1
|
Nair A, Chandrashekhar H R, Day CM, Garg S, Nayak Y, Shenoy PA, Nayak UY. Polymeric functionalization of mesoporous silica nanoparticles: Biomedical insights. Int J Pharm 2024; 660:124314. [PMID: 38862066 DOI: 10.1016/j.ijpharm.2024.124314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) endowed with polymer coatings present a versatile platform, offering notable advantages such as targeted, pH-controlled, and stimuli-responsive drug delivery. Surface functionalization, particularly through amine and carboxyl modification, enhances their suitability for polymerization, thereby augmenting their versatility and applicability. This review delves into the diverse therapeutic realms benefiting from polymer-coated MSNs, including photodynamic therapy (PDT), photothermal therapy (PTT), chemotherapy, RNA delivery, wound healing, tissue engineering, food packaging, and neurodegenerative disorder treatment. The multifaceted potential of polymer-coated MSNs underscores their significance as a focal point for future research endeavors and clinical applications. A comprehensive analysis of various polymers and biopolymers, such as polydopamine, chitosan, polyethylene glycol, polycaprolactone, alginate, gelatin, albumin, and others, is conducted to elucidate their advantages, benefits, and utilization across biomedical disciplines. Furthermore, this review extends its scope beyond polymerization and biomedical applications to encompass topics such as surface functionalization, chemical modification of MSNs, recent patents in the MSN domain, and the toxicity associated with MSN polymerization. Additionally, a brief discourse on green polymers is also included in review, highlighting their potential for fostering a sustainable future.
Collapse
Affiliation(s)
- Akhil Nair
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raghu Chandrashekhar H
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Candace M Day
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Padmaja A Shenoy
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
2
|
Xu M, Wei S, Duan L, Ji Y, Han X, Sun Q, Weng L. The recent advancements in protein nanoparticles for immunotherapy. NANOSCALE 2024; 16:11825-11848. [PMID: 38814163 DOI: 10.1039/d4nr00537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In recent years, the advancement of nanoparticle-based immunotherapy has introduced an innovative strategy for combatting diseases. Compared with other types of nanoparticles, protein nanoparticles have obtained substantial attention owing to their remarkable biocompatibility, biodegradability, ease of modification, and finely designed spatial structures. Nature provides several protein nanoparticle platforms, including viral capsids, ferritin, and albumin, which hold significant potential for disease treatment. These naturally occurring protein nanoparticles not only serve as effective drug delivery platforms but also augment antigen delivery and targeting capabilities through techniques like genetic modification and covalent conjugation. Motivated by nature's originality and driven by progress in computational methodologies, scientists have crafted numerous protein nanoparticles with intricate assembly structures, showing significant potential in the development of multivalent vaccines. Consequently, both naturally occurring and de novo designed protein nanoparticles are anticipated to enhance the effectiveness of immunotherapy. This review consolidates the advancements in protein nanoparticles for immunotherapy across diseases including cancer and other diseases like influenza, pneumonia, and hepatitis.
Collapse
Affiliation(s)
- Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Siyuan Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Lifan Duan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Yifan Ji
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xiaofan Han
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Sun
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
3
|
Shi P, Sun X, Yuan H, Chen K, Bi S, Zhang S. Nanoscale Metal-Organic Frameworks Combined with Metal Nanoparticles and Metal Oxide/Peroxide to Relieve Tumor Hypoxia for Enhanced Photodynamic Therapy. ACS Biomater Sci Eng 2023; 9:5441-5456. [PMID: 37729521 DOI: 10.1021/acsbiomaterials.3c00509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Photodynamic therapy (PDT) is a clinically approved noninvasive tumor therapy that can selectively kill malignant tumor cells, with promising use in the treatment of various cancers. PDT is typically composed of three important parts: the specific wavelength of light, photosensitizer (PS), and oxygen. With the progressing investigation on PDT treatment, the most recent attention has focused on improving photodynamic efficiency. Tumor hypoxia has always been a critical factor hindering the efficacy of PDT. Nanoscale metal-organic frameworks (nMOF), the fourth generation of PS, present great potential in photodynamic therapy. In particular, nMOF combined with metal nanoparticles and metal oxide/peroxide has demonstrated unique properties for enhanced PDT. The metal and metal oxide nanoparticles can catalyze H2O2 to generate oxygen or automatically produces oxygen, alleviating the hypoxia and improving the photodynamic efficiency. Metal peroxide nanoparticles can spontaneously produce oxygen in water or under acidic conditions. Therefore, this Review summarizes the recent development of nMOF combined with metal nanoparticles (platinum nanoparticles and gold nanoparticles) and metal oxide/peroxide (manganese dioxide, ferric oxide, cerium oxide, calcium peroxide, and magnesium peroxide) for enhanced photodynamic therapy by alleviating tumor hypoxia. Finally, future perspectives of nMOF combined nanomaterials in PDT are put forward.
Collapse
Affiliation(s)
- Pengfei Shi
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| | - Xinran Sun
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| | - Haoming Yuan
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| | - Kaixiu Chen
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| | - Shusheng Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| |
Collapse
|
4
|
Liu Z, Zhang Z, Huang C, Di J, Lu Z, Gan Z, Cui Y, Wu D. IR780-doped cobalt ferrite nanoparticles@poly(ethylene glycol) microgels as dual-enzyme immobilized micro-systems: Preparations, photothermal-responsive dual-enzyme release, and highly efficient recycling. J Colloid Interface Sci 2023; 644:81-94. [PMID: 37094475 DOI: 10.1016/j.jcis.2023.04.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
To solve the problems of separating dual enzymes from the carriers of dual-enzyme immobilized micro-systems and greatly increase the carriers' recycling times, photothermal-responsive micro-systems of IR780-doped cobalt ferrite nanoparticles@poly(ethylene glycol) microgels (CFNPs-IR780@MGs) are prepared. A novel two-step recycling strategy is proposed based on the CFNPs-IR780@MGs. First, the dual enzymes and the carriers are separated from the reaction system as a whole via magnetic separation. Second, the dual enzymes and the carriers are separated through photothermal-responsive dual-enzyme release so that the carriers can be reused. Results show that CFNPs-IR780@MGs is 281.4 ± 9.6 nm with a shell of 58.2 nm, and the low critical solution temperature is 42 °C, and the photothermal conversion efficiency increases from 14.04% to 58.41% by doping 1.6% of IR780 into the CFNPs-IR780 clusters. The dual-enzyme immobilized micro-systems and the carriers are recycled 12 and 72 times, respectively, and the enzyme activity remains above 70%. The micro-systems can realize whole recycling of the dual enzymes and carriers and further recycling of the carriers, thus providing a simple and convenient recycling method for dual-enzyme immobilized micro-systems. The findings reveal the micro-systems' important application potential in biological detection and industrial production.
