1
|
Zhang X, Li Z, Wang X, Hong L, Yin X, Zhang Y, Hu B, Zheng Q, Cao J. CRISPR/Cas12a integrated electrochemiluminescence biosensor for pufferfish authenticity detection based on NiCo 2O 4 NCs@Au as a coreaction accelerator. Food Chem 2024; 445:138781. [PMID: 38401312 DOI: 10.1016/j.foodchem.2024.138781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Meat adulteration has brought economic losses, health risks, and religious concerns, making it a pressing global issue. Herein, combining the high amplification efficiency of polymerase chain reaction (PCR) and the accurate recognition of CRISPR/Cas12, a sensitive and reliable electrochemiluminescence (ECL) biosensor was developed for the detection of pufferfish authenticity using NiCo2O4 NCs@Au-ABEI as nanoemitters. In the presence of target DNA, the trans-cleavage activity of CRISPR/Cas12a is activated upon specific recognition by crRNA, and then it cleaves dopamine-modified single stranded DNA (ssDNA-DA), triggering the ECL signal from the "off" to "on" state. However, without target DNA, the trans-cleavage activity of CRISPR/Cas12a is silenced. By rationally designing corresponding primers and crRNA, the biosensor was applied to specific identification of four species of pufferfish. Furthermore, as low as 0.1 % (w/w) adulterate pufferfish in mixture samples could be detected. Overall, this work provides a simple, low-cost and sensitive approach to trace pufferfish adulteration.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Zhiru Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Xiuwen Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Lin Hong
- Dalian Inspection and Testing Certification Technical Service Center, Dalian 116021, China
| | - Xinying Yin
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yan Zhang
- Standards and Quality Center of National Food and Strategic Reserves Administration, Beijing 100834, China
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Qiuyue Zheng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
2
|
Liu LE, Xue L, Li Y, Ji J, Yuan X, Han H, Ding L, Wu Y, Yang R. MOFs-derived Co 3O 4@MnO 2@Carbon dots with enhanced nanozymes activity for photoelectrochemical detection of cancer cells in whole blood. Talanta 2024; 266:125095. [PMID: 37625292 DOI: 10.1016/j.talanta.2023.125095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Nanozymes have attracted widespread attention, and rationally designing high-activity nanozymes to improve their application performance are a long-term objective. Herein, taking metal-organic frameworks-derived Co3O4 polyhedron with large surface area and high porosity as nanoconfinement carriers, Co3O4@MnO2@CDs polyhedron was successfully synthesized by the room-temperature reduction of MnO4- ions and physical load of carbon dots (CDs). Through cancer cells-triggered double antibody sandwich strategy, the Co3O4@MnO2@CDs polyhedron were introduced to the TiO2 nanoparticle (NPs) modified electrode, leading to the decreased photocurrent. The Co3O4@MnO2@CDs polyhedron can not only quench the photocurrent of TiO2 NPs, also act as nanozymes to catalyze precipitates. Moreover, the precipitates can not only reduce the photoelectrochemical (PEC) response, also increase the quenching capacity of the Co3O4@MnO2@CDs polyhedron. Additionally, the steric hindrance effect of the Co3O4@MnO2@CDs-Ab conjugates further weaken the photocurrent. Based on the multifunctional Co3O4@MnO2@CDs polyhedron, the proposed PEC biosensor for the detection of A549 cancer cells exhibits a wide linear range from 102 to 106 cells/mL and a low detection limit of 11 cells/mL. Furthermore, this strategy can differentiate between lung cancer patients and healthy individuals. The designed multifunctional Co3O4@MnO2@CDs nanozymes provide a new horizon for PEC detection of cancer cells, and may have great potential in early clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Li-E Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Linsheng Xue
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuling Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiangying Ji
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinxin Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Hangchen Han
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiying Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Liu Y, Fan X, Zhang Z, Li C, Zhang S, Li Z, Liu L. Oxygen-doped NiCoP derived from Ni-MOFs for high performance asymmetric supercapacitor. NANOTECHNOLOGY 2023; 34:475702. [PMID: 37579745 DOI: 10.1088/1361-6528/acefd7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Oxygen doping strategy is one of the most effective methods to improve the electrochemical properties of nickel-cobalt phosphide (NiCoP)-based capacitors by adjusting its inherent electronic structure. In this paper, O-doped NiCoP microspheres derived from porous nanostructured nickel metal-organic frameworks (Ni-MOFs) were constructed through solvothermal method followed by phosphorization treatment. The O-doping concentration has a siginificant influence on the rate performance and cycle stability. The optimized O-doped NiCoP electrode material shows a specific capacitance of 632.4 F-g-1at 1 A-g-1and a high retention rate of 56.9% at 20 A g-1. The corresponding NiCoP-based asymmetric supercapacitor exhibits a high energy density of 30.1 Wh kg-1when the power density is 800.9 W kg-1, and can still maintain 82.1% of the initial capacity after 10 000 cycles at 5 A g-1.
Collapse
Affiliation(s)
- Yan Liu
- School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, Shandong, People's Republic of China
| | - Xiaoyan Fan
- School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, Shandong, People's Republic of China
| | - Zikun Zhang
- School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, Shandong, People's Republic of China
| | - Chun Li
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao 266100, Shandong, People's Republic of China
| | - Shuaiyi Zhang
- School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, Shandong, People's Republic of China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, People's Republic of China
| | - Lin Liu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, People's Republic of China
| |
Collapse
|
4
|
Wang L, Yang H, Wang L, Li Y, Yang W, Sun X, Gao L, Dou M, Li D, Dou J. Constructing interface engineering and tailoring a nanoflower-like FeP/CoP heterostructure for enhanced oxygen evolution reaction. RSC Adv 2023; 13:15031-15040. [PMID: 37200703 PMCID: PMC10186991 DOI: 10.1039/d3ra01096a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023] Open
Abstract
The inexpensive and highly efficient electrocatalysts toward oxygen evolution reaction (OER) in water splitting electrolysis have displayed promising practical applications to relieve energy crisis. Herein, we prepared a high-yield and structurally regulated bimetallic cobalt-iron phosphide electrocatalyst by a facile one-pot hydrothermal reaction and subsequent low-temperature phosphating treatment. The tailoring of nanoscale morphology was achieved by varying the input ratio and phosphating temperature. Thus, an optimized FeP/CoP-1-350 sample with the ultra-thin nanosheets assembled into a nanoflower-like structure was obtained. FeP/CoP-1-350 heterostructure displayed remarkable activity toward the OER with a low overpotential of 276 mV at a current density of 10 mA cm-2, and a low Tafel slope of only 37.71 mV dec-1. Long-lasting durability and stability were maintained with the current with almost no obvious fluctuation. The enhanced OER activity was attributed to the presence of copious active sites from the ultra-thin nanosheets, the interface between CoP and FeP components, and the synergistic effect of Fe-Co elements in the FeP/CoP heterostructure. This study provides a feasible strategy to fabricate highly efficient and cost-effective bimetallic phosphide electrocatalysts.
