1
|
Ghaedamini H, Kim DS. A non-enzymatic hydrogen peroxide biosensor based on cerium metal-organic frameworks, hemin, and graphene oxide composite. Bioelectrochemistry 2025; 161:108823. [PMID: 39332214 DOI: 10.1016/j.bioelechem.2024.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
This study presents the development of a novel non-enzymatic electrochemical biosensor for the real-time detection of hydrogen peroxide (H2O2) based on a composite of cerium metal-organic frameworks (Ce-MOFs), hemin, and graphene oxide (GO). The Ce-MOFs served as an efficient matrix for hemin encapsulation, while GO enhanced the conductivity of the composite. Characterization techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, and thermogravimetric analysis (TGA) confirmed the successful integration of hemin into the Ce-MOFs. The Ce-MOFs@hemin/GO-modified sensor demonstrated sensitive H2O2 detection due to the exceptional electrocatalytic activity of Ce-MOFs@hemin and the high conductivity of GO. This biosensor exhibited a linear response to H2O2 concentrations from 0.05 to 10 mM with a limit of detection (LOD) of 9.3 μM. The capability of the biosensor to detect H2O2 released from human prostate carcinoma cells was demonstrated, highlighting its potential for real-time monitoring of cellular oxidative stress in complex biological environments. To further assess its practical applicability, the sensor was tested in human serum samples, yielding promising results with recovery values ranging from 94.50 % to 103.29 %. In addition, the sensor showed excellent selectivity against common interfering compounds due to the outstanding peroxidase-like activity of the composite.
Collapse
Affiliation(s)
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
2
|
Zhang P, Zhu B, Du P, Travas-Sejdic J. Electrochemical and Electrical Biosensors for Wearable and Implantable Electronics Based on Conducting Polymers and Carbon-Based Materials. Chem Rev 2024; 124:722-767. [PMID: 38157565 DOI: 10.1021/acs.chemrev.3c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Bioelectronic devices are designed to translate biological information into electrical signals and vice versa, thereby bridging the gap between the living biological world and electronic systems. Among different types of bioelectronics devices, wearable and implantable biosensors are particularly important as they offer access to the physiological and biochemical activities of tissues and organs, which is significant in diagnosing and researching various medical conditions. Organic conducting and semiconducting materials, including conducting polymers (CPs) and graphene and carbon nanotubes (CNTs), are some of the most promising candidates for wearable and implantable biosensors. Their unique electrical, electrochemical, and mechanical properties bring new possibilities to bioelectronics that could not be realized by utilizing metals- or silicon-based analogues. The use of organic- and carbon-based conductors in the development of wearable and implantable biosensors has emerged as a rapidly growing research field, with remarkable progress being made in recent years. The use of such materials addresses the issue of mismatched properties between biological tissues and electronic devices, as well as the improvement in the accuracy and fidelity of the transferred information. In this review, we highlight the most recent advances in this field and provide insights into organic and carbon-based (semi)conducting materials' properties and relate these to their applications in wearable/implantable biosensors. We also provide a perspective on the promising potential and exciting future developments of wearable/implantable biosensors.
Collapse
Affiliation(s)
- Peikai Zhang
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Bicheng Zhu
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
3
|
Kaymaz SV, Nobar HM, Sarıgül H, Soylukan C, Akyüz L, Yüce M. Nanomaterial surface modification toolkit: Principles, components, recipes, and applications. Adv Colloid Interface Sci 2023; 322:103035. [PMID: 37931382 DOI: 10.1016/j.cis.2023.103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/11/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Surface-functionalized nanostructures are at the forefront of biotechnology, providing new opportunities for biosensors, drug delivery, therapy, and bioimaging applications. The modification of nanostructures significantly impacts the performance and success of various applications by enabling selective and precise targeting. This review elucidates widely practiced surface modification strategies, including click chemistry, cross-coupling, silanization, aldehyde linkers, active ester chemistry, maleimide chemistry, epoxy linkers, and other protein and DNA-based methodologies. We also delve into the application-focused landscape of the nano-bio interface, emphasizing four key domains: therapeutics, biosensing, environmental monitoring, and point-of-care technologies, by highlighting prominent studies. The insights presented herein pave the way for further innovations at the intersection of nanotechnology and biotechnology, providing a useful handbook for beginners and professionals. The review draws on various sources, including the latest research articles (2018-2023), to provide a comprehensive overview of the field.
Collapse
Affiliation(s)
- Sümeyra Vural Kaymaz
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | | | - Hasan Sarıgül
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Caner Soylukan
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Lalehan Akyüz
- Department of Molecular Biology and Genetics, Aksaray University, 68100 Aksaray, Turkey
| | - Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey.
| |
Collapse
|
4
|
Izhar F, Imran M, Izhar H, Latif S, Hussain N, Iqbal HMN, Bilal M. Recent advances in metal-based nanoporous materials for sensing environmentally-related biomolecules. CHEMOSPHERE 2022; 307:135999. [PMID: 35985388 DOI: 10.1016/j.chemosphere.2022.135999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/11/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Highly sensitive, stable, selective, efficient, and short reaction time sensors play a substantial role in daily life/industry and are the need of the day. Due to the rising environmental issues, nanoporous carbon and metal-based materials have attracted significant attention in environmental analysis owing to their intriguing and multifunctional properties and cost-effective and rapid detection of different analytes by sensing applications. Environmental-related issues such as pollution have been a significant threat to the world. Therefore, it is necessary to fabricate highly promising performance-based sensor materials with excellent reliability, selectivity and good sensitivity for monitoring various analytes. In this regard, different methods have been employed to fabricate these sensors comprising metal, metal oxides, metal oxide carbon composites and MOFs leading to the formation of nanoporous metal and carbon composites. These composites have exceptional properties such as large surface area, distinctive porosity, and high conductivity, making them promising candidates for several versatile sensing applications. This review covers recent advances and significant studies in the sensing field of various nanoporous metal and carbon composites. Key challenges and future opportunities in this exciting field are also part of this review.