Collapse
Affiliation(s)
- Zeying Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Zhen Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Chenqi Huang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jingran Di
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ziwei Lu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhenhai Gan
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yali Cui
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
5
|
Zhu L, Li Y, Jiang M, Ke C, Long H, Qiu M, Zhang L, Ye C, Zhou X, Jiang ZX, Chen S. Self-Assembly of Precisely Fluorinated Albumin for Dual Imaging-Guided Synergistic Chemo-Photothermal-Photodynamic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2665-2678. [PMID: 36604154 DOI: 10.1021/acsami.2c19161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although albumin has been extensively used in nanomedicine, it is still challenging to fluorinate albumin into fluorine-19 magnetic resonance imaging (19F MRI)-traceable theranostics because existing strategies lead to severe 19F signal splitting, line broadening, and low 19F MRI sensitivity. To this end, 34-cysteine-selectively fluorinated bovine serum albumins (BSAs) with a sharp singlet 19F peak have been developed as 19F MRI-sensitive and self-assembled frameworks for cancer theranostics. It was found that fluorinated albumin with a non-binding fluorocarbon and a long linker is crucial for avoiding 19F signal splitting and line broadening. With the fluorinated BSAs, paclitaxel (PTX) and IR-780 were self-assembled into stable, monodisperse, and multifunctional nanoparticles in a framework-promoted self-emulsion way. The high tumor accumulation, efficient cancer cell uptake, and laser-triggered PTX sharp release of the BSA nanoparticles enabled 19F MRI-near infrared fluorescence imaging (NIR FLI)-guided synergistic chemotherapy (Chemo), photothermal and photodynamic therapy of xenograft MCF-7 cancer with a high therapeutical index in mice. This study developed a rational synthesis of 19F MRI-sensitive albumin and a framework-promoted self-emulsion of multifunctional BSA nanoparticles, which would promote the development of protein-based high-performance biomaterials for imaging, diagnosis, therapy, and beyond.
Collapse
Affiliation(s)
- Lijun Zhu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Yu Li
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Mou Jiang
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Changsheng Ke
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Hanxiong Long
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Maosong Qiu
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Lei Zhang
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Chaohui Ye
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Xin Zhou
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Zhong-Xing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
6
|
Jiang W, Liang M, Lei Q, Li G, Wu S. The Current Status of Photodynamic Therapy in Cancer Treatment. Cancers (Basel) 2023; 15:cancers15030585. [PMID: 36765543 PMCID: PMC9913255 DOI: 10.3390/cancers15030585] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Although we have made great strides in treating deadly diseases over the years, cancer therapy still remains a daunting challenge. Among numerous anticancer methods, photodynamic therapy (PDT), a non-invasive therapeutic approach, has attracted much attention. PDT exhibits outstanding performance in cancer therapy, but some unavoidable disadvantages, including limited light penetration depth, poor tumor selectivity, as well as oxygen dependence, largely limit its therapeutic efficiency for solid tumors treatment. Thus, numerous strategies have gone into overcoming these obstacles, such as exploring new photosensitizers with higher photodynamic conversion efficiency, alleviating tumor hypoxia to fuel the generation of reactive oxygen species (ROS), designing tumor-targeted PS, and applying PDT-based combination strategies. In this review, we briefly summarized the PDT related tumor therapeutic approaches, which are mainly characterized by advanced PSs, these PSs have excellent conversion efficiency and additional refreshing features. We also briefly summarize PDT-based combination therapies with excellent therapeutic effects.
Collapse
Affiliation(s)
- Wenqi Jiang
- The Affiliated Luohu Hospital of Shenzhen University, School of Basic Medical Science, Health Science Center, Shenzhen University, Shenzhen 518000, China
| | - Mingkang Liang
- The Affiliated Luohu Hospital of Shenzhen University, School of Basic Medical Science, Health Science Center, Shenzhen University, Shenzhen 518000, China
- Luohu Clinical Institute of Shantou University Medical College, Shantou University Medical College, Shantou University, Shantou 515000, China
| | - Qifang Lei
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Guangzhi Li
- The Affiliated Luohu Hospital of Shenzhen University, School of Basic Medical Science, Health Science Center, Shenzhen University, Shenzhen 518000, China
- Correspondence: (G.L.); (S.W.)
| | - Song Wu
- The Affiliated Luohu Hospital of Shenzhen University, School of Basic Medical Science, Health Science Center, Shenzhen University, Shenzhen 518000, China
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
- Correspondence: (G.L.); (S.W.)
