal thiophene (QuT), respectively, to investigate the effect of introducing a fused ring into the termini of quinoidal molecules. Extending the terminal unit of the quinoidal molecule affected the extension of π-electron delocalization and decreased the bond length alternation, which led to the downshifting of the collective Raman band and dramatically lowering the band gap. Organic field-effect transistor (OFET) devices in neat BzTQuT films showed p-type transport behavior with low hole mobility, which was ascribed to the unsuitable film morphology for charge transport. By blending with an amorphous insulating polymer, polystyrene, and poly(2-vinylnaphthalene), an OFET based on a BzTQuT film annealed at 150 °C exhibited improved mobility up to 0.09 cm2 V-1 s-1. This work successfully demonstrated that the extension of terminal groups into the quinoidal structure should be an effective strategy for constructing narrow band gap and high charge transporting organic semiconductors.
Collapse
Affiliation(s)
| | | | - Yina Moon
- School of Materials Science and Engineering
(SMSE), Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jong-Jin Park
- School of Materials Science and Engineering
(SMSE), Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Yeonsu Choi
- School of Materials Science and Engineering
(SMSE), Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Dong-Yu Kim
- School of Materials Science and Engineering
(SMSE), Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
6
|
Dulov D, Levitskiy O, Bogdanov A, Magdesieva T. Redox‐Amphoteric 4,4’‐Dicyclopropyldiphenylnitroxyl Radical: Unexpectedly High Stability. ChemistrySelect 2021. [DOI: 10.1002/slct.202102626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dmitry Dulov
- Lomonosov Moscow State University Department of Chemistry Leninskie Gory 1/3 119991 Moscow Russian Federation
| | - Oleg Levitskiy
- Lomonosov Moscow State University Department of Chemistry Leninskie Gory 1/3 119991 Moscow Russian Federation
| | - Alexey Bogdanov
- Lomonosov Moscow State University Department of Chemistry Leninskie Gory 1/3 119991 Moscow Russian Federation
| | - Tatiana Magdesieva
- Lomonosov Moscow State University Department of Chemistry Leninskie Gory 1/3 119991 Moscow Russian Federation
| |
Collapse
|
7
|
Kousseff CJ, Halaksa R, Parr ZS, Nielsen CB. Mixed Ionic and Electronic Conduction in Small-Molecule Semiconductors. Chem Rev 2021; 122:4397-4419. [PMID: 34491034 DOI: 10.1021/acs.chemrev.1c00314] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Small-molecule organic semiconductors have displayed remarkable electronic properties with a multitude of π-conjugated structures developed and fine-tuned over recent years to afford highly efficient hole- and electron-transporting materials. Already making a significant impact on organic electronic applications including organic field-effect transistors and solar cells, this class of materials is also now naturally being considered for the emerging field of organic bioelectronics. In efforts aimed at identifying and developing (semi)conducting materials for bioelectronic applications, particular attention has been placed on materials displaying mixed ionic and electronic conduction to interface efficiently with the inherently ionic biological world. Such mixed conductors are conveniently evaluated using an organic electrochemical transistor, which further presents itself as an ideal bioelectronic device for transducing biological signals into electrical signals. Here, we review recent literature relevant for the design of small-molecule mixed ionic and electronic conductors. We assess important classes of p- and n-type small-molecule semiconductors, consider structural modifications relevant for mixed conduction and for specific interactions with ionic species, and discuss the outlook of small-molecule semiconductors in the context of organic bioelectronics.