Collapse
Affiliation(s)
- Fatima Izhar
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan.
| | - Hamyal Izhar
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 53700, Pakistan
| | - Nazim Hussain
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 53700, Pakistan
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
5
|
Zhang L, Sun M, Jing T, Li S, Ma H. A facile electrochemical sensor based on green synthesis of Cs/Ce-MOF for detection of tryptophan in human serum. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Cun JE, Fan X, Pan Q, Gao W, Luo K, He B, Pu Y. Copper-based metal-organic frameworks for biomedical applications. Adv Colloid Interface Sci 2022; 305:102686. [PMID: 35523098 DOI: 10.1016/j.cis.2022.102686] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of important porous, crystalline materials composed of metal ions (clusters) and organic ligands. Owing to the unique redox chemistry, photochemical and electrical property, and catalytic activity of Cu2+/+, copper-based MOFs (Cu-MOFs) have been recently and extensively explored in various biomedical fields. In this review, we first make a brief introduction to the synthesis of Cu-MOFs and their composites, and highlight the recent synthetic strategies of two most studied representatives, three-dimensional HKUST-1 and two-dimensional Cu-TCPP. The recent advances of Cu-MOFs in the applications of cancer treatment, bacterial inhibition, biosensing, biocatalysis, and wound healing are summarized and discussed. Furthermore, we propose a prospect of the future development of Cu-MOFs in biomedical fields and beyond.
Collapse
Affiliation(s)
- Ju-E Cun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
7
|
Palakollu VN, Chen D, Tang JN, Wang L, Liu C. Recent advancements in metal-organic frameworks composites based electrochemical (bio)sensors. Mikrochim Acta 2022; 189:161. [PMID: 35344127 DOI: 10.1007/s00604-022-05238-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/19/2022] [Indexed: 12/28/2022]
Abstract
Metal-organic frameworks (MOFs) are a novel class of crystalline materials which find widespread applications in the field of microporous conductors, catalysis, separation, biomedical engineering, and electrochemical sensing. With a specific emphasis on the MOF composites for electrochemical sensor applications, this review summarizes the recent construction strategies on the development of conductive MOF composites (post-synthetic modification of MOFs, in situ synthesis of functional materials@MOFs composites, and incorporating electroactive ligands). The developed composites are revealed to have excellent electrochemical sensing activity better than their pristine forms. Notably, the applicable functionalized MOFs to electrochemical sensing/biosensing of various target species are discussed. Finally, we highlight the perspectives and challenges in the field of electrochemical sensors and biosensors for potential directions of future development.
Collapse
Affiliation(s)
- Venkata Narayana Palakollu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Ave, Shenzhen, 518060, People's Republic of China
| | - Dazhu Chen
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jiao-Ning Tang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Chen Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
8
|
Salman F, Celi̇k Kazici H, Gülcan M. Comparative of MIL101(Cr) and nano‐MIL101(Cr) electrode as an electrochemical hydrogen peroxide sensor. ELECTROANAL 2022. [DOI: 10.1002/elan.202200005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Zhang T, Liu Y, Pi J, Lu N, Zhang R, Chen W, Zhang Z, Xing D. A novel artificial peroxisome candidate based on nanozyme with excellent catalytic performance for biosensing. Biosens Bioelectron 2022; 196:113686. [PMID: 34628262 DOI: 10.1016/j.bios.2021.113686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 12/23/2022]
Abstract
Artificial peroxisome is of critical importance to supersede natural peroxisome in fabricating protocell system and disease treatment. Nevertheless, developing feasible artificial peroxisome with various stable functions remains a monumental challenge. Nanozyme with multiple enzyme-like activities can mimic natural enzymes in peroxisome, which make it a prospective candidate for artificial peroxisome design. Herein, we prepared a nanozyme with multiple peroxisomal-like activities - Pd nanoparticles functionalized nitrogen-doped porous carbon-reduced graphene oxide (PdNPs/N-PC-rGO). Due to its sandwich-like structure, the incorporation of N heteroatoms and the synergistic effect between PdNPs and N-PC-rGO bi-support, the PdNPs/N-PC-rGO exhibited triple peroxisomal-like activities including oxidase (OXD), peroxidase (POD) and catalase (CAT), leading it a promising alternative for artificial peroxisome exploration. Furthermore, the PdNPs/N-PC-rGO showed high electrocatalytic activity, which could be employed for the detection of electrochemical active substances reduced glutathione (GSH). The PdNPs/N-PC-rGO modified electrode displayed a wide concentration range from 70 nM to 1500 μM, with a very low detection limit of 9.8 nM (S/N = 3). Therefore, PdNPs/N-PC-rGO was a promising nanozyme for various biotechnological applications such as artificial organelles, biosensing, cytoprotection, disease diagnosis and treatment.