| |
Collapse
|
7
|
Salim SA, Salaheldin TA, Elmazar MM, Abdel-Aziz AF, Kamoun EA. Smart biomaterials for enhancing cancer therapy by overcoming tumor hypoxia: a review. RSC Adv 2022; 12:33835-33851. [PMID: 36505711 PMCID: PMC9693911 DOI: 10.1039/d2ra06036a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Hypoxia is a distinctive feature of most solid tumors due to insufficient oxygen supply of the abnormal vasculature, which cannot work with the demands of the fast proliferation of cancer cells. One of the main obstacles to limiting the efficacy of cancer medicines is tumor hypoxia. Thus, oxygen is a vital parameter for controlling the efficacy of different types of cancer therapy, such as chemotherapy (CT), photodynamic therapy (PDT), photothermal therapy (PTT), immunotherapy (IT), and radiotherapy (RT). Numerous technologies have attracted much attention for enhancing oxygen distribution in humans and improving the efficacy of cancer treatment. Such technologies include treatment with hyperbaric oxygen therapy (HBO), delivering oxygen by polysaccharides (e.g., cellulose, gelatin, alginate, and silk) and other biocompatible synthetic polymers (e.g., PMMA, PLA, PVA, PVP and PCL), decreasing oxygen consumption, producing oxygen in situ in tumors, and using polymeric systems as oxygen carriers. Herein, this review provides an overview of the relationship between hypoxia in tumor cells and its role in the limitation of different cancer therapies alongside the numerous strategies for oxygen delivery using polysaccharides and other biomaterials as carriers and for oxygen generation.
Collapse
Affiliation(s)
- Samar A. Salim
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE)El-Sherouk CityCairo 11837Egypt+20-1283320302,Biochemistry Group, Dep. of Chemistry, Faculty of Science, Mansoura UniversityEgypt
| | - Taher A. Salaheldin
- Department of Medicine, Case Western Reserve University School of MedicineClevelandOH44106USA
| | - Mohamed M. Elmazar
- Faculty of Pharmacy, The British University in Egypt (BUE)El-Sherouk CityCairo 11837Egypt
| | - A. F. Abdel-Aziz
- Biochemistry Group, Dep. of Chemistry, Faculty of Science, Mansoura UniversityEgypt
| | - Elbadawy A. Kamoun
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE)El-Sherouk CityCairo 11837Egypt+20-1283320302,Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), The City of Scientific Research and Technological Applications (SRTA-City)New Borg Al-Arab City 21934AlexandriaEgypt
| |
Collapse
|
8
|
Zhang S, Li Z, Wang Q, Liu Q, Yuan W, Feng W, Li F. An NIR-II Photothermally Triggered "Oxygen Bomb" for Hypoxic Tumor Programmed Cascade Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201978. [PMID: 35606680 DOI: 10.1002/adma.202201978] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Hypoxia, as a characteristic feature of solid tumors, has a close relationship with tumor resistance to photodynamic therapy (PDT) and chemotherapy. Perfluorocarbon (PFC) is reported to relieve hypoxic in solid tumors by acting as an oxygen carrier via several nanostructures. However, the oxygen delivery process is mostly driven by a concentration gradient, which is uncontrollable. Herein, a photothermally controlled "oxygen bomb" PSPP-Au980 -D is designed by encapsulating a PFC core within a functionalized bilayer polymer shell. Near-infrared second window photothermal agent gold nanorods with excellent photo-to-heat energy-conversion ability are fabricated on the surface of the polymer shell via an innovative modified two-step seedless ex situ growth process to thermally trigger O2 release. Then, a programmed cascade therapy strategy is customized for hypoxic orthotopic pancreatic cancer. First, PSPP-Au980 -D is irradiated by a 980 nm laser to photothermally trigger O2 infusing into the hypoxic tumor microenvironment, which is accompanied by local hyperemia and doxorubicin release. Subsequently, a 680 nm laser is used to generate singlet oxygen in the oxygenated tumor microenvironment for PDT. This choreographed programmed cascade therapy strategy will provide a new route for suppressing hypoxic tumor growth under mild conditions based on controllable and effective oxygen release.
Collapse
Affiliation(s)
- Sidi Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Zhenhua Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Qingbing Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, China
| | - Qian Liu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Wei Yuan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
- Institute of Optoelectronics, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Wei Feng
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Fuyou Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
- The State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| |
Collapse
|
9
|
Wang H, Liu H, Guo Y, Zai W, Li X, Xiong W, Zhao X, Yao Y, Hu Y, Zou Z, Wu J. Photosynthetic microorganisms coupled photodynamic therapy for enhanced antitumor immune effect. Bioact Mater 2022; 12:97-106. [PMID: 35087966 PMCID: PMC8777206 DOI: 10.1016/j.bioactmat.2021.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 02/09/2023] Open
Abstract
The ideal photodynamic therapy (PDT) should effectively remove the primary tumor, and produce a stronger immune memory effect to inhibit the tumor recurrence and tumor metastasis. However, limited by the hypoxic and immunosuppressive microenvironment, the PDT efficiency is apparently low. Here, Chlorella (Chl.) is exploited to enhance local effect by producing oxygen to reverse hypoxia, and release adjuvants to reverse immunosuppressive microenvironment to enhance abscopal effect afterwards. Results from different animal models indicated that Chl. could enhance local effect and PDT related immune response. Ultimately, Chl. coupled PDT elicited anti-tumor effects toward established primary tumors (inhibition rate: 90%) and abscopal tumors (75%), controlled the challenged tumors (100%) and alleviated metastatic tumors (90%). This Chl. coupled PDT strategy can also produce a stronger anti-tumor immune memory effect. Overall, this Chl. coupled PDT strategy generates enhanced local tumor killing, boosts PDT-induced immune responses and promotes anti-tumor immune memory effect, which may be a great progress for realizing systemic effect of PDT. Chlorella can act as oxygen supplier and release adjuvants under light irradiation to enhance photodynamic therapy (PDT). The dual characteristics of Chlorella strengthen the occurrence of effective anti-tumor immune responses. Enhanced local and abscopal anti-tumor effect can be achieved by Chlorella with good biocompatibility.