Collapse
Affiliation(s)
- Linhua Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University 252059 Liaocheng P. R. China
| | - Hua Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University 252059 Liaocheng P. R. China
| | - Lulan Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University 252059 Liaocheng P. R. China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University 252059 Liaocheng P. R. China
| | - Wenning Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University 252059 Liaocheng P. R. China
| | - Xu Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 Shandong P. R. China
| | - Lingfeng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 Shandong P. R. China
| | - Mingyu Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University 252059 Liaocheng P. R. China
| | - Dacheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University 252059 Liaocheng P. R. China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University 252059 Liaocheng P. R. China
| |
Collapse
|
5
|
Chen F, Bao L, Zhang Y, Wang R, Liu J, Hai W, Liu Y. NiCoP/g-C 3N 4 Nanocomposites-Based Electrochemical Immunosensor for Sensitive Detection of Procalcitonin. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094348. [PMID: 37177552 PMCID: PMC10181558 DOI: 10.3390/s23094348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Herein, an ultra-sensitive and facile electrochemical biosensor for procalcitonin (PCT) detection was developed based on NiCoP/g-C3N4 nanocomposites. Firstly, NiCoP/g-C3N4 nanocomposites were synthesized using hydrothermal methods and then functionalized on the electrode surface by π-π stacking. Afterward, the monoclonal antibody that can specifically capture the PCT was successfully linked onto the surface of the nanocomposites with a 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-Hydroxysuccinimide (NHS) condensation reaction. Finally, the modified sensor was employed for the electrochemical analysis of PCT using differential Pulse Voltammetry(DPV). Notably, the larger surface area of g-C3N4 and the higher electron transfer capacity of NiCoP/g-C3N4 endow this sensor with a wider detection range (1 ag/mL to 10 ng/mL) and an ultra-low limit of detection (0.6 ag/mL, S/N = 3). In addition, this strategy was also successfully applied to the detection of PCT in the diluted human serum sample, demonstrating that the developed immunosensors have the potential for application in clinical testing.
Collapse
Affiliation(s)
- Furong Chen
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Layue Bao
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ying Zhang
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ruili Wang
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China
| | - Jinghai Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Wenfeng Hai
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yushuang Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
6
|
Patil R, Liu S, Yadav A, Khaorapapong N, Yamauchi Y, Dutta S. Superstructures of Zeolitic Imidazolate Frameworks to Single- and Multiatom Sites for Electrochemical Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203147. [PMID: 36323587 DOI: 10.1002/smll.202203147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The exploration of electrocatalysts with high catalytic activity and long-term stability for electrochemical energy conversion is significant yet remains challenging. Zeolitic imidazolate framework (ZIF)-derived superstructures are a source of atomic-site-containing electrocatalysts. These atomic sites anchor the guest encapsulation and self-assembly of aspheric polyhedral particles produced using microreactor fabrication. This review provides an overview of ZIF-derived superstructures by highlighting some of the key structural types, such as open carbon cages, 1D superstructures, hollow structures, and the interconversion of superstructures. The fundamentals and representative structures are outlined to demonstrate the role of superstructures in the construction of materials with atomic sites, such as single- and dual-atom materials. Then, the roles of ZIF-derived single-atom sites for the electroreduction of CO2 and electrochemical synthesis of H2 O2 are discussed, and their electrochemical performance for energy conversion is outlined. Finally, the perspective on advancing single- and dual-atom electrode-based electrochemical processes with enhanced redox activity and a low-impedance charge-transfer pathway for cathodes is provided. The challenges associated with ZIF-derived superstructures for electrochemical energy conversion are discussed.
Collapse
Affiliation(s)
- Rahul Patil
- Electrochemical Energy and Sensor Research Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, 201303, Noida, India
| | - Shude Liu
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Anubha Yadav
- Electrochemical Energy and Sensor Research Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, 201303, Noida, India
| | - Nithima Khaorapapong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, 40002, Khon Kaen, Thailand
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Saikat Dutta
- Electrochemical Energy and Sensor Research Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, 201303, Noida, India
| |
Collapse
|
7
|
Yao H, Jin G, Sui G, Li J, Guo D, Liang S, Luo Z, Xu R, Wang C, Tang J. ZIF-67-derived ZnIn2S4/NiCoP Z-scheme heterojunctions for enhanced visible-light-driven photocatalytic hydrogen production. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
High-Performance Asymmetric Supercapacitor Based on Nickel-MOF Anchored MXene//NPC/rGO. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
9
|
Tailoring the structure and function of metal organic framework by chemical etching for diverse applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Gebreslase GA, Martínez-Huerta MV, Sebastián D, Lázaro MJ. NiCoP/CoP sponge-like structure grown on stainless steel mesh as a high-performance electrocatalyst for hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Ding L, Yu Z, Sun L, Jiang R, Hou Y, Huang J, Zhu H, Zhong T, Chen H, Lian C. Microelectronic structure changes electron utilization: Core-shell structure catalysts with electron library and quantum dots for photocatalytic hydrogen production. J Colloid Interface Sci 2022; 623:660-673. [DOI: 10.1016/j.jcis.2022.05.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 01/17/2023]
|
12
|
Battiato S, Bruno L, Pellegrino AL, Terrasi A, Mirabella S. ×Optimized electroless deposition of NiCoP electrocalysts for enhanced water splitting. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Zhang C, Xu Z, Yu Y, Long A, Ge X, Song Y, An Y, Gu Y. Ternary NiMoCo alloys and fluffy carbon nanotubes grown on ZIF-67-derived polyhedral carbon frameworks as bifunctional electrocatalyst for efficient and stable overall water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Synthesis of Self-Supported Cu/Cu3P Nanoarrays as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Catalysts 2022. [DOI: 10.3390/catal12070762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Owing to the energy crisis and environmental pollution, it is essential to develop cheap, environmentally friendly and sustainable energy to replace noble metal electrocatalysts for use in the hydrogen evolution reaction (HER). We report herein that a Cu/Cu3P nanoarray catalyst was directly grown on the surfaces of Cu nanosheets from its Cu/CuO nanoarray precursor by a low-temperature phosphidation process. In particular, the effects of phosphating distance, mass ratio and temperature on the morphology of Cu/Cu3P nanoarrays were studied in detail. This nanoarray, as an electrocatalyst, displays excellent catalytic performance and long-term stability in an acid solution for electrochemical hydrogen generation. Specifically, the Cu/Cu3P nanoarray-270 exhibits a low onset overpotential (96 mV) and a small Tafel slope (131 mV dec−1).