Collapse
Affiliation(s)
- Tingting Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Yu Liu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiuchan Pi
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Nannan Lu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Wujun Chen
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Zhiquan Zhang
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Hsieh CT, Kao CP, Gandomi YA, Juang RS, Chang JK, Zhang RS. Oxygen reduction reactions from boron-doped graphene quantum dot catalyst electrodes in acidic and alkaline electrolytes. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Cui H, Cui S, Tian Q, Zhang S, Wang M, Zhang P, Liu Y, Zhang J, Li X. Electrochemical Sensor for the Detection of 1-Hydroxypyrene Based on Composites of PAMAM-Regulated Chromium-Centered Metal-Organic Framework Nanoparticles and Graphene Oxide. ACS OMEGA 2021; 6:31184-31195. [PMID: 34841161 PMCID: PMC8613871 DOI: 10.1021/acsomega.1c04765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/29/2021] [Indexed: 05/31/2023]
Abstract
A nanocomposite was formed by combining graphene oxide (GO) with chromium-centered metal-organic framework (Cr-MOF) nanoparticles regulated by the dendrimer polyamidoamine (PAMAM). PAMAM can successfully regulate the synthesis of Cr-MOF; in doing so, the size of Cr-MOF is reduced, its original morphology is maintained, and it has good crystallinity. A simple ultrasonication method was used to make the Cr-MOF/GO hybrid nanocomposite. Various characterization methods confirmed the successful synthesis of PAMAM/Cr-MOF/GO nanocomposites. The PAMAM/Cr-MOF/ERGO modified electrode could be used with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) to study the electrochemical behaviors of 1-hydroxypyrene (1-OHPyr). The results indicated that the constructed PAMAM/Cr-MOF/ERGO electrochemical sensor had a significantly enhanced electrocatalytic effect on the electrochemical reduction of 1-OHPyr compared with the sensors with no PAMAM and the ERGO sensor, which could be ascribed to the synergetic effect from the high porosity of Cr-MOF and the high conductivity of ERGO, as well as the further electron transport action of the nanocomposite. Under the optimal conditions, the reduction peak current and concentration of 1-OHPyr showed a good linear relationship in the range of 0.1-1.0 and 1.0-6.0 μM, and the detection limit of 1-OHPyr was calculated to be 0.075 μM. Moreover, the PAMAM/Cr-MOF/ERGO electrochemical sensor constructed in this paper can be expected to provide some instructions for the construction of electrochemical sensing platforms and wider potential applications.
Collapse
Affiliation(s)
- Hong Cui
- School
of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Shuaishuai Cui
- School
of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Qiuju Tian
- School
of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Siyuan Zhang
- School
of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Mingxiu Wang
- School
of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Ping Zhang
- School
of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Yunfeng Liu
- School
of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Jialing Zhang
- School
of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Xiangjun Li
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
12
|
Gorle DB, Ponnada S, Kiai MS, Nair KK, Nowduri A, Swart HC, Ang EH, Nanda KK. Review on recent progress in metal-organic framework-based materials for fabricating electrochemical glucose sensors. J Mater Chem B 2021; 9:7927-7954. [PMID: 34612291 DOI: 10.1039/d1tb01403j] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diabetes is a type of disease that threatens human health, which can be diagnosed based on the level of glucose in the blood. Recently, various MOF-based materials have been developed as efficient electrochemical glucose sensors because of their tunable pore channels, large specific surface area well dispersed metallic active sites, etc. In this review, the significance of glucose detection and the advantages of MOF-based materials for this application are primarily discussed. Then, the application of MOF-based materials can be categorized into two types of glucose sensors: enzymatic biosensors and non-enzymatic sensors. Finally, insights into the current research challenges and future breakthrough possibilities regarding electrochemical glucose sensors are considered.
Collapse
Affiliation(s)
- Demudu Babu Gorle
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, India.
| | - Srikanth Ponnada
- Department of Engineering Chemistry, Andhra University College of Engineering, Andhra University, Visakhapatnam-530003, India
| | - Maryam Sadat Kiai
- Nano-Science and Nano-Engineering Program, Graduate School of Science, Engineering and Technology, Istanbul Technical University, Istanbul-34469, Turkey
| | - Kishore Kumar Nair
- Department of Physics, University of Free state, Bloemfontein-9300, South Africa
| | - Annapurna Nowduri
- Department of Engineering Chemistry, Andhra University College of Engineering, Andhra University, Visakhapatnam-530003, India
| | - Hendrik C Swart
- Department of Physics, University of Free state, Bloemfontein-9300, South Africa
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education Singapore, Nanyang Technological University Singapore, Nanyang Walk-637616, Singapore
| | - Karuna Kar Nanda
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
13
|
Cheng D, Li P, Zhu X, Liu M, Zhang Y, Liu Y. Enzyme‐free Electrochemical Detection of Hydrogen Peroxide Based on the
Three‐Dimensional
Flower‐like Cu‐based Metal Organic Frameworks and
MXene
Nanosheets
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100158] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dan Cheng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Peipei Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Yang Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
14
|
Xing Y, Zhang T, Lu N, Xu Z, Song Y, Liu Y, Liu M, Zhao P, Zhang Z, Yan X. Catalytic amplification based on hierarchical heterogeneity bimetal-organic nanostructures with peroxidase-like activity. Anal Chim Acta 2021; 1173:338713. [PMID: 34172151 DOI: 10.1016/j.aca.2021.338713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
In this paper, integrating heterometallic units and nanostructures into metal-organic frameworks (MOFs) were applied to improve the sensitivity of detecting hydrogen peroxide (H2O2) in neutral solution. The bimetal-MOFs (CuCo-BDC) and GO composite (CuCo-BDC/GO) were first synthesized via an ordinary one-step solvothermal synthesis. The CuCo-BDC/GO with admirable peroxidase-like catalytic activity could be applied to detect H2O2. The results have low detection limit of 69 nM (S/N = 3) and a wide linear detection range, from 100 nM to 3.5 mM. This is superior to recently published biosensors based on noble metal nanomaterials, which confirms CuCo-BDC/GO as the MOF electrocatalysts with high performance. The remarkable electroanalytical performance of CuCo-BDC/GO is due to the presence of numerous open metal active sites, the synergistic effect of Cu2+ and Co2+, hierarchical structure with high-specific surface areas and the marvelous electrochemical properties of GO. Therefore, CuCo-BDC/GO is a powerful candidate for detecting H2O2 in electrochemical biosensing fields. Moreover, H2O2 detection in real samples can be done with the CuCo-BDC/GO, including human serum samples. Therefore, the novel CuCo-BDC/GO is a promising catalyst that can be applied in biotechnological and environmental applications.