Collapse
|
10
|
Core-shell structured nanoparticles for photodynamic therapy-based cancer treatment and related imaging. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Wang K, Jiang M, Zhou J, Liu Y, Zong Q, Yuan Y. Tumor-Acidity and Bioorthogonal Chemistry-Mediated On-Site Size Transformation Clustered Nanosystem to Overcome Hypoxic Resistance and Enhance Chemoimmunotherapy. ACS NANO 2022; 16:721-735. [PMID: 34978422 DOI: 10.1021/acsnano.1c08232] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hypoxia, a common feature of most solid tumors, causes severe tumor resistance to chemotherapy and immunotherapy. Herein, a tumor-acidity and bioorthogonal chemistry-mediated on-site size transformation clustered nanosystem is designed to overcome hypoxic resistance and enhance chemoimmunotherapy. The nanosystem utilized the tumor-acidity responsive group poly(2-azepane ethyl methacrylate) with a rapid response rate and highly efficient bioorthogonal click chemistry to form large-sized aggregates in tumor tissue to enhance accumulation and retention. Subsequently, another tumor-acidity responsive group of the maleic acid amide with a slow response rate was cleaved allowing the aggregates to slowly dissociate into ultrasmall nanoparticles with better tumor penetration ability for the delivery of doxorubicin (DOX) and nitric oxide (NO) to a hypoxic tumor tissue. NO can reverse a hypoxia-induced DOX resistance and boost the antitumor immune response through a reprogrammed tumor immune microenvironment. This tumor-acidity and bioorthogonal chemistry-mediated on-site size transformation clustered nanosystem not only helps to counteract a hypoxia-induced chemoresistance and enhance antitumor immune responses but also provides a general drug delivery strategy for enhanced tumor accumulation and penetration.
Collapse
Affiliation(s)
- Kewei Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Maolin Jiang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jielian Zhou
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Ye Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Qingyu Zong
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
12
|
Recent Advances in Strategies for Addressing Hypoxia in Tumor Photodynamic Therapy. Biomolecules 2022; 12:biom12010081. [PMID: 35053229 PMCID: PMC8774200 DOI: 10.3390/biom12010081] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is a treatment modality that uses light to target tumors and minimize damage to normal tissues. It offers advantages including high spatiotemporal selectivity, low side effects, and maximal preservation of tissue functions. However, the PDT efficiency is severely impeded by the hypoxic feature of tumors. Moreover, hypoxia may promote tumor metastasis and tumor resistance to multiple therapies. Therefore, addressing tumor hypoxia to improve PDT efficacy has been the focus of antitumor treatment, and research on this theme is continuously emerging. In this review, we summarize state-of-the-art advances in strategies for overcoming hypoxia in tumor PDTs, categorizing them into oxygen-independent phototherapy, oxygen-economizing PDT, and oxygen-supplementing PDT. Moreover, we highlight strategies possessing intriguing advantages such as exceedingly high PDT efficiency and high novelty, analyze the strengths and shortcomings of different methods, and envision the opportunities and challenges for future research.
Collapse
|
13
|
Wen J, Luo Y, Gao H, Zhang L, Wang X, Huang J, Shang T, Zhou D, Wang D, Wang Z, Li P, Wang Z. Mitochondria-targeted nanoplatforms for enhanced photodynamic therapy against hypoxia tumor. J Nanobiotechnology 2021; 19:440. [PMID: 34930284 PMCID: PMC8686264 DOI: 10.1186/s12951-021-01196-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Photodynamic therapy (PDT) is a promising therapeutic modality that can convert oxygen into cytotoxic reactive oxygen species (ROS) via photosensitizers to halt tumor growth. However, hypoxia and the unsatisfactory accumulation of photosensitizers in tumors severely diminish the therapeutic effect of PDT. In this study, a multistage nanoplatform is demonstrated to overcome these limitations by encapsulating photosensitizer IR780 and oxygen regulator 3-bromopyruvate (3BP) in poly (lactic-co-glycolic acid) (PLGA) nanocarriers. Results The as-synthesized nanoplatforms penetrated deeply into the interior region of tumors and preferentially remained in mitochondria due to the intrinsic characteristics of IR780. Meanwhile, 3BP could efficiently suppress oxygen consumption of tumor cells by inhibiting mitochondrial respiratory chain to further improve the generation of ROS. Furthermore, 3BP could abolish the excessive glycolytic capacity of tumor cells and lead to the collapse of ATP production, rendering tumor cells more susceptible to PDT. Successful tumor inhibition in animal models confirmed the therapeutic precision and efficiency. In addition, these nanoplatforms could act as fluorescence (FL) and photoacoustic (PA) imaging contrast agents, effectuating imaging-guided cancer treatment. Conclusions This study provides an ideal strategy for cancer therapy by concurrent oxygen consumption reduction, oxygen-augmented PDT, energy supply reduction, mitochondria-targeted/deep-penetrated nanoplatforms and PA/FL dual-modal imaging guidance/monitoring. It is expected that such strategy will provide a promising alternative to maximize the performance of PDT in preclinical/clinical cancer treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01196-6.