Collapse
|
15
|
Ogundipe TO, Shen L, YanShi, Lu Z, Yan C. Recent Advances on Bimetallic Transition Metal Phosphides for Enhanced Hydrogen Evolution Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202200291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Taiwo Oladapo Ogundipe
- Hydrogen Production and Utilization Group Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- CAS Key Lab of Renewable Energy Guangdong Key Lab of New and Renewable Energy Research and Development Guangzhou 510640 P.R. China
- University of Chinese Academy of Sciences Beijing 100039 P.R. China
| | - Lisha Shen
- Hydrogen Production and Utilization Group Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- CAS Key Lab of Renewable Energy Guangdong Key Lab of New and Renewable Energy Research and Development Guangzhou 510640 P.R. China
| | - YanShi
- Hydrogen Production and Utilization Group Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- CAS Key Lab of Renewable Energy Guangdong Key Lab of New and Renewable Energy Research and Development Guangzhou 510640 P.R. China
| | - Zhuoxin Lu
- Hydrogen Production and Utilization Group Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- CAS Key Lab of Renewable Energy Guangdong Key Lab of New and Renewable Energy Research and Development Guangzhou 510640 P.R. China
| | - Changfeng Yan
- Hydrogen Production and Utilization Group Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- CAS Key Lab of Renewable Energy Guangdong Key Lab of New and Renewable Energy Research and Development Guangzhou 510640 P.R. China
| |
Collapse
|
16
|
The ORR activity of nitrogen doped-reduced graphene oxide below decomposition temperature cooperated with cobalt prepared by strong electrostatic adsorption technique. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Chen J, Ying J, Xiao Y, Dong Y, Ozoemena KI, Lenaerts S, Yang X. Stoichiometry design in hierarchical CoNiFe phosphide for highly efficient water oxidation. SCIENCE CHINA MATERIALS 2022; 65:2685-2693. [PMID: 35668742 PMCID: PMC9136762 DOI: 10.1007/s40843-022-2061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Rational composition design of trimetallic phosphide catalysts is of significant importance for enhanced surface reaction and efficient catalytic performance. Herein, hierarchical Co x Ni y Fe z P with precise control of stoichiometric metallic elements (x:y:z = (1-10):(1-10):1) has been synthesized, and Co1.3Ni0.5Fe0.2P, as the most optimal composition, exhibits remarkable catalytic activity (η = 320 mV at 10 mA cm-2) and long-term stability (ignorable decrease after 10 h continuous test at the current density of 10 mA cm-2) toward oxygen evolution reaction (OER). It is found that the surface P in Co1.3Ni0.5Fe0.2P was replaced by O under the OER process. The density function theory calculations before and after long-term stability tests suggest the clear increasing of the density of states near the Fermi level of Co1.3Ni0.5Fe0.2P/Co1.3Ni0.5Fe0.2O, which could enhance the OH- adsorption of our electrocatalysts and the corresponding OER performance. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material is available in the online version of this article at 10.1007/s40843-022-2061-x.
Collapse
Affiliation(s)
- Jiangbo Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070 China
| | - Jie Ying
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082 China
| | - Yuxuan Xiao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082 China
| | - Yuan Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070 China
| | - Kenneth I. Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Johannesburg, 2050 South Africa
| | - Silvia Lenaerts
- Research Group Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerp, 2020 Belgium
| | - Xiaoyu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070 China
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 USA
| |
Collapse
|
18
|
Bodhankar PM, Sarawade PB, Kumar P, Vinu A, Kulkarni AP, Lokhande CD, Dhawale DS. Nanostructured Metal Phosphide Based Catalysts for Electrochemical Water Splitting: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107572. [PMID: 35285140 DOI: 10.1002/smll.202107572] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Amongst various futuristic renewable energy sources, hydrogen fuel is deemed to be clean and sustainable. Electrochemical water splitting (EWS) is an advanced technology to produce pure hydrogen in a cost-efficient manner. The electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the vital steps of EWS and have been at the forefront of research over the past decades. The low-cost nanostructured metal phosphide (MP)-based electrocatalysts exhibit unconventional physicochemical properties and offer very high turnover frequency (TOF), low over potential, high mass activity with improved efficiency, and long-term stability. Therefore, they are deemed to be potential electrocatalysts to meet practical challenges for supporting the future hydrogen economy. This review discusses the recent research progress in nanostructured MP-based catalysts with an emphasis given on in-depth understanding of catalytic activity and innovative synthetic strategies for MP-based catalysts through combined experimental (in situ/operando techniques) and theoretical investigations. Finally, the challenges, critical issues, and future outlook in the field of MP-based catalysts for water electrolysis are addressed.
Collapse
Affiliation(s)
- Pradnya M Bodhankar
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Vidyanagari, Santacruz, Mumbai, 400098, India
- Department of Physics, University of Mumbai, Vidyanagari, Santacruz, Mumbai, 400098, India
| | - Pradip B Sarawade
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Vidyanagari, Santacruz, Mumbai, 400098, India
- Department of Physics, University of Mumbai, Vidyanagari, Santacruz, Mumbai, 400098, India
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Aniruddha P Kulkarni
- Department of Chemical and Biological Engineering, Monash University, Victoria, 3800, Australia
| | - Chandrakant D Lokhande
- Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, 416 006, India
| | - Dattatray S Dhawale
- Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, 416 006, India
| |
Collapse
|
19
|
Nickel-Cobalt Phosphide Terephthalic acid Nano-heterojunction as Excellent Bifunctional Electrocatalyst for Overall Water Splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Chinnadurai D, Manivelan N, Kandasamy P. Modulating the intrinsic electrocatalytic activity of copper sulfide by silver doping for electrocatalytic overall water splitting. ChemElectroChem 2022. [DOI: 10.1002/celc.202200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Prabakar Kandasamy
- Pusan National University Electrical and Computer Engineering San 30, Geumjeong-Ku, Jangjeon-Dong 609-735 Pusan KOREA, REPUBLIC OF
| |
Collapse
|
21
|
Fu R, Jiao Q, Feng X, Zhu H, Yang C, Feng C, Li H, Zhang Y, Shi D, Wu Q, Zhao Y. Metal - organic frameworks derived Ni 5P 4/NC@CoFeP/NC composites for highly efficient oxygen evolution reaction. J Colloid Interface Sci 2022; 617:585-593. [PMID: 35303642 DOI: 10.1016/j.jcis.2022.02.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 01/06/2023]
Abstract
As an efficient non-precious metal catalyst for the oxygen evolution reaction (OER), phosphides suffer from poor electrical conductivity, so it is still a challenge to reasonably design their structures to further improve their conductivity and OER performances. Here, we present a novel Ni5P4/N-doped carbon@CoFeP/N-doped carbon composite (Ni5P4/NC@CoFeP/NC) as electrocatalysts for OER. This elaborate structure consists of Ni5P4/NC derived from Ni-MOF and CoFeP/NC derived from CoFe-Prussian blue analog MOF (Co-Fe PBA). The cube-like CoFeP/NC are scattered and uniformly coated on the sheet of Ni5P4/NC flowers. Among them, NC can enhance the conductivity of phosphides, while CoFeP/NC can increase the electrochemical active area, which benefit the properties of Ni5P4/NC@CoFeP/NC. Notably, the Ni5P4/NC@CoFeP/NC catalyst possesses outstanding OER performances with a low overpotential of 260 and 303 mV at a current density of 10 and 100 mA·cm-2, an ultra-low Tafel slope of 31.1 mV·dec-1 and excellent stability in 1 M KOH. XPS analysis shows that proper chemical composition promotes the oxidation of transition metal species and the chemisorption of OH-, thus accelerating the OER kinetics. Therefore, this work provides a hopeful method for designing and preparing transition metal phosphide/carbon composite as OER electrocatalysts.