Collapse
Affiliation(s)
- Yue Xing
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Tingting Zhang
- Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Nannan Lu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhiqian Xu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yu Song
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yu Liu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Meihan Liu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Puyu Zhao
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhiquan Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Xiaoyi Yan
- College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
15
|
Selvam SP, Kadam AN, Maiyelvaganan KR, Prakash M, Cho S. Novel SeS2-loaded Co MOF with Au@PANI comprised electroanalytical molecularly imprinted polymer-based disposable sensor for patulin mycotoxin. Biosens Bioelectron 2021; 187:113302. [PMID: 34000454 DOI: 10.1016/j.bios.2021.113302] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022]
Abstract
An SeS2-loaded Co MOF and Au@PANI nanocomposite comprising the base matrix of the electrode was developed with electropolymerized molecularly imprinted polymer (MIP) consisting of p-aminobenzoic acid (PABA) and patulin (PT) to detect PT molecules based on the PT imprinted cavities. SeS2@Co MOF and Au@PANI were synthesized using hydrothermal synthesis and interfacial polymerization strategies, respectively. A suitable functional monomer to fabricate the MIP platform was selected using the density functional theory (DFT/M06-2X method). Higher electrochemical active surface area (0.985 cm2 which is 6.99 times higher than the bare SPE) and a lower charge transfer resistance (Rct = 27.8 Ω) at the MIP/Au@PANI/SeS2@Co MOF electrode was achieved based on the higher number of adsorptive sites and enhanced conductivity (electron transfer rate constant (ks = 3.24 × 10-3 s-1) of the sensing platform. The fabricated MIP sensor performance was studied in 10 mM PBS (pH = 6.4), where an improved detection limit (0.66 pM) for PT and a broad logarithmic linear dynamic range (0.001-100 nM) were both observed. The sensor possessed higher selectivity (Imprinting factor = 15.4 for PT), excellent reusability (%RSD of 10 cycles = 2.49%), high storage stability (6.7% lost after 35 days), and robust reproducibility (%RSD = 3.22%) The as-prepared MIP-based PT sensor was applied to detect PT in a real-time apple juice sample (10% diluted with PBS) with a recovery % ranging from 94.5 to 106.4%. The proposed sensor possesses great advantages in terms of cost-effectiveness, providing a simple detection strategy for long-term storage stability, and reversible cycle measurements.
Collapse
Affiliation(s)
- Sathish Panneer Selvam
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13210, South Korea
| | - Abhijit N Kadam
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-Daero, 1342, Seongnam-Si, South Korea
| | - K Rudharachari Maiyelvaganan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, TN, 603203, India
| | - Muthuramalingam Prakash
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, TN, 603203, India
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13210, South Korea; Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea.
| |
Collapse
|
16
|
Hu P, Sun Z, Shen Y, Pan Y. A Long-Term Stable Sensor Based on Fe@PCN-224 for Rapid and Quantitative Detection of H 2O 2 in Fishery Products. Foods 2021; 10:419. [PMID: 33672942 PMCID: PMC7918592 DOI: 10.3390/foods10020419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 11/16/2022] Open
Abstract
Hydrogen peroxide (H2O2) has been reported to be used for the illegal treatment of fishery products in order to obtain "fake" freshness. Residues of H2O2 in food may be of toxicology concern. In this study, a nonenzymatic sensor was developed based on Fe@PCN-224 metal-organic frameworks wrapped by Nafion to detect H2O2 concentration. The hybrid structure of Fe@PCN-224 was fabricated by incorporated free FeIII ions into the center of PCN-224, which was ultra-stable due to the strong interactions between Zr6 and the carboxyl group. Scanning electron spectroscopy images exhibited that Nafion sheets crossed together on the surface of Fe@PCN-224 nanoparticles to form a hierarchical and coherent structure for efficient electron transfer. Electrochemical investigations showed that the Fe@PCN-224/Nafion/GCE possessed good linearity from 2 to 13,000 μM (including four orders of magnitude), low detection limits (0.7 μM), high stability in continuous monitoring (current remained nearly stable over 2300 s) and in long-term measurement (current decreased 3.4% for 30 days). The prepared nanohybrid modified electrode was effectively applied to H2O2 detection in three different fishery products. The results were comparable to those measured using photometrical methods. The developed electrochemical method has a great potential in detecting the illegal management of fishery products with H2O2.
Collapse
Affiliation(s)
| | | | | | - Yiwen Pan
- Ocean College, Zhejiang University, Zhoushan 316021, China; (P.H.); (Z.S.); (Y.S.)
| |
Collapse
|
17
|
Electrocatalytic Oxidation of Glucose on Boron and Nitrogen Codoped Graphene Quantum Dot Electrodes in Alkali Media. Catalysts 2021. [DOI: 10.3390/catal11010101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A novel solvothermal technique has been developed in the presence of C/N/B precursor for synthesizing B-N-coped graphene quantum dots (GQDs) as non-metal electrocatalysts towards the catalytic glucose oxidation reaction (GOR). Both N-doped GQD and B-N-codoped GQD particles (~4.0 nm) possess a similar oxidation and amidation level. The B-N-codoped GQD contains a B/C ratio of 3.16 at.%, where the B dopants were formed through different bonding types (i.e., N‒B, C‒B, BC2O, and BCO2) inserted into or decorated on the GQDs. The cyclic voltammetry measurement revealed that the catalytic activity of B-N-codoped GQD catalyst is significantly higher compared to the N-doped GQDs (~20% increase). It was also shown that the GOR activity was substantially enhanced due to the synergistic effect of B and N dopants within the GQD catalysts. Based on the analysis of Tafel plots, the B-N-codoped-GQD catalyst electrode displays an ultra-high exchange current density along with a reduced Tafel slope. The application of B-N-codoped GQD electrodes significantly enhances the catalytic activity and results in facile reaction kinetics towards the glucose oxidation reaction. Accordingly, the novel design of GQD catalyst demonstrated in this work sets the stage for designing inexpensive GQD-based catalysts as an alternative for precious metal catalysts commonly used in bio-sensors, fuel cells, and other electrochemical devices.