Collapse
Affiliation(s)
- Jiexin Wen
- Department of Ultrasound, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Yong Luo
- Department of Ultrasound, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, People's Republic of China
| | - Hui Gao
- Department of Ultrasound, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Liang Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Xiang Wang
- Department of Ultrasound, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, 401120, People's Republic of China
| | - Ju Huang
- Department of Ultrasound, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, 401120, People's Republic of China
| | - Tingting Shang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Di Zhou
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400042, People's Republic of China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400042, People's Republic of China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Pan Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Zhaoxia Wang
- Department of Ultrasound, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
14
|
Optical sensor arrays designed for guided manufacture of perfluorocarbon nanoemulsions with a non-synthetic stabilizer. Acta Biomater 2021; 136:558-569. [PMID: 34563723 DOI: 10.1016/j.actbio.2021.09.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
Hydrophobic drugs are incorporated into oil-in-water nanoemulsions (OIW) either as new formulations or repurposed for intravenous delivery. Typically, these are manufactured through stepwise processes of sonication or high-pressure homogenization (HPH). The guiding criteria for most nanoemulsion manufacture are the size and homogeneity/polydispersity of the drug-laden particles with strict requirements for clinical injectables. To date, most formulation optimization is done through trial and error with stepwise sampling during processing utilizing dynamic light scattering (DLS), light obscuration sensing (LOS) or laser particle tracking (LPT) to assess manufacturing progress. The objective of this work was to develop and implement an in-line optical turbidity/nephelometry sensor array for the longitudinal in-process monitoring of nanoemulsion manufacture. A further objective was the use of this sensor array to rapidly optimize the manufacture of a sub-120 nm oxygen carrying perfluorocarbon nanoemulsion with a non-synthetic stabilizer. During processing, samples were taken for particle size measurement and further characterization. There was a significant correlation and agreement between particle size and sensor signal as well as improved process reproducibility through sensor-guided manufacture. Given the cost associated with nanoemulsion development and scale-up manufacture, our sensor arrays could be an invaluable tool for efficient and cost-effective drug development. Sensor-guided manufacturing was used to optimize oxygen-carrying nanoemulsions. These were tested, in vitro, for their ability to improve the viability of encapsulated endocrine clusters (mouse insulinoma, Min6) and to eliminate hypoxia due to oxygen mass transfer limitations. The nanomulsions significantly improved encapsulated cluster viability and reduced hypoxia within the microcapsule environment. STATEMENT OF SIGNIFICANCE: Nanoemulsions are rapidly becoming vehicles for the controlled release delivery of both hydrophilic and hydrophobic drugs given their large surface area for exchange. As work shifts from bench to large scale manufacturing, there is a critical need for technologies that can monitor and accumulate data during processing, particularly regarding the endpoint criteria of particle size and stability. To date, no such technology has been implemented in nanoemulsion manufacture. In this paper we develop and implement an optical sensor array for in-line nanoemulsion process monitoring and then use the array to optimize the development and manufacture of novel reproducible oxygen carrying nanoemulsions lacking synthetic surfactants.
Collapse
|
15
|
Xiong W, Qi L, Si D, Jiang X, Liu Y, Zheng C, Li Y, Shen J, Zhou Z. Effective tumor vessel barrier disruption mediated by perfluoro-N-(4-methylcyclohexyl) piperidine nanoparticles to enhance the efficacy of photodynamic therapy. NANOSCALE 2021; 13:13473-13486. [PMID: 34477752 DOI: 10.1039/d1nr02880d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Currently, limited tumor drug permeation, poor oxygen perfusion and immunosuppressive microenvironments are the most important bottlenecks that significantly reduce the efficacy of photodynamic therapy (PDT). The main cause of these major bottlenecks is the platelet activation maintained abnormal tumor vessel barriers. Thus, platelet inhibition may present a new way to most effectively enhance the efficacy of PDT. However, to the best of our knowledge, few studies have validated the effectiveness of such a way in enhancing the efficacy of PDT both in vivo and in vitro. In this study, perfluoro-N-(4-methylcyclohexyl) piperidine-loaded albumin (PMP@Alb) nanoparticles were discovered, which possess excellent platelet inhibition ability. After PMP@Alb treatment, remarkably enhanced intra-tumoral drug accumulation, oxygen perfusion and T cell infiltration could be observed owing to the disrupted tumor vessel barriers. Besides, the effect of ICG@Lip mediated PDT was significantly amplified by PMP@Alb nanoparticles. It was demonstrated that PMP@Alb could be used as a useful tool to improve the efficacy of existing PDT by disrupting tumor vessel barriers through effective platelet inhibition.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Han Z, Tu X, Qiao L, Sun Y, Li Z, Sun X, Wu Z. Phototherapy and multimodal imaging of cancers based on perfluorocarbon nanomaterials. J Mater Chem B 2021; 9:6751-6769. [PMID: 34346475 DOI: 10.1039/d1tb00554e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phototherapy, such as photodynamic therapy (PDT) and photothermal therapy (PTT), possesses unique characteristics of non-invasiveness and minimal side effects in cancer treatment, compared with conventional therapies. However, the ubiquitous tumor hypoxia microenvironments could severely reduce the efficacy of oxygen-consuming phototherapies. Perfluorocarbon (PFC) nanomaterials have shown great practical value in carrying and transporting oxygen, which makes them promising agents to overcome tumor hypoxia and extend reactive oxygen species (ROS) lifetime to improve the efficacy of phototherapy. In this review, we summarize the latest advances in PFC-based PDT and PTT, and combined multimodal imaging technologies in various cancer types, aiming to facilitate their application-oriented clinical translation in the future.
Collapse
Affiliation(s)
- Zhaoguo Han
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Yamada T, Komatsu T. Methemoglobin-Albumin Cluster Incorporating Protoporphyrin IX: Dual Functional Protein Drug for Photodynamic Therapy. Chembiochem 2021; 22:2526-2529. [PMID: 34156148 DOI: 10.1002/cbic.202100213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/18/2021] [Indexed: 11/10/2022]
Abstract
We describe the synthesis, photophysical properties, and photodynamic activity of a methemoglobin (metHb) wrapped covalently by human serum albumins (HSAs) incorporating protoporphyrin IX (PPIX): a metHb-HSA3 -PPIX2 cluster. The metHb core catalyzes H2 O2 disproportionation to generate O2 in tumor tissue. The HSA3 -PPIX2 shell acts as a photosensitizer for 1 O2 formation. The metHb-HSA3 -PPIX2 cluster acts as a dual functional protein drug for photodynamic therapy.
Collapse
Affiliation(s)
- Taiga Yamada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
18
|
Abstract
Photodynamic therapy (PDT) is a treatment modality in which a photosensitizer is irradiated with light, producing reactive oxygen species, often via energy transfer with oxygen. As it is common for tumors to be hypoxic, methods to deliver photosensitizer and oxygen are desirable. One such approach is the use of perfluorocarbons, molecules in which all C-H bonds are replaced with C-F bonds, to co-deliver oxygen because of the high solubility of gases in perfluorocarbons. This review highlights the benefits and limitations of several fluorinated nanomaterial architectures for use in PDT.