Collapse
Affiliation(s)
- Christina J Kousseff
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Roman Halaksa
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Zachary S Parr
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Christian B Nielsen
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
8
|
Taguchi T, Chiarella F, Barra M, Chianese F, Kubozono Y, Cassinese A. Balanced Ambipolar Charge Transport in Phenacene/Perylene Heterojunction-Based Organic Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8631-8642. [PMID: 33583173 PMCID: PMC9289882 DOI: 10.1021/acsami.0c20140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Electronic devices relying on the combination of different conjugated organic materials are considerably appealing for their potential use in many applications such as photovoltaics, light emission, and digital/analog circuitry. In this study, the electrical response of field-effect transistors achieved through the evaporation of picene and PDIF-CN2 molecules, two well-known organic semiconductors with remarkable charge transport properties, was investigated. With the main goal to get a balanced ambipolar response, various device configurations bearing double-layer, triple-layer, and codeposited active channels were analyzed. The most suitable choices for the layer deposition processes, the related characteristic parameters, and the electrode position were identified to this purpose. In this way, ambipolar organic field-effect transistors exhibiting balanced mobility values exceeding 0.1 cm2 V-1 s-1 for both electrons and holes were obtained. These experimental results highlight also how the combination between picene and PDIF-CN2 layers allows tuning the threshold voltages of the p-type response. Scanning Kelvin probe microscopy (SKPM) images acquired on picene/PDIF-CN2 heterojunctions suggest the presence of an interface dipole between the two organic layers. This feature is related to the partial accumulation of space charge at the interface being enhanced when the electrons are depleted in the underlayer.
Collapse
Affiliation(s)
- Tomoya Taguchi
- Research
Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Fabio Chiarella
- CNR-SPIN, c/o Dip. di Fisica “Ettore
Pancini”, P.le Tecchio, 80, I-80125 Napoli, Italy
- Email
| | - Mario Barra
- CNR-SPIN, c/o Dip. di Fisica “Ettore
Pancini”, P.le Tecchio, 80, I-80125 Napoli, Italy
| | - Federico Chianese
- CNR-SPIN, c/o Dip. di Fisica “Ettore
Pancini”, P.le Tecchio, 80, I-80125 Napoli, Italy
- Dip.
di Fisica “Ettore Pancini”, Università “Federico II”, P.le Tecchio, 80, I-80125 Napoli, Italy
| | - Yoshihiro Kubozono
- Research
Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Antonio Cassinese
- CNR-SPIN, c/o Dip. di Fisica “Ettore
Pancini”, P.le Tecchio, 80, I-80125 Napoli, Italy
- Dip.
di Fisica “Ettore Pancini”, Università “Federico II”, P.le Tecchio, 80, I-80125 Napoli, Italy
| |
Collapse
|
9
|
Lin CC, Afraj SN, Velusamy A, Yu PC, Cho CH, Chen J, Li YH, Lee GH, Tung SH, Liu CL, Chen MC, Facchetti A. A Solution Processable Dithioalkyl Dithienothiophene (DSDTT) Based Small Molecule and Its Blends for High Performance Organic Field Effect Transistors. ACS NANO 2021; 15:727-738. [PMID: 33253536 DOI: 10.1021/acsnano.0c07003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The 3,5-dithiooctyl dithienothiophene based small molecular semiconductor DDTT-DSDTT (1), end functionalized with fused dithienothiophene (DTT) units, was synthesized and characterized for organic field effect transistors (OFET). The thermal, optical, electrochemical, and computed electronic structural properties of 1 were investigated and contrasted. The single crystal structure of 1 reveals the presence of intramolecular locks between S(alkyl)···S(thiophene), with a very short S-S distance of 3.10 Å, and a planar core. When measured in an OFET device compound 1 exhibits a hole mobility of 3.19 cm2 V-1 s-1, when the semiconductor layer is processed by a solution-shearing deposition method and using environmentally acceptable anisole as the solvent. This is the highest value reported to date for an all-thiophene based molecular semiconductor. In addition, solution-processed small molecule/insulating polymer (1/PαMS) blend films and devices were investigated. Morphological analysis reveals a nanoscopic vertical phase separation with the PαMS layer preferentially contacting the dielectric and 1 located on top of the stack. The OFET based on the blend comprising 50% weight of 1 exhibits a hole mobility of 2.44 cm2 V-1 s-1 and a very smaller threshold voltage shift under gate bias stress.