Collapse
|
18
|
|
19
|
Wani AA, Bhat MM, Sofi FA, Bhat SA, Ingole PP, Rashid N, Bhat MA. Nano-spinel cobalt decorated sulphur doped graphene: an efficient and durable electrocatalyst for oxygen evolution reaction and non-enzymatic sensing of H 2O 2. NEW J CHEM 2021. [DOI: 10.1039/d1nj02383g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report the synthesis of a nano-spinel cobalt decorated sulphur doped reduced graphene oxide (Co@S–rGO) composite exhibiting excellent electrocatalytic performance and electrochemical stability toward oxygen evolution reaction in an alkaline medium.
Collapse
Affiliation(s)
- Adil Amin Wani
- Department of Chemistry, University of Kashmir, Hazratbal Srinagar, India
| | | | - Feroz Ahmad Sofi
- Department of Chemistry, University of Kashmir, Hazratbal Srinagar, India
| | - Sajad Ahmad Bhat
- Department of Chemistry, University of Kashmir, Hazratbal Srinagar, India
| | - Pravin P. Ingole
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Nusrat Rashid
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Mohsin Ahmad Bhat
- Department of Chemistry, University of Kashmir, Hazratbal Srinagar, India
| |
Collapse
|
20
|
Venkadesh A, Mathiyarasu J, Radhakrishnan S. Voltammetric Sensing of Caffeine in Food Sample Using Cu‐MOF and Graphene. ELECTROANAL 2020. [DOI: 10.1002/elan.202060488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- A. Venkadesh
- Electrodics and Electrocatalysis Division CSIR-Central Electrochemical Research Institute (CECRI) Karaikudi 630 003 Tamilnadu India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad 201 002 Uttar Pradesh India
| | - J. Mathiyarasu
- Electrodics and Electrocatalysis Division CSIR-Central Electrochemical Research Institute (CECRI) Karaikudi 630 003 Tamilnadu India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad 201 002 Uttar Pradesh India
| | - S. Radhakrishnan
- Electrodics and Electrocatalysis Division CSIR-Central Electrochemical Research Institute (CECRI) Karaikudi 630 003 Tamilnadu India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad 201 002 Uttar Pradesh India
| |
Collapse
|
21
|
Chuang C, Kung C. Metal−Organic Frameworks toward Electrochemical Sensors: Challenges and Opportunities. ELECTROANAL 2020. [DOI: 10.1002/elan.202060111] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cheng‐Hsun Chuang
- Department of Chemical Engineering National Cheng Kung University 1 University Road Tainan City Taiwan
| | - Chung‐Wei Kung
- Department of Chemical Engineering National Cheng Kung University 1 University Road Tainan City Taiwan
| |
Collapse
|
22
|
Zhao P, Chen S, Zhou J, Zhang S, Huo D, Hou C. A novel Fe-hemin-metal organic frameworks supported on chitosan-reduced graphene oxide for real-time monitoring of H 2O 2 released from living cells. Anal Chim Acta 2020; 1128:90-98. [PMID: 32825916 DOI: 10.1016/j.aca.2020.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 01/18/2023]
Abstract
Herein, a kind of novel hemin-based metal organic frameworks (Fe-hemin-MOFs) with unique peroxidase-like bioactivity was developed for the first time. The synthesized Fe-hemin-MOFs exhibited satisfactory catalytic activity toward hydrogen peroxide (H2O2). When it was further supported on Chitosan-reduced graphene oxide (CS-rGO), amplified electrochemical signal could be obtained. The Fe-hemin-MOFs/CS-rGO composite was used to construct a novel H2O2 electrochemical sensor. The electrocatalytic reduction of H2O2 displayed two segments linearity range from 1 to 61 μM and 61-1311 μM, as well as a low detection limit of 0.57 μM. Furthermore, the proposed sensor was successfully used for real-time monitoring of H2O2 released from living cells, which extended the practical application of MOFs-based sensors in monitoring the pathological process in living cells.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Sha Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Jun Zhou
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China
| | - Suyi Zhang
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China
| | - Danqun Huo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China. https://
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China. https://
| |
Collapse
|
23
|
Yadav DK, Ganesan V, Gupta R, Yadav M, Sonkar PK, Rastogi PK. Copper oxide immobilized clay nano architectures as an efficient electrochemical sensing platform for hydrogen peroxide. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01778-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Bhat SA, Rashid N, Rather MA, Pandit SA, Ingole PP, Bhat MA. Vitamin B12 functionalized N-Doped graphene: A promising electro-catalyst for hydrogen evolution and electro-oxidative sensing of H2O2. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Polycarbonate Microchip Containing CuBTC-Monopol Monolith for Solid-Phase Extraction of Dyes. Int J Anal Chem 2020; 2020:8548927. [PMID: 32095138 PMCID: PMC7036109 DOI: 10.1155/2020/8548927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022] Open
Abstract
In the present study, preparation of CuBTC-monopol monoliths for use within the microchip solid phase extraction was undertaken through a 20-min UV lamp-assisted polymerization for 2,2-dimethoxy-2-phenyl acetophenone (DMPA), butyl methacrylate (BMA), and ethylene dimethacrylate (EDMA) alongside inclusion of the porogenic solvent system (1-propanol and methanol (1 : 1)). The resultant coating underwent coating using CuBTC nanocrystals in ethanolic solution of ethanolic solution of 1,3,5-benzenetricarboxylic acid (H3BTC, 10 mM) and 10 mM copper(II) acetate Cu(CH3COO)2. This paper reports enhanced extraction, characterization, and synthesis studies for porous CuBTC metal organic frameworks that are marked by different methods including SEM/EDAX analysis, atomic force microscopy (AFM), and Fourier-transform infrared spectroscopy (FT-IR). The evaluation of the microchip's performance was undertaken as sorbent through retrieval of six toxic dyes (anionic and cationic dyes). Various parameters (desorption and extraction step flow rates, volume of desorption solvent, volume of sample, and type of desorption solvent) were examined to optimize dye extraction using fabricated microchips. The result indicated that CuBTC-monopol monoliths were permeable with the ability of removing impurities and attained high toxic dye extraction recovery (83.4-99.9%). The assessment of reproducibility for chip-to-chip was undertaken by computing the relative standard deviations (RSDs) of the six dyes in extraction. The interbatch and intrabatch RSDs ranged between 3.8 and 6.9% and 2.3 and 4.8%. Such features showed that fabricated CuBTC-monopol monolithic disk polycarbonate microchips have the potential of extracting toxic dyes that could be utilized for treating wastewater.