Collapse
Affiliation(s)
- Rachael A Day
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| |
Collapse
|
19
|
Liposomal IR-780 as a Highly Stable Nanotheranostic Agent for Improved Photothermal/Photodynamic Therapy of Brain Tumors by Convection-Enhanced Delivery. Cancers (Basel) 2021; 13:cancers13153690. [PMID: 34359590 PMCID: PMC8345063 DOI: 10.3390/cancers13153690] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary To improve the use of hydrophobic photosensitizer IR-780 in photothermal/photodynamic therapy (PTT/PDT), we entrap IR-780 within the lipid bilayer of liposomes (ILs). Compared to free IR-780, ILs showed well-preserved photothermal response by maintaining the photostability of IR-780 from repeated near infrared (NIR) laser exposure both in vitro and in vivo. Combined with fast endocytosis by human glioblastoma cells, ILs demonstrated enhanced cytotoxicity and induced higher cell apoptosis rate toward human glioblastoma cells over free IR-780, due to PTT with overexpression of heat shock protein and PDT with generation of intracellular reactive oxygen species. To overcome the blood–brain barrier, we used convection enhanced delivery (CED) for specific delivery of ILs to brain tumors in intracranial glioma xenograft. Upon three successive NIR laser irradiations, the liposomal IR-780 could significantly improve the anti-cancer efficacy in glioma treatment, leading to diminished intracranial tumor size and prolonged animal survival time. Abstract As a hydrophobic photosensitizer, IR-780 suffers from poor water solubility and low photostability under near infrared (NIR) light, which severely limits its use during successive NIR laser-assisted photothermal/photodynamic therapy (PTT/PDT). To solve this problem, we fabricate cationic IR-780-loaded liposomes (ILs) by entrapping IR-780 within the lipid bilayer of liposomes. We demonstrate enhanced photostability of IR-780 in ILs with well-preserved photothermal response after three repeated NIR laser exposures, in contrast to the rapid decomposition of free IR-780. The cationic nature of ILs promotes fast endocytosis of liposomal IR-780 by U87MG human glioblastoma cells within 30 min. For PTT/PDT in vitro, ILs treatment plus NIR laser irradiation leads to overexpression of heat shock protein 70 and generation of intracellular reactive oxygen species by U87MG cells, resulting in enhanced cytotoxicity and higher cell apoptosis rate. Using intracranial glioma xenograft in nude mice and administration of ILs by convection enhanced delivery (CED) to overcome blood-brain barrier, liposomal IR-780 could be specifically delivered to the brain tumor, as demonstrated from fluorescence imaging. By providing a highly stable liposomal IR-780, ILs significantly improved anti-cancer efficacy in glioma treatment, as revealed from various diagnostic imaging tools and histological examination. Overall, CED of ILs plus successive laser-assisted PTT/PDT may be an alternative approach for treating brain tumor, which can retard glioma growth and prolong animal survival times from orthotopic brain tumor models.
Collapse
|
20
|
Huang L, Zhao S, Wu J, Yu L, Singh N, Yang K, Lan M, Wang P, Kim JS. Photodynamic therapy for hypoxic tumors: Advances and perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213888] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Abstract
IR780, a small molecule with a strong optical property and excellent photoconversion efficiency following near infrared (NIR) irradiation, has attracted increasing attention in the field of cancer treatment and imaging. This review is focused on different IR780-based nanoplatforms and the application of IR780-based nanomaterials for cancer bioimaging and therapy. Thus, this review summarizes the overall aspects of IR780-based nanomaterials that positively impact cancer biomedical applications.
Collapse
Affiliation(s)
- Long Wang
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. and Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chengcheng Niu
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. and Department of Ultrasound Diagnosis and Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
22
|
Zhang Q, Zhang J, Song J, Liu Y, Ren X, Zhao Y. Protein-Based Nanomedicine for Therapeutic Benefits of Cancer. ACS NANO 2021; 15:8001-8038. [PMID: 33900074 DOI: 10.1021/acsnano.1c00476] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Proteins, a type of natural biopolymer that possess many prominent merits, have been widely utilized to engineer nanomedicine for fighting against cancer. Motivated by their ever-increasing attention in the scientific community, this review aims to provide a comprehensive showcase on the current landscape of protein-based nanomedicine for cancer therapy. On the basis of role differences of proteins in nanomedicine, protein-based nanomedicine engineered with protein therapeutics, protein carriers, enzymes, and composite proteins is introduced. The cancer therapeutic benefits of the protein-based nanomedicine are also discussed, including small-molecular therapeutics-mediated therapy, macromolecular therapeutics-mediated therapy, radiation-mediated therapy, reactive oxygen species-mediated therapy, and thermal effect-mediated therapy. Lastly, future developments and potential challenges of protein-based nanomedicine are elucidated toward clinical translation. It is believed that protein-based nanomedicine will play a vital role in the battle against cancer. We hope that this review will inspire extensive research interests from diverse disciplines to further push the developments of protein-based nanomedicine in the biomedical frontier, contributing to ever-greater medical advances.