Collapse
Affiliation(s)
- Ruru Fu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Qingze Jiao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China; School of Materials and Environment, Beijing Institute of Technology, Zhuhai, Guangdong 519085, PR China
| | - Xueting Feng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Huanhuan Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chao Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Caihong Feng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hansheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yaoyuan Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Daxin Shi
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Qin Wu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yun Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
22
|
Growth of branched heterostructure of nickel and iron phosphides on carbon cloth as electrode for hydrogen evolution reaction under wide pH ranges. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05117-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Ding L, Sun Q, Yu Z, Sun L, Jiang R, Hou Y, Huang J, Zhong T, Chen H, Lian C, Fan B. Adjusting the match-degree between electron library and surface-active sites and forming surface polarization in MOF-based photo-cocatalysts for accelerating electron transfer. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01323a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Ni-CoP supported by a carbon matrix as the cocatalyst is synthesized by precisely controlling the pyrolysis temperature for the metal–organic framework, then loaded onto the CdS host catalyst by means of self-assembly for photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Ling Ding
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| | - Qianqian Sun
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| | - Zebin Yu
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| | - Lei Sun
- School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China
| | - Ronghua Jiang
- School of Chemical and Environmental Engineering, Shaoguan University, Shaoguan 512005, P. R. China
| | - Yanping Hou
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| | - Jun Huang
- College of Civil Engineering & Architecture, Guangxi University, Nanning 530004, P. R. China
| | - Tao Zhong
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| | - Huajiao Chen
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| | - CuiFang Lian
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| | - Ben Fan
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| |
Collapse
|
24
|
Huang Q, Guo Y, Chen J, Lou Y, Zhao Y. NiCoP modified lead-free double perovskite Cs 2AgBiBr 6 for efficient photocatalytic hydrogen generation. NEW J CHEM 2022. [DOI: 10.1039/d2nj00435f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A NiCoP/Cs2AgBiBr6 composite was successfully synthesised via electrostatic coupling to achieve a hydrogen generation rate of 12.5%, which was ∼88 times higher than that of pure Cs2AgBiBr6.
Collapse
Affiliation(s)
- Qiao Huang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yanmei Guo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Jinxi Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
25
|
Song H, Liu S, Sun Z, Han Y, Xu J, Xu Y, Wu J, Meng H, Xu X, Sun T, Zhang X. Rational design of direct Z-scheme heterostructure NiCoP/ZIS for highly efficient photocatalytic hydrogen evolution under visible light irradiation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Zhang L, Peng J, Yuan Y, Peng K. Magnetic enhancement of oxygen evolution reaction performance of NiCo-spinel oxides. NANOTECHNOLOGY 2021; 32:505716. [PMID: 34547727 DOI: 10.1088/1361-6528/ac28d6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Low-cost and high-efficiency transition metal oxide catalysts are desired for high-efficiency water splitting technology. An applying magnetic field (MF) enhancement method is presented to improve the oxygen evolution reaction (OER) performance of NiCo-spinel magnetic catalysts, the enhancement of OER performance depends on the applied MF strength and magnetic properties of catalysts. The maximum enhanced current density percentage of about 90.6%, 93.7%, and 70.1% are obtained by applying 105 mT MF in NiCo2O4, Ni1.5Co1.5O4, and Ni2CoO4, respectively. The enhanced performance originates from the improved intrinsic activity and facilitated mass transfer process. The MF decreases the activation energy, which then leads to the improvement of intrinsic activity. This work provides more basic data for further gaining into the enhanced mechanism by applying the MF, meanwhile, the strategy can be used to enhance the performances of other electrocatalysts.
Collapse
Affiliation(s)
- Lei Zhang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Jiehai Peng
- College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Yuan Yuan
- College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Kun Peng
- College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
- Hunan Engineering Technology Research Center for Microwave Devices and Equipment, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
27
|
Wu Z, Niu H, Chen J, Chen J. Metal-organic frameworks-derived hierarchical Co 3O 4/CoNi-layered double oxides nanocages with the enhanced catalytic activity for toluene oxidation. CHEMOSPHERE 2021; 280:130801. [PMID: 34162122 DOI: 10.1016/j.chemosphere.2021.130801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 06/13/2023]
Abstract
The development of active transition-metal oxide (TMO) catalysts for the abatement of volatile organic compounds (VOCs) remains a great challenge. Controllable synthesis of TMOs with specific morphology and suitable composition is a promising way for acquiring efficient oxidation catalysts. Herein, a series of hierarchical Co3O4/CoNi-layered double oxides (CoNi-LDO) nanocages covered by interlaced nanosheets were synthesized using a cobalt metal-organic framework (Co-MOF)-based strategy. The textural properties, morphology, surface chemical state, and reducibility of the CoNi-LDO catalysts were systematically characterized by various techniques. The catalytic activity toward toluene oxidation and the stability performance was investigated. Results demonstrated that the morphology, composition, and textual properties can be controlled by tuning the post-synthetic etching reaction conditions. Benefiting from the structural and compositional merits, as well as the superior low-temperature reducibility, the CoNi-LDO-1 catalyst (Ni/Co molar ratio was 0.39) with core-shell structure exhibited excellent activity toward toluene oxidation. Our work offers a new strategy for the design of high-performance oxidation catalysts for the abatement of VOCs.