Collapse
|
26
|
Ma T, Li H, Ma JG, Cheng P. Application of MOF-based materials in electrochemical sensing. Dalton Trans 2020; 49:17121-17129. [DOI: 10.1039/d0dt03388j] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A summary of the most recent advancements of metal–organic frameworks (MOFs) for electrochemical sensing is listed in this frontier article.
Collapse
Affiliation(s)
- Teng Ma
- Department of Chemistry and Key Laboratory of Advanced Energy Material Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Huibo Li
- China Institute of Atomic Energy
- Beijing 102413
- P. R. China
| | - Jian-Gong Ma
- Department of Chemistry and Key Laboratory of Advanced Energy Material Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Peng Cheng
- Department of Chemistry and Key Laboratory of Advanced Energy Material Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
27
|
Yan Y, Ma J, Bo X, Guo L. Rod-like Co based metal-organic framework embedded into mesoporous carbon composite modified glassy carbon electrode for effective detection of pyrazinamide and isonicotinyl hydrazide in biological samples. Talanta 2019; 205:120138. [PMID: 31450409 DOI: 10.1016/j.talanta.2019.120138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
Herein, we report a novel composite fabricated via embedding rod-like Co based metal-organic framework (Co-MOF-74) crystals into MC matrix for the first time. The introduction of MC astricts the size of Co-MOF-74 crystals, enlarges the pore size and improves the electrical conductivity, which lead to the good electrochemical properties of the composite. The fabricated sensor based on Co-MOF-74@MC exhibits superior electrocatalytic activity toward the reduction of pyrazinamide (PZA) and the oxidation of isonicotinyl hydrazide (INZ). Under optimized conditions, the sensor shows two linear ranges from 0.3 to 46.5 μM and 46.5-166.5 μM with a high sensitivity of 7.2 μA μM-1 cm-2 and a detection limit of 0.21 μM for the determination of PZA. The electroanalytical sensing of INZ also gives two linear ranges of 0.15-1.55 μM and 1.55-592.55 μM with a detection limit of 0.094 μM. The mechanism involved was also discussed, briefly. The sensor is assessed toward the detection of PZA and INZ in human serum and urine samples. Recovery values varied from 97.08 to 103.20% for PZA sensing and 96.67-102.90% for INZ sensing, revealing the promising practicality of sensor for PZA and INZ detection.
Collapse
Affiliation(s)
- Yu Yan
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| | - Jicheng Ma
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China.
| | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| | - Liping Guo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China.
| |
Collapse
|
28
|
Lu N, Zheng B, Gu Y, Yan X, Zhang T, Liu H, Xu H, Xu Z, Li X, Zhang Z. Fabrication of CoNPs-embedded porous carbon composites based on morphochemical imprinting strategy for detection of H2O2 released from living cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Fu J, Wang X, Wang T, Zhang J, Guo S, Wu S, Zhu F. Covalent Functionalization of Graphene Oxide with a Presynthesized Metal-Organic Framework Enables a Highly Stable Electrochemical Sensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33238-33244. [PMID: 31432665 DOI: 10.1021/acsami.9b10531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This paper reports the covalent functionalization of graphene oxide (GO) by a presynthesized metal-organic framework NH2-MIL-101(Fe) via ultrasonication of the two components. The formation of Fe-O covalent bonding in the NH2-MIL-101(Fe)-GO nanohybrid is clearly evidenced, and the covalent bonding still remains after electrochemical reduction. The morphology and structure of the nanohybrid are characterized via scanning electron microscopy, transmission electron microscopy, UV-vis spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectroscopy. The electrode based on electrochemically reduced NH2-MIL-101(Fe)-GO shows ultrastable and high-sensitive performance in simultaneous electrochemical sensing of three purine metabolic derivatives (uric acid, xanthine, and hypoxanthine); in particular, no signal fading is seen even after running for 120 times. The covalent bonding within the nanohybrid is obviously the key to maintain such a stability.