Collapse
Affiliation(s)
- Qiuhong Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jun Song
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yizhen Liu
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiangzhong Ren
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
23
|
Liu Y, Tian J, Fu Y, Yang Y, Chen M, Zhang Q. Near-infrared light-triggered nanobomb for in situ on-demand maximization of photothermal/photodynamic efficacy for cancer therapy. Biomater Sci 2021; 9:700-711. [PMID: 33241806 DOI: 10.1039/d0bm01748e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Currently, the in situ on/off switch of PTT/PDT reagents for tumor treatment has evoked considerable interest in the field of cancer therapy. However, the actual PTT/PDT therapy efficacy in tumor treatment is largely restricted by the PTT/PDT reagents' aggregation issues during their release from the hydrophobic carrier to the hydrophilic tumor microenvironment. Thus, it remains a challenge to break through the therapy barrier caused by the PTT/PDT agent aggregation and achieve substantial improvement of anticancer efficacy. In this work, we developed a novel near-infrared (NIR) light-responsive and gas bubble-generated liposomal nanobomb (Cy/Ce6/CO2-Lip-FA) through the co-encapsulation of PTT/PDT reagents with gas precursor into the hydrophobic and hydrophilic regions of liposomes, respectively, in order to overcome the aggregation issues and substantially improve the synergistic PTT/PDT efficacy. Upon arrival at the tumor region, the PS phototoxicity of Cy/Ce6/CO2-Lip-FA could be effectively switched on through CO2 generation induced by the PTT effect of Cypate upon NIR irradiation. The gas bubble burst can remarkably suppress the aggregation of Cypate/Ce6 and extremely enhance the synergistic PTT/PDT efficacy. These results indicate that the proposed NIR-responsive and gas bubble-functionalized liposomal nanobomb is a highly promising platform for tumor treatment with better therapeutic efficacy.
Collapse
Affiliation(s)
- Yan Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Jia Tian
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Yulei Fu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Yingjie Yang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Mingmao Chen
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Qiqing Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| |
Collapse
|
24
|
Zhang Y, Liao Y, Tang Q, Lin J, Huang P. Biomimetic Nanoemulsion for Synergistic Photodynamic-Immunotherapy Against Hypoxic Breast Tumor. Angew Chem Int Ed Engl 2021; 60:10647-10653. [PMID: 33555085 DOI: 10.1002/anie.202015590] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/03/2021] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) is commonly used as an "in situ vaccine" to enhance the response rate of PD-1/PD-L1 antibodies. Unfortunately, the high cost and adverse effects of these antibodies, and the hypoxic state of solid tumors limits the efficacy of synergistic photodynamic-immunotherapy. Here, we developed a biomimetic nanoemulsion camouflaged with a PD-1-expressing cell membrane for synergistic photodynamic-immunotherapy against hypoxic breast tumors. The perfluorocarbon of the nanoemulsion could provide oxygen as the source of PDT against hypoxic tumors. Moreover, co-delivering a photosensitizer and the PD-1 protein (substituting for a PD-L1 antibody) achieves the synergy effect of PDT and immunotherapy. Synergistic photodynamic-immunotherapy completely inhibited primary and distant subcutaneous 4T1 tumors, mechanistically by boosting the maturation of dendritic cells and tumor infiltration of cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Yifan Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Yunyan Liao
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Qinan Tang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| |
Collapse
|
25
|
|
26
|
Zhang Y, Liao Y, Tang Q, Lin J, Huang P. Biomimetic Nanoemulsion for Synergistic Photodynamic‐Immunotherapy Against Hypoxic Breast Tumor. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yifan Zhang
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Yunyan Liao
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Qinan Tang
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| |
Collapse
|
27
|
Zhang G, Cheng W, Du L, Xu C, Li J. Synergy of hypoxia relief and heat shock protein inhibition for phototherapy enhancement. J Nanobiotechnology 2021; 19:9. [PMID: 33407570 PMCID: PMC7789325 DOI: 10.1186/s12951-020-00749-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Phototherapy is a promising strategy for cancer therapy by reactive oxygen species (ROS) of photodynamic therapy (PDT) and hyperthermia of photothermal therapy (PTT). However, the therapeutic efficacy was restricted by tumor hypoxia and thermal resistance of increased expression of heat shock protein (Hsp). In this study, we developed albumin nanoparticles to combine hypoxia relief and heat shock protein inhibition to overcome these limitations for phototherapy enhancement. RESULTS Near-infrared photosensitizer (IR780) and gambogic acid (GA, Hsp90 inhibitor) were encapsulated into albumin nanoparticles via hydrophobic interaction, which was further deposited MnO2 on the surface to form IGM nanoparticles. Both in vitro and in vivo studies demonstrated that IGM could catalyze overexpress of hydrogen peroxide to relive hypoxic tumor microenvironment. With near infrared irradiation, the ROS generation was significantly increase for PDT enhancement. In addition, the release of GA was promoted by irradiation to bind with Hsp90, which could reduce cell tolerance to heat for PTT enhancement. As a result, IGM could achieve better antitumor efficacy with enhanced PDT and PTT. CONCLUSION This study develops a facile approach to co-deliver IR780 and GA with self-assembled albumin nanoparticles, which could relive hypoxia and suppress Hsp for clinical application of cancer phototherapy.
Collapse
Affiliation(s)
- Gutian Zhang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Wenting Cheng
- Department of Laboratory Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Lin Du
- Department of Urology, Drum Tower Hospital, Medical School of Southeast University, Nanjing, 210008, China
| | - Chuanjun Xu
- Department of Laboratory Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Jinlong Li
- Department of Laboratory Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| |
Collapse
|
28
|
Liu R, Gao Y, Liu N, Suo Y. Nanoparticles loading porphyrin sensitizers in improvement of photodynamic therapy for ovarian cancer. Photodiagnosis Photodyn Ther 2020; 33:102156. [PMID: 33352314 DOI: 10.1016/j.pdpdt.2020.102156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/15/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ovarian cancer, the malignant tumor with the highest mortality rate in gynecological tumors, leads to a poor prognosis due to tumor metastasis. At present, the main treatment for ovarian cancer is the combination of cytoreduction surgery and chemotherapy. But the surgery is insufficient to solve the extensive transfer of tumor in the abdominal cavity and a large proportion of ovarian cancer cases have shown resistance to chemotherapy. Photodynamic therapy (PDT) is a viable treatment option for a wide range of applications, especially in malignant tumors. Porphyrin sensitizers, as the most widely used photosensitive agents, have the following advantages: short photosensitive period and high singlet oxygen production. However, most studies have found that it is difficult to achieve high loading rates of photosensitive agents, thus effective concentration in target tissue is suboptimal and the lethal ability is greatly reduced. In this article, we review several studies that nanoparticles loading porphyrin sensitizers for photodynamic therapy of ovarian cancer. METHODS We collected relevant literature from PUBMED and reviewed their research content. RESULTS The application of nanotechnology to PDT in ovarian cancer can reduce the non-specific toxicity of photosensitive agents and increase stability and delivery efficiency. CONCLUSIONS The combination with nanotechnology can cover the shortcomings of photodynamic therapy, but the specific efficacy still needs a large number of experiments to prove.