Collapse
Affiliation(s)
- Chia-Chi Lin
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Shakil N Afraj
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Arulmozhi Velusamy
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Po-Chun Yu
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Chang-Hui Cho
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Jianhua Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yi-Hsien Li
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Chou Chen
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Antonio Facchetti
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Song I, Ahn J, Shang X, Oh JH. Optoelectronic Property Modulation in Chiral Organic Semiconductor/Polymer Blends. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49926-49934. [PMID: 33092342 DOI: 10.1021/acsami.0c17211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic phototransistors (OPTs) have been widely used in biomedical sensing, optical communications, and imaging. Charge-trapping effect has been utilized as an effective strategy for enhancing their photoresponsivity by effectively decreasing the dark current. The combination of organic semiconductors (OSCs), especially chiral OSCs, with insulating polymers has rarely been carried out for optoelectronic applications. Here, we fabricated OPTs containing both enantiopure and racemic air-stable n-type perylene diimide derivatives, CPDI-CN2-C6, and insulating biopolymer polylactide (PLA) and evaluated their photoresponsive properties. The PLA-blended systems exhibited greatly enhanced optoelectronic performances owing to the intense charge-trapping effect. Interestingly, the racemic system showed 3 times higher electron mobility and 12 times higher specific detectivity (1.3 × 1013 jones) compared with the enantiopure systems due to the more aggregated morphologies and larger grains, indicating that chiral composition can be used as a tuning parameter in optoelectronic devices. Our systematic study provides a feasible and effective method for producing high-performance n-type OPTs under ambient conditions.
Collapse
Affiliation(s)
- Inho Song
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jaeyong Ahn
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Xiaobo Shang
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Shen T, Zhou H, Liu X, Fan Y, Mishra DD, Fan Q, Yang Z, Wang X, Zhang M, Li J. Wettability Control of Interfaces for High-Performance Organic Thin-Film Transistors by Soluble Insulating Polymer Films. ACS OMEGA 2020; 5:10891-10899. [PMID: 32455209 PMCID: PMC7241009 DOI: 10.1021/acsomega.0c00548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Organic small-molecule semiconductors have higher carrier mobility compared to polymer semiconductors, while the actual performances of these materials are susceptible to morphological defects and misalignment of crystalline grains. Here, a new strategy is explored to control the crystallization and morphologies of a solution-processed organic small-molecule semiconductor 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) using soluble polymer films to control the wettability of substrates. Different from the traditional surface modification method, the polymer layer as a modification layer is soluble in the semiconductor solution during the fabrication of organic thin-film transistors (OTFTs). The dissolved polymer alters the state of the semiconductor solution, which in turn, changes the crystallographic morphologies of the semiconductor films. By controlling the solubility and thickness of the polymer modification layers, it is possible to regulate the grain boundary and domain size of C8-BTBT films, which determine the performances of OTFTs. The bottom-gate transistors modified by a thick PS layer exhibit a mobility of >7 cm2/V·s and an on/off ratio of >107. It is expected that this new modification method will be applicable to high-performance OTFTs based on other small molecular semiconductors and dielectrics.