Collapse
Affiliation(s)
- Junhong Fu
- Gold Catalysis Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Xiuyun Wang
- School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Tingting Wang
- School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Jie Zhang
- School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Song Guo
- Gold Catalysis Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Shuo Wu
- School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Fenghui Zhu
- School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China
| |
Collapse
|
30
|
He B, Yan D. Au/ERGO nanoparticles supported on Cu-based metal-organic framework as a novel sensor for sensitive determination of nitrite. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
31
|
Sun J, Song L, Fan Y, Tian L, Luan S, Niu S, Ren L, Ming W, Zhao J. Synergistic Photodynamic and Photothermal Antibacterial Nanocomposite Membrane Triggered by Single NIR Light Source. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26581-26589. [PMID: 31287647 DOI: 10.1021/acsami.9b07037] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Herein, we developed a nanocomposite membrane with synergistic photodynamic therapy and photothermal therapy antibacterial effects, triggered by a single near-infrared (NIR) light illumination. First, upconversion nanoparticles (UCNPs) with a hierarchical structure (UCNPs@TiO2) were synthesized, which use NaYF4:Yb,Tm nanorods as the core and TiO2 nanoparticles as the outer shell. Then, nanosized graphene oxide (GO), as a photothermal agent, was doped into UCNPs@TiO2 core-shell nanoparticles to obtain UCNPs@TiO2@GO. Afterward, the mixture of UCNPs@TiO2@GO in poly(vinylidene) fluoride (PVDF) was applied for electrospinning to generate the nanocomposite membrane (UTG-PVDF). Generation of reactive oxygen species (ROS) and changes of temperature triggered by NIR action were both investigated to evaluate the photodynamic and photothermal properties. Upon a single NIR light (980 nm) irradiation for 5 min, the nanocomposite membrane could simultaneously generate ROS and moderate temperature rise, triggering synergistic antibacterial effects against both Gram-positive and -negative bacteria, which are hard to be achieved by an individual photodynamic or photothermal nanocomposite membrane. Additionally, the as-prepared membrane can effectively restrain the inflammatory reaction and accelerate wound healing, thus exhibiting great potentials in treating infectious complications in wound healing progress.
Collapse
Affiliation(s)
| | - Lingjie Song
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry , Changchun 130022 , China
| | | | | | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry , Changchun 130022 , China
| | | | | | - Weihua Ming
- Department of Chemistry and Biochemistry , Georgia Southern University , P.O. Box 8064, Statesboro , Georgia 30460 , United States
| | | |
Collapse
|
32
|
Abstract
Metal–organic frameworks (MOFs) are a class of porous materials constructed from metal-rich inorganic nodes and organic linkers. Because of their regular porosity in microporous or mesoporous scale and periodic intra-framework functionality, three-dimensional array of high-density and well-separated active sites can be built in various MOFs; such characteristics render MOFs attractive porous supports for a range of catalytic applications. Furthermore, the electrochemically addressable thin films of such MOF materials are reasonably considered as attractive candidates for electrocatalysis and relevant applications. Although it still constitutes an emerging subfield, the use of MOFs and relevant materials for electrocatalytic applications has attracted much attention in recent years. In this review, we aim to focus on the limitations and commonly seen issues for utilizing MOFs in electrocatalysis and the strategies to overcome these challenges. The research efforts on utilizing MOFs in a range of electrocatalytic applications are also highlighted.
Collapse
|
33
|
Xiao QQ, Liu D, Wei YL, Cui GH. A new multifunctional two-dimensional cobalt(II) metal–organic framework for electrochemical detection of hydrogen peroxide, luminescent sensing of metal ions, and photocatalysis. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
|
35
|
In-situ growth of iron-based metal-organic framework crystal on ordered mesoporous carbon for efficient electrocatalysis of p -nitrotoluene and hydrazine. Anal Chim Acta 2018; 1024:73-83. [DOI: 10.1016/j.aca.2018.03.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 11/17/2022]
|
36
|
Ding Z, Wang C, Feng G, Zhang X. Energy-Transfer Metal-Organic Nanoprobe for Ratiometric Sensing with Dual Response to Peroxynitrite and Hypochlorite. ACS OMEGA 2018; 3:9400-9406. [PMID: 31459073 PMCID: PMC6644704 DOI: 10.1021/acsomega.8b01489] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/03/2018] [Indexed: 05/22/2023]
Abstract
An energy-transfer metal-organic nanoprobe is designed for ratiometric sensing with dual response to both peroxynitrite (ONOO-) and hypochlorite (ClO-). Here, a nanoscale metal-organic framework (NMOF) acts as the energy donor and molecular probe as the acceptor to construct a Förster resonance energy transfer (FRET) nanosystem. Biocompatible dextran conveniently binds to the NMOF surface through multiple weak coordination interactions to improve water dispersibility and cell uptake. Dextran can also coordinate with the molecular probe with arylboronic acid group, which enables the convenient grafting of molecular probes to the NMOF surface to construct energy-transfer nanoprobes. Because of efficient FRET, the bright blue fluorescence of NMOF is quenched, whereas red emission from the acceptor is enhanced. Upon reacting with ONOO-, the probe departs from NMOF and the fluorescence of NMOF is recovered because of the interruption of FRET. When reacting with ClO-, the phenothiazine moiety in the molecular probe is oxidized into phenothiazine-5-oxide, which leads to more efficient energy transfer and the fluorescence shifts from red to orange. The nanoprobes are also successfully applied to the detection of ONOO- and ClO- in living cells.