Collapse
Affiliation(s)
- Zhiruo Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huimin Niu
- Key Laboratory of Microbial Technology for Industrial Pollution Control, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jinghuan Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jianmeng Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316004, China
| |
Collapse
|
28
|
Mutinda SI, Batugedara TN, Brown B, Brock SL. Co
2‐x
Rh
x
P Nanoparticles for Overall Water Splitting in Basic Media: Activation by Phase‐Segregation‐Assisted Nanostructuring at the Anode. ChemCatChem 2021. [DOI: 10.1002/cctc.202100483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Benjamin Brown
- Department of Chemistry Wayne State University Detroit MI 48202 USA
| | | |
Collapse
|
29
|
Ayom GE, Khan MD, Choi J, Gupta RK, van Zyl WE, Revaprasadu N. Synergistically enhanced performance of transition-metal doped Ni 2P for supercapacitance and overall water splitting. Dalton Trans 2021; 50:11821-11833. [PMID: 34369503 DOI: 10.1039/d1dt01058a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cost-effective and readily available catalysts applicable for electrochemical conversion technologies are highly desired. Herein, we report the synthesis of dithiophosphonate complexes of the type [Ni{S2P(OH)(4-CH3OC6H4)}2] (1), [Co{S2P(OC4H9)(4-CH3OC6H4)}3] (2) and [Fe{S2P(OH)(4-CH3OC6H4)}3] (3) and employed them to prepare Ni2P, Co-Ni2P and Fe-Ni2P nanoparticles. Ni2P was formed by a facile hot injection method by decomposing complex 1 in tri-octylphosphine oxide/tri-n-octylphosphine at 300 °C. The prepared Ni2P was doped with Co and Fe employing complexes 2 and 3, respectively, under similar experimental conditions. Doping Ni2P with Co and Fe demonstrated synergistic improvement of Ni2P performance as an electrocatalyst in supercapcitance, hydrogen evololution and oxygen evolution reactions in alkaline medium. Cobalt doping improved the Ni2P charge storage capacity with a supercapacitance of 864 F g-1 at 1 A g-1 current density. Fe doped Ni2P recorded the lowest overpotential of 259 mV to achieve a current density of 10 mA cm-2 and a Tafel slope of 80 mV dec-1 for OER, better than the undoped Ni2P and the benchmark IrO2. Likewise, Fe-doped Ni2P electrode required the lowest overpotential of 68 mV with a Tafel slope of 110 mV dec-1 to attain the same current density for HER. All catalysts showed excellent stability in supercapacitance and overall water splitting reactions, indicating their practical use in energy conversion technologies.
Collapse
Affiliation(s)
- Gwaza Eric Ayom
- Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa 3880, South Africa.
| | | | | | | | | | | |
Collapse
|
30
|
Controlled Synthesis of NiCoP/g‐C
3
N
4
Heterostructured Hybrids for Enhanced Visible‐Light‐Driven Hydrogen Evolution. ChemistrySelect 2021. [DOI: 10.1002/slct.202101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Partanen L, Alberti S, Laasonen K. Hydrogen adsorption trends on two metal-doped Ni 2P surfaces for optimal catalyst design. Phys Chem Chem Phys 2021; 23:11538-11547. [PMID: 33969865 DOI: 10.1039/d1cp00684c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we looked at the hydrogen evolution reaction on the doubly doped Ni3P2 terminated Ni2P surface. Two Ni atoms in the first three layers of the Ni2P surface model were exchanged with two transition metal atoms. We limited our investigation to combinations of Al, Co, and Fe based on their individual effectiveness as Ni2P dopants in our previous computational studies. The DFT calculated hydrogen adsorption free energy was employed as a predictor of the materials' catalytic HER activity. Our results indicate that the combination of Co and Fe dopants most improves the catalytic activity of the surface through the creation of multiple novel and active catalytic sites.
Collapse
Affiliation(s)
- Lauri Partanen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| | - Simon Alberti
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| | - Kari Laasonen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| |
Collapse
|
32
|
Gao M, Wang Z, Sun S, Jiang D, Chen M. Interfacial engineering of CeO 2 on NiCoP nanoarrays for efficient electrocatalytic oxygen evolution. NANOTECHNOLOGY 2021; 32:195704. [PMID: 33508817 DOI: 10.1088/1361-6528/abe0e5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transition metal phosphides (TMP)-based oxygen evolution reaction (OER) catalysts constructed by interface engineering strategy have a broad prospect due to their low cost and good performance. Herein, a novel CeO2/NiCoP nanoarray with intimate phosphide (NiCoP)-oxide (CeO2) interface was developed via in situ generation on nickel foam (NF). This structure is conducive to increasing active sites and accelerating charge transfer, and may be conducive to regulating electronic structure and adsorption energy. As expected, optimal 1.4-CeO2/NiCoP/NF delivers a low overpotential of 249 mV at the current density of 10 mA cm-2 with a Tafel slope of 77.2 mV dec-1. CeO2/NiCoP/NF boasts one of the best OER catalytic materials among recently reported phosphides (TMP)-based OER catalysts and composite catalysts involving CeO2. This work provides an effective strategy for the construction of hetero-structure with CeO2 with oxygen vacancies to improve the OER performance of phosphides.
Collapse
Affiliation(s)
- Menghan Gao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China
| | - Zhihong Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China
| | - Shichao Sun
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China
| | - Min Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
33
|
Ramachandran R, Wang F. Efficient degradation of organic dye using Ni-MOF derived NiCo-LDH as peroxymonosulfate activator. CHEMOSPHERE 2021; 271:128509. [PMID: 33087258 DOI: 10.1016/j.chemosphere.2020.128509] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 05/23/2023]
Abstract
Nickel-based metal-organic framework (Ni-MOF) was employed as a sacrificial template for the preparation of nickel-cobalt layered double hydroxide (NiCo-LDH) under different hydrolysis time. The template etching rate varied at different hydrolysis time, resulting in variations of the structural and morphology of NiCo-LDHs. The NiCo-LDH/10 sample showed a large specific surface area and the well-oriented larger dimension of thinner sheets due to the sufficient in-situ etching of the Ni-MOF template. The NiCo-LDH/10 was an excellent heterogeneous catalyst to activate peroxymonosulfate (PMS) for highly efficient Reactive Red-120 dye degradation. The results exhibited that the degradation efficiency of the NiCo-LDH/10-PMS catalyst was 89% for RR-120 dye within 10 min in the presence of the PMS system, which is higher than other NiCo-LDHs. Moreover, the other influencing factors such as PMS concentration, catalyst dosage, initial pH were also investigated towards degradation. The radical quenching measurement proved that the sulfate (SO4•-) and hydroxyl (OH•) had been indicated as the primary radicals. Besides, the NiCo-LDH/10-PMS catalyst showed excellent reusability even after five consecutive cycles (83.6% of the degradation efficiency). This work offer insight study on the construction of controlled morphology NiCo-LDH heterogeneous structure for high-efficiency PMS activation.