Collapse
Affiliation(s)
- Tao Shen
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Key Laboratory for the Green Preparation and Application of Functional
Materials, Ministry of Education, Hubei Key Laboratory of Polymer
Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Hui Zhou
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Key Laboratory for the Green Preparation and Application of Functional
Materials, Ministry of Education, Hubei Key Laboratory of Polymer
Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xue Liu
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Key Laboratory for the Green Preparation and Application of Functional
Materials, Ministry of Education, Hubei Key Laboratory of Polymer
Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yue Fan
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Key Laboratory for the Green Preparation and Application of Functional
Materials, Ministry of Education, Hubei Key Laboratory of Polymer
Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Debesh Devadutta Mishra
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Key Laboratory for the Green Preparation and Application of Functional
Materials, Ministry of Education, Hubei Key Laboratory of Polymer
Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Qin Fan
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Key Laboratory for the Green Preparation and Application of Functional
Materials, Ministry of Education, Hubei Key Laboratory of Polymer
Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zilu Yang
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Key Laboratory for the Green Preparation and Application of Functional
Materials, Ministry of Education, Hubei Key Laboratory of Polymer
Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xianbao Wang
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Key Laboratory for the Green Preparation and Application of Functional
Materials, Ministry of Education, Hubei Key Laboratory of Polymer
Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ming Zhang
- School
of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China
| | - Jinhua Li
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Key Laboratory for the Green Preparation and Application of Functional
Materials, Ministry of Education, Hubei Key Laboratory of Polymer
Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
12
|
Chou LH, Na Y, Park CH, Park MS, Osaka I, Kim FS, Liu CL. Semiconducting small molecule/polymer blends for organic transistors. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122208] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Leydecker T, Wang ZM, Torricelli F, Orgiu E. Organic-based inverters: basic concepts, materials, novel architectures and applications. Chem Soc Rev 2020; 49:7627-7670. [DOI: 10.1039/d0cs00106f] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The review article covers the materials and techniques employed to fabricate organic-based inverter circuits and highlights their novel architectures, ground-breaking performances and potential applications.
Collapse
Affiliation(s)
- Tim Leydecker
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
- Institut National de la Recherche Scientifique (INRS)
| | - Zhiming M. Wang
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Fabrizio Torricelli
- Department of Information Engineering
- University of Brescia
- 25123 Brescia
- Italy
| | - Emanuele Orgiu
- Institut National de la Recherche Scientifique (INRS)
- EMT Center
- Varennes J3X 1S2
- Canada
| |
Collapse
|
14
|
Campos A, Riera-Galindo S, Puigdollers J, Mas-Torrent M. Reduction of Charge Traps and Stability Enhancement in Solution-Processed Organic Field-Effect Transistors Based on a Blended n-Type Semiconductor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15952-15961. [PMID: 29671315 DOI: 10.1021/acsami.8b02851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Solution-processed n-type organic field-effect transistors (OFETs) are essential elements for developing large-area, low-cost, and all organic logic/complementary circuits. Nonetheless, the development of air-stable n-type organic semiconductors (OSCs) lags behind their p-type counterparts. The trapping of electrons at the semiconductor-dielectric interface leads to a lower performance and operational stability. Herein, we report printed small-molecule n-type OFETs based on a blend with a binder polymer, which enhances the device stability due to the improvement of the semiconductor-dielectric interface quality and a self-encapsulation. Both combined effects prevent the fast deterioration of the OSC. Additionally, a complementary metal-oxide semiconductor-like inverter is fabricated depositing p-type and n-type OSCs simultaneously.
Collapse
Affiliation(s)
- Antonio Campos
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN), Campus UAB , Cerdanyola del Vallès , 08193 Barcelona , Spain
| | - Sergi Riera-Galindo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN), Campus UAB , Cerdanyola del Vallès , 08193 Barcelona , Spain
| | - Joaquim Puigdollers
- Department Enginyeria Electrònica , Universitat Politècnica de Catalunya , Jordi Girona 1-3 , 08034 Barcelona , Spain
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN), Campus UAB , Cerdanyola del Vallès , 08193 Barcelona , Spain
| |
Collapse
|
15
|
Abstract
Thiophene-based π-conjugated organic small molecules and polymers are the research subject of significant current interest owing to their potential use as organic semiconductors in material chemistry. Despite simple and similar molecular structures, the hitherto reported properties of thiophene-based organic semiconductors are rather diverse. Design of high performance organic semiconducting materials requires a thorough understanding of inter- and intra-molecular interactions, solid-state packing, and the influence of both factors on the charge carrier transport. In this chapter, thiophene-based organic semiconductors, which are classified in terms of their chemical structures and their structure-property relationships, are addressed for the potential applications as organic photovoltaics (OPVs), organic field-effect transistors (OFETs) and organic light emitting diodes (OLEDs).
Collapse
|