Collapse
Affiliation(s)
- Zhaoyang Ding
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Chunfei Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Gang Feng
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
37
|
Huang DL, Wang J, Yuan HQ, Guo HS, Ying X, Zhang H, Liu HY. Noncovalently copper-porphyrin functionalized reduced graphene oxide for sensitive electrochemical detection of dopamine. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The nanocomposite of an electron-deficient flat tetrakis-(ethoxycarbonyl) porphyrin copper(II) (Cu-TECP) and reduced grapheme oxide (RGO) was prepared and used for electrochemical detection of dopamine (DA). The prepared nanocomposite was characterized by scanning electron microscopy, Raman spectroscopy, FT-IR spectroscopy, ultraviolet-visible spectroscopy and electrochemical impedance spectroscopy. Electrochemical studies of the modified glass carbon electrode (GCE) were carried out by the cyclic voltammetry and differential pulse voltammograms (DPV) methods. The RGO/Cu-TECP/GCE exhibited enhanced electrocatalytic activity towards the detection of dopamine (DA). The detection limit was 0.58 μM, while the linear range was from 2 to 200 μM ([Formula: see text] 0.997).
Collapse
Affiliation(s)
- Dong-Lan Huang
- Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
- College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China
| | - Jian Wang
- Department of Applied Physics, South China University of Technology, Guangzhou 510641, China
| | - Hui-Qing Yuan
- Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Hui-Shi Guo
- College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China
| | - Xiao Ying
- Department of Applied Physics, South China University of Technology, Guangzhou 510641, China
| | - Hao Zhang
- Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Hai-Yang Liu
- Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
38
|
Lopa NS, Rahman MM, Ahmed F, Sutradhar SC, Ryu T, Kim W. A Ni-based redox-active metal-organic framework for sensitive and non-enzymatic detection of glucose. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.05.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
39
|
Lopa NS, Rahman MM, Ahmed F, Chandra Sutradhar S, Ryu T, Kim W. A base-stable metal-organic framework for sensitive and non-enzymatic electrochemical detection of hydrogen peroxide. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.148] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Fang JJ, Yang NN, Gao EQ. Making metal–organic frameworks electron-deficient for ultrasensitive electrochemical detection of dopamine. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2018.02.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
41
|
Metal–organic framework composites as electrocatalysts for electrochemical sensing applications. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.028] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Franz DM, Dyott ZE, Forrest KA, Hogan A, Pham T, Space B. Simulations of hydrogen, carbon dioxide, and small hydrocarbon sorption in a nitrogen-rich rht-metal–organic framework. Phys Chem Chem Phys 2018; 20:1761-1777. [DOI: 10.1039/c7cp06885a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Detailed theoretical insights into the gas-sorption mechanism of Cu-TDPAH are presented for the first time.
Collapse
Affiliation(s)
- Douglas M. Franz
- Department of Chemistry
- University of South Florida, 4202 East Fowler Avenue
- Tampa
- USA
| | - Zachary E. Dyott
- Department of Chemistry
- University of South Florida, 4202 East Fowler Avenue
- Tampa
- USA
- Theoretical Chemistry Institute
| | - Katherine A. Forrest
- Department of Chemistry
- University of South Florida, 4202 East Fowler Avenue
- Tampa
- USA
| | - Adam Hogan
- Department of Chemistry
- University of South Florida, 4202 East Fowler Avenue
- Tampa
- USA
| | - Tony Pham
- Department of Chemistry
- University of South Florida, 4202 East Fowler Avenue
- Tampa
- USA
| | - Brian Space
- Department of Chemistry
- University of South Florida, 4202 East Fowler Avenue
- Tampa
- USA
| |
Collapse
|
43
|
Zhi L, Liu H, Xu Y, Hu D, Yao X, Liu J. Pyrolysis of metal–organic framework (CuBTC) decorated filter paper as a low-cost and highly active catalyst for the reduction of 4-nitrophenol. Dalton Trans 2018; 47:15458-15464. [DOI: 10.1039/c8dt03327g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fabrication of noble metal free catalysts with excellent performance and high stability by a simple, efficient, general and low-cost approach remains an urgent task for solving the problem of resource shortage.
Collapse
Affiliation(s)
- Lihua Zhi
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Hua Liu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Youyuan Xu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Dongcheng Hu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Xiaoqiang Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Jiacheng Liu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| |
Collapse
|
44
|
Liu L, Zhou Y, Liu S, Xu M. The Applications of Metal−Organic Frameworks in Electrochemical Sensors. ChemElectroChem 2017. [DOI: 10.1002/celc.201700931] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lantao Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu 476000 P. R. China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu 476000 P. R. China
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P. R. China
| | - Shuang Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu 476000 P. R. China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu 476000 P. R. China
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P. R. China
| |
Collapse
|
45
|
Ni B, Ouyang C, Xu X, Zhuang J, Wang X. Modifying Commercial Carbon with Trace Amounts of ZIF to Prepare Derivatives with Superior ORR Activities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1701354. [PMID: 28470970 DOI: 10.1002/adma.201701354] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/01/2017] [Indexed: 05/28/2023]
Abstract
Reducing costs while maintaining high activities and stabilities of oxygen reduction reaction (ORR) catalysts has long been pursued for applications to membrane fuel cells. Here, an absorption-reaction method is used to prepare a zeolitic imidazolate framework coated commercial carbon, and the pyrolysis of such material brings about impressive ORR activities and stabilities with large diffusion-limited current density, half-wave potential, and no obvious decay after 10 000 cyclic voltammetry cycles, which is even better than that of the commercial Pt/C catalysts. The absorption-reaction method is realized by simply soaking the commercial carbon black sequentially in Co(NO3 )2 and 2-methylimidazole solutions at ambient conditions. The detailed analysis on such carbon materials reveals that both Co and N are essential to activities, even the amount of N and Co species is very low. The reduction of raw materials and simplified handling procedures result in well-controlled costs in applications.
Collapse
Affiliation(s)
- Bing Ni
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chen Ouyang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaobin Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jing Zhuang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|