Collapse
Affiliation(s)
- Rajendran Ramachandran
- SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China; School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Fei Wang
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China; Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Shenzhen, 518055, China.
| |
Collapse
|
34
|
Fu L, Kang C, Xiong W, Tian P, Cao S, Wan S, Chen H, Zhou C, Liu Q. WS 2 nanosheets@ZIF-67-derived N-doped carbon composite as sodium ion battery anode with superior rate capability. J Colloid Interface Sci 2021; 595:59-68. [PMID: 33813225 DOI: 10.1016/j.jcis.2021.03.127] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/30/2022]
Abstract
Devising novel composite electrodes with particular structural/electrochemical characteristics becomes an efficient strategy to advance the performance of rechargeable battery. Herein, considering the homogeneous transition metal sulfide with N-doped carbon derived from zeolitic imidazolate framework-67 (ZIF-67) and WS2 with large interlayer spacing, a laurel-leaf-like Co9S8/WS2@N-doped carbon bimetallic sulfide (Co9S8/WS2@NC) is engineered and prepared via a step-by-step method. As an electrode material for sodium ion batteries (SIBs), Co9S8/WS2@NC composite delivers high capacities of 480 and 405 mA h g-1 at 0.1 and 1.0 A g-1, respectively. As the current density increases from 0.1 to 5.0 A g-1, it provides specific capacity of 359 mA h g-1 with a capacity retention rate of 78.0%, which is higher than that of Co9S8@NC (63.5%) and WS2 (58.6%). The Co9S8/WS2@NC composite anode maintains a stable specific capacity (354 mA h g-1 at 2.0 A g-1). It also exhibits a high capacitive contribution ratio of 90.8% at 1.0 mV s-1. This study provides a new and reliable insight for designing bimetallic sulfide with two-dimensional nanostructure for energy storage.
Collapse
Affiliation(s)
- Likang Fu
- School of Physics and Technology, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Chenxia Kang
- School of Physics and Technology, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Wenqi Xiong
- School of Physics and Technology, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Pengfu Tian
- School of Physics and Technology, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Shiyue Cao
- School of Physics and Technology, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Shuyun Wan
- School of Physics and Technology, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Hongyi Chen
- School of Physics and Technology, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Chengbao Zhou
- School of Physics and Technology, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Qiming Liu
- School of Physics and Technology, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
35
|
Zeng L, Cao B, Wang X, Liu H, Shang J, Lang J, Cao X, Gu H. Ultrathin amorphous iron-doped cobalt-molybdenum hydroxide nanosheets for advanced oxygen evolution reactions. NANOSCALE 2021; 13:3153-3160. [PMID: 33527975 DOI: 10.1039/d0nr08408e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing the highly efficient and low-cost electrocatalysts for the oxygen evolution reactions (OERs), as vital half reactions of water splitting, is crucial for renewable energy technology. The electrocatalysts based on multi-component and hierarchically structured non-noble metal hydr(oxy)oxide materials are of great prospects. Herein, we report an efficient strategy at low temperatures for synthesizing amorphous iron-doped cobalt-molybdenum ultrathin hydroxide (Fe-CoMo UH) nanosheets. Benefiting from the ultrathin amorphous structure and multi-metal coordination, Fe-CoMo UH nanosheets exhibit outstanding performance for OERs with a low overpotential of 245 mV at 10 mA cm-2, a small Tafel slope of 37 mV dec-1 and an excellent stability for 90 h. The mass activity of Fe-CoMo UH is higher than that of commercial Ir/C and most of the transition metal hydroxide catalysts. This work provides a feasible consideration for the construction of promising efficient non-noble metal catalysts.
Collapse
Affiliation(s)
- Lingjian Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Jiangsu, 215123, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang J, Chen C, Cai N, Wang M, Li H, Yu F. High topological tri-metal phosphide of CoP@FeNiP toward enhanced activities in oxygen evolution reaction. NANOSCALE 2021; 13:1354-1363. [PMID: 33410846 DOI: 10.1039/d0nr06615j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of non-precious metal electrocatalysts with high activity, good durability and low cost to replace precious metal electrocatalysts is highly demanded for oxygen evolution reaction (OER). However, the higher overpotential, less catalytic sites and lower catalytic rate of precious metal electrocatalysts affect their practical application, which needs to be optimized from the aspects of structural design (e.g., specific morphology/particle size, geometric/electronic structures). In this study, we reported a high topological tri-metal phosphide of CoP@FeNiP derived from the composite structure of ZIF-67 twined on a FeNi-LDH shelled with ultrathin carbon networks (ZIF-67/FeNi-LDH) grown on a nickel foam. In the synthesis process of FeNi-LDH, the addition of polyvinylpyrrolidone (PVP) promoted the self-assembly of the topological structure of FeNi-LDH and further nucleation of the topological structure of the ZIF-67 precursor on FeNi-LDH. Besides, CoP@FeNiP inherits the topological structure of ZIF-67/FeNi-LDH. The obtained CoP@FeNiP/NF shows superior OER performance with a low overpotential of ∼283 mV at 100 mA cm-2, a low Tafel slope of ∼31.8 mV dec-1 and a conservation rate of catalytic activity of ∼98% after 110 h of continuous electrolysis at 10 mA cm-2. The remarkable activity of CoP@FeNiP/NF can be attributed to its unique structural features, such as the hierarchical morphology, large surface area, ultrathin carbon networks and the feature of phosphide, all of which simultaneously promote the OER process. The extraordinary catalytic activities and stability of CoP@FeNiP/NF are significant to meet the industrial requirements for bulk water electrocatalysis.
Collapse
Affiliation(s)
- Jianzhi Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Chen Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Ning Cai
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Miao Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Hui Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Faquan Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
37
|
Wei Y, Zhang X, Wang Z, Yin J, Huang J, Zhao G, Xu X. Metal-organic framework derived NiCoP hollow polyhedrons electrocatalyst for pH-universal hydrogen evolution reaction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Hua W, Sun H, Ren L, Nan D. V-Doped CoP Nanosheet Arrays as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction in Both Acidic and Alkaline Solutions. Front Chem 2020; 8:608133. [PMID: 33195109 PMCID: PMC7645198 DOI: 10.3389/fchem.2020.608133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 11/28/2022] Open
Abstract
It is of significant necessity to explore inexpensive and high-active electrocatalysts toward hydrogen evolution reaction (HER) in both acidic and basic media. In this work, V-doped CoP nanosheet arrays supported on the carbon cloth (V-CoP/CC) are fabricated though a facile water-bath/phosphorization method. The nanoarray structure on the three-dimensional self-supporting electrode can provide a large electrochemical active surface area with more exposed active sites to accelerate the reaction kinetics. Furthermore, V doping is able to tune the electronic properties and thus enhance the intrinsic catalytic activity of CoP. Consequently, the V-CoP/CC electrode exhibits excellent electrocatalytic activities toward HER in both 0.5 M H2SO4 and 1 M KOH solutions with small overpotentials of 88 and 98 mV at a current density of 10 mA cm−2, respectively. The present work will offer a feasible way to tailor the catalytic activity by hetero-atoms doping toward HER.
Collapse
Affiliation(s)
- Wei Hua
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Lab of Graphene (Northwestern Polytechnical University), Xi'an, China
| | - Huanhuan Sun
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Lab of Graphene (Northwestern Polytechnical University), Xi'an, China
| | - Lingbo Ren
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Lab of Graphene (Northwestern Polytechnical University), Xi'an, China
| | - Ding Nan
- School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, China
| |
Collapse
|
39
|
He B, Wang XC, Xia LX, Guo YQ, Tang YW, Zhao Y, Hao QL, Yu T, Liu HK, Su Z. Metal-Organic Framework-Derived Fe-Doped Co 1.11 Te 2 Embedded in Nitrogen-Doped Carbon Nanotube for Water Splitting. CHEMSUSCHEM 2020; 13:5239-5247. [PMID: 32667734 DOI: 10.1002/cssc.202001434] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 06/11/2023]
Abstract
A rational design is reported of Fe-doped cobalt telluride nanoparticles encapsulated in nitrogen-doped carbon nanotube frameworks (Fe-Co1.11 Te2 @NCNTF) by tellurization of Fe-etched ZIF-67 under a mixed H2 /Ar atmosphere. Fe-doping was able to effectively modulate the electronic structure of Co1.11 Te2 , increase the reaction activity, and further improve the electrochemical performance. The optimized electrocatalyst exhibited superior hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances in an alkaline electrolyte with low overpotentials of 107 and 297 mV with a current density of 10 mA cm-2 , in contrast to the undoped Co1.11 Te2 @NCNTF (165 and 360 mV, respectively). The overall water splitting performance only required a voltage of 1.61 V to drive a current density of 10 mA cm-2 . Density function theory (DFT) calculations indicated that the Fe-doping not only afforded abundant exposed active sites but also decreased the hydrogen binding free energy. This work provided a feasible way to study non-precious-metal catalysts for an efficient overall water splitting.
Collapse
Affiliation(s)
- Bin He
- Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, P. R. China
- Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, P. R. China
| | - Xin-Chao Wang
- Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Li-Xue Xia
- Department of Chemistry, University of North Dakota, 151 Cornell St., Grand Forks, North Dakota, 58202, USA
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yue-Qi Guo
- Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Ya-Wen Tang
- Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Yan Zhao
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qing-Li Hao
- Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, P. R. China
| | - Tao Yu
- Department of Chemistry, University of North Dakota, 151 Cornell St., Grand Forks, North Dakota, 58202, USA
| | - Hong-Ke Liu
- Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Zhi Su
- Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| |
Collapse
|
40
|
Xiao J, Zhou H, Wang S, Yuan A. A Collaborative Strategy for Boosting Lithium Storage Performance of Iron Phosphide by Fabricating Hollow Structure and Doping Cobalt Species. ChemistrySelect 2020. [DOI: 10.1002/slct.202003330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinghao Xiao
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang 212003 PR China
| | - Hu Zhou
- School of Materials Science and Engineering Jiangsu University of Science and Technology Zhenjiang 212003 PR China
| | - Sheng Wang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang 212003 PR China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang 212003 PR China
| |
Collapse
|
41
|
He L, Gong L, Gao M, Yang CW, Sheng GP. In situ formation of NiCoP@phosphate nanocages as an efficient bifunctional electrocatalyst for overall water splitting. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135799] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Wang P, Qi J, Chen X, Li C, Li W, Wang T, Liang C. Three-Dimensional Heterostructured NiCoP@NiMn-Layered Double Hydroxide Arrays Supported on Ni Foam as a Bifunctional Electrocatalyst for Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4385-4395. [PMID: 31851486 DOI: 10.1021/acsami.9b15208] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Herein, the rational design and preparation of three-dimensional heterostructured NiCoP@NiMn-layered double hydroxide arrays supported on Ni foam (NiCoP@NiMn LDH/NF) is reported as a new bifunctional water-splitting electrocatalyst with high performance. Prepared with facile hydrothermal reactions and phosphorization, the NiCoP@NiMn LDH/NF is simultaneously highly active toward oxygen evolution reaction (OER) (100, 300, and 600 mA cm-2 at overpotentials of 293, 315, and 327 mV, respectively) and hydrogen evolution reaction (HER) (100, 200, and 300 mA cm-2 at overpotentials of 116, 130, and 136 mV, respectively). Interestingly, with cell voltages of 1.519, 1.642, 1.671, and 1.687 V at 10, 100, 200, and 300 mA cm-2, respectively, for overall water splitting, this electrocatalyst achieves 95.2% faradaic efficiency for OER, suggesting a relatively high contribution of water splitting in the apparent current in spite of the existence of partial catalyst oxidation. The heterostructure arrays supported on Ni foam have some advantages, acting as a bifunctional water-splitting electrocatalyst: (1) heterostructured NCoP@NiMn LDH combines the intrinsic properties of individual NiCoP (excellent activity for HER) and NiMn LDH (high activity for OER) via the effective interface engineering between the two phases; (2) the NiCoP core material serves as a fast electron transfer channel to enhance the electrode's electrical conductivity; and (3) Ni foam with a three-dimensional-network structure as a support is beneficial to exposing more active sites and ensures efficient gas bubble release and electron/mass transfer.
Collapse
Affiliation(s)
- Pan Wang
- State Key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , China
| | - Ji Qi
- State Key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , China
| | - Xiao Chen
- State Key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , China
| | - Chuang Li
- State Key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , China
| | - Wenping Li
- State Key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , China
| | - Tonghua Wang
- State Key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , China
| | - Changhai Liang
- State Key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , China
| |
Collapse
|
43
|
Lin W, He G, Huang Y, Chen X. 3D hybrid of Co 9S 8 and N-doped carbon hollow spheres as effective hosts for Li-S batteries. NANOTECHNOLOGY 2020; 31:035404. [PMID: 31557739 DOI: 10.1088/1361-6528/ab4841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lithium-sulfur (Li-S) batteries as a new generation of high energy batteries, with low cost and environmentally friendly, have a broad application prospects. While the poor conductivity of sulfur, the volume effect and 'shuttle effect' during charge and discharge, and slow redox kinetics of polysulfide intermediates still limit the practical application. To solve these problems, we synthesize a valid 3D hybrid material (Co9S8@N-CHS) of nanosized Co9S8 evenly distributed on N-doped carbon hollow spheres with strong chemical coupling by in situ carbonization of Co(NO3)2@resorcinol/formaldehyde and sulfidation. It presents a high electronic conductivity, absorbing chemical adsorption capability to polysulfides and can catalyze the sulfur redox processes. Compared with S/AC and S/N-CHS electrodes, S/Co9S8@N-CHS electrodes achieve an excellent initial discharge specific capacity of 1337 mAh g-1 at 0.1 C and a long cycle life with an ultralow capacity decay of 0.027% per cycle over 1000 cycles at 1.0 C and the coulombic efficiency is above 99%. Consequently, it is an effective sulfur host material for high performance Li-S batteries.
Collapse
Affiliation(s)
- Weijuan Lin
- State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
| | | | | | | |
Collapse
|
44
|
Transfer hydrogenation of cinnamaldehyde to cinnamyl alcohol in hydrophobically modified core–shell MOFs nanoreactor: Identification of the formed metal–N as the structure of an active site. J Catal 2020. [DOI: 10.1016/j.jcat.2019.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Huang Y, Chen X, Ge S, Zhang Q, Zhang X, Li W, Cui Y. Hierarchical FeCo2S4@CoFe layered double hydroxide on Ni foam as a bifunctional electrocatalyst for overall water splitting. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01896d] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Designing high-efficiency and low-cost bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is of great significance to produce hydrogen by water electrolysis.
Collapse
Affiliation(s)
- Yunxia Huang
- A Key Laboratory of Micro-nano Measurement-Manipulation and Physics Ministry of Education
- Department of Physics
- Beihang University
- Beijing 100191
- P. R. China
| | - Xiaojuan Chen
- A Key Laboratory of Micro-nano Measurement-Manipulation and Physics Ministry of Education
- Department of Physics
- Beihang University
- Beijing 100191
- P. R. China
| | - Shuaipeng Ge
- A Key Laboratory of Micro-nano Measurement-Manipulation and Physics Ministry of Education
- Department of Physics
- Beihang University
- Beijing 100191
- P. R. China
| | - Qiqi Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Xinran Zhang
- A Key Laboratory of Micro-nano Measurement-Manipulation and Physics Ministry of Education
- Department of Physics
- Beihang University
- Beijing 100191
- P. R. China
| | - Wenping Li
- A Key Laboratory of Micro-nano Measurement-Manipulation and Physics Ministry of Education
- Department of Physics
- Beihang University
- Beijing 100191
- P. R. China
| | - Yimin Cui
- A Key Laboratory of Micro-nano Measurement-Manipulation and Physics Ministry of Education
- Department of Physics
- Beihang University
- Beijing 100191
- P. R. China
| |
Collapse
|
46
|
Nie J, Hong M, Zhang X, Huang J, Meng Q, Du C, Chen J. 3D amorphous NiFe LDH nanosheets electrodeposited on in situ grown NiCoP@NC on nickel foam for remarkably enhanced OER electrocatalytic performance. Dalton Trans 2020; 49:4896-4903. [PMID: 32226989 DOI: 10.1039/c9dt04888j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
NiFe LDH (layered double hydroxide) is currently attracting increasing attention as a type of promising electrocatalyst for oxygen evolution reaction (OERs); however, the biggest obstacle to its large-scale practical application is its poor conductivity and limited active sites. Herein, we report a three-dimensional NiFe LDH with high conductivity and dense active sites, where amorphous NiFe LDH nanosheets are directly electrodeposited on the surface of a hierarchical porous NiCoP@NC derived from the calcination and phosphorization of metal-organic frameworks (ZIF-67) in situ grown on nickel foam. Based on the 3D porous structure, abundant exposed active sites, fast electron and mass transfer rates and strong synergetic effects between NiCoP@NC and NiFe LDH, the resultant NiFe LDH/NiCoP@NC/NF catalysts exhibited significantly enhanced OER catalytic performances compared with NiFe LDH on nickel foam and most of the reported NiFe LDH-based catalysts: a low overpotential of 210 mV for yielding a current density of 10 mA cm-2, an extremely small Tafel slope (35 mV dec-1) and excellent durability. For overall water splitting, with NiFe LDH/NiCoP@NC/NF as the anode and NiCoP@NC/NF as the cathode, the assembled two-electrode system only required 1.54 V to obtain a stable current density of 10 mA cm-2 in 1 M KOH for at least 40 h. This research provided a simple and facile way to develop non-noble-metal oxygen evolution catalysts for replacing high-cost noble metal catalysts.
Collapse
Affiliation(s)
- Jianhang Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China.
| | - Min Hong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China.
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China.
| | - Junlin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China.
| | - Qin Meng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China.
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China.
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China.
| |
Collapse
|
47
|
Zhang J, Zhang L, Wang X, Zhu W, Zhuang Z. A hierarchical hollow-on-hollow NiCoP electrocatalyst for efficient hydrogen evolution reaction. Chem Commun (Camb) 2020; 56:90-93. [DOI: 10.1039/c9cc08256e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Superior activity and stability of a NiCoP electrocatalyst towards the hydrogen evolution reaction are achieved by constructing a unique hierarchical “hollow-on-hollow” nanostructure.
Collapse
Affiliation(s)
- Juntao Zhang
- State Key Lab of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
| | - Lipeng Zhang
- State Key Lab of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
| | - Xingdong Wang
- State Key Lab of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
| | - Wei Zhu
- State Key Lab of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
| | - Zhongbin Zhuang
- State Key Lab of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
| |
Collapse
|
48
|
Zhou LN, Yu L, Liu C, Li YJ. Electrocatalytic activity sites for the oxygen evolution reaction on binary cobalt and nickel phosphides. RSC Adv 2020; 10:39909-39915. [PMID: 35515367 PMCID: PMC9057415 DOI: 10.1039/d0ra07284b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/25/2020] [Indexed: 11/21/2022] Open
Abstract
The catalytic activity of CoNiP originates from the synergistic effect of CoOOH and NiOOH, rather than exclusively from CoOOH or NiOOH.
Collapse
Affiliation(s)
- Lin-Nan Zhou
- State Key Lab of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Lan Yu
- State Key Lab of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Cai Liu
- College of Chemical Engineering
- Beijing Institute of Petrochemical Technology
- Beijing 102617
- China
| | - Yong-Jun Li
- State Key Lab of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
49
|
Lu Y, Deng Y, Lu S, Liu Y, Lang J, Cao X, Gu H. MOF-derived cobalt-nickel phosphide nanoboxes as electrocatalysts for the hydrogen evolution reaction. NANOSCALE 2019; 11:21259-21265. [PMID: 31667482 DOI: 10.1039/c9nr07002h] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of high-efficiency nonprecious electrocatalysts based on inexpensive and Earth abundant elements is of great significance for renewable energy technologies. Group VIII transition metal phosphides (TMPs) gradually stand out due to their intriguing properties including low resistance and superior catalytic activity and stability. Herein, we adopt a unique MOF-derived strategy to synthesize transition metal phosphide nanoboxes which can be employed as electrocatalysts for the hydrogen evolution reaction. During this process, we converted a Co-MOF to a CoNi-MOF by ion exchange and low-temperature phosphating to achieve CoNiP nanoboxes. The CoNiP nanoboxes can reach a current density of 10 mA cm-2 at a low overpotential of 138 mV with a small Tafel slope of 65 mV dec-1.
Collapse
Affiliation(s)
- Yidong Lu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
| | - Yaoyao Deng
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, P.R. China.
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Yayuan Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
| | - Jianping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Xueqin Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
| | - Hongwei Gu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
50
|
Sivanantham A, Ganesan P, Vinu A, Shanmugam S. Surface Activation and Reconstruction of Non-Oxide-Based Catalysts Through in Situ Electrochemical Tuning for Oxygen Evolution Reactions in Alkaline Media. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04216] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Arumugam Sivanantham
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Pandian Ganesan
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Sangaraju Shanmugam
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|