Collapse
Affiliation(s)
- Rui Liu
- Obstetrics and Gynaecology, Shanxi Provincial Peoples Hospital, Taiyuan, China.
| | - Yanxia Gao
- Obstetrics and Gynaecology, Shanxi Provincial Peoples Hospital, Taiyuan, China.
| | - Nannan Liu
- Obstetrics and Gynaecology, Shanxi Provincial Peoples Hospital, Taiyuan, China.
| | - Yuping Suo
- Obstetrics and Gynaecology, Shanxi Provincial Peoples Hospital, Taiyuan, China.
| |
Collapse
|
29
|
Hoogendijk E, Swider E, Staal AHJ, White PB, van Riessen NK, Glaßer G, Lieberwirth I, Musyanovych A, Serra CA, Srinivas M, Koshkina O. Continuous-Flow Production of Perfluorocarbon-Loaded Polymeric Nanoparticles: From the Bench to Clinic. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49335-49345. [PMID: 33086007 PMCID: PMC7645868 DOI: 10.1021/acsami.0c12020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/08/2020] [Indexed: 05/05/2023]
Abstract
Perfluorocarbon-loaded nanoparticles are powerful theranostic agents, which are used in the therapy of cancer and stroke and as imaging agents for ultrasound and 19F magnetic resonance imaging (MRI). Scaling up the production of perfluorocarbon-loaded nanoparticles is essential for clinical translation. However, it represents a major challenge as perfluorocarbons are hydrophobic and lipophobic. We developed a method for continuous-flow production of perfluorocarbon-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles using a modular microfluidic system, with sufficient yields for clinical use. We combined two slit interdigital micromixers with a sonication flow cell to achieve efficient mixing of three phases: liquid perfluorocarbon, PLGA in organic solvent, and aqueous surfactant solution. The production rate was at least 30 times higher than with the conventional formulation. The characteristics of nanoparticles can be adjusted by changing the flow rates and type of solvent, resulting in a high PFC loading of 20-60 wt % and radii below 200 nm. The nanoparticles are nontoxic, suitable for 19F MRI and ultrasound imaging, and can dissolve oxygen. In vivo 19F MRI with perfluoro-15-crown-5 ether-loaded nanoparticles showed similar biodistribution as nanoparticles made with the conventional method and a fast clearance from the organs. Overall, we developed a continuous, modular method for scaled-up production of perfluorocarbon-loaded nanoparticles that can be potentially adapted for the production of other multiphase systems. Thus, it will facilitate the clinical translation of theranostic agents in the future.
Collapse
Affiliation(s)
- Esmee Hoogendijk
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
| | - Edyta Swider
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
| | - Alexander H. J. Staal
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
| | - Paul B. White
- Institute for Molecules and Materials, Radboud University, 6525
AJ Nijmegen, The Netherlands
| | - N. Koen van Riessen
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
| | - Gunnar Glaßer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Christophe A. Serra
- Université de Strasbourg,
CNRS, Institut Charles Sadron, 23 rue du Loess, F-67000 Strasbourg, France
| | - Mangala Srinivas
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
| | - Olga Koshkina
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
30
|
Liang X, Chen M, Bhattarai P, Hameed S, Dai Z. Perfluorocarbon@Porphyrin Nanoparticles for Tumor Hypoxia Relief to Enhance Photodynamic Therapy against Liver Metastasis of Colon Cancer. ACS NANO 2020; 14:13569-13583. [PMID: 32915537 DOI: 10.1021/acsnano.0c05617] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Photodynamic therapy (PDT) shows great promise for the treatment of colon cancer. However, practically, it is a great challenge to use a nanocarrier for the codelivery of both the photosensitizer and oxygen to improve PDT against PDT-induced hypoxia, which is closely related to tumor metastasis. Hence, an effective strategy was proposed to develop an oxygen self-supplemented PDT nanocarrier based on the ultrasonic dispersion of perfluorooctyl bromide (PFOB) liquid into the preformed porphyrin grafted lipid (PGL) nanoparticles (NPs) with high porphyrin loading content of 38.5%, followed by entrapping oxygen. Interestingly, the orderly arranging mode of porphyrins and alkyl chains in PGL NPs not only guarantees a high efficacy of singlet oxygen generation but also reduces fluorescence loss of porphyrins to enable PGL NPs to be highly fluorescent. More importantly, PFOB liquid was stabilized inside PGL NPs with an ultrahigh loading content of 98.15% due to the strong hydrophobic interaction between PGL and PFOB molecules, facilitating efficient oxygen delivery. Both in vitro and in vivo results demonstrated that the obtained O2@PFOB@PGL NPs could act as a prominent oxygen reservoir and effectively replenish oxygen into the hypoxic tumors with no need for external stimulation, conducive to augmented singlet oxygen generation, hypoxia relief, and subsequent downregulation of COX-2 expression. As a result, the use of O2@PFOB@PGL NPs for hypoxia relief dramatically inhibits tumor growth and liver metastasis in an HT-29 colon cancer mouse model. In addition, the O2@PFOB@PGL NPs could serve as a bimodal contrast agent to enhance fluorescence and CT imaging, visualizing nanoparticle accumulation to guide the subsequent laser irradiation for precise PDT.
Collapse
Affiliation(s)
- Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Min Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Pravin Bhattarai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Krafft MP. Alleviating tumor hypoxia with perfluorocarbon-based oxygen carriers. Curr Opin Pharmacol 2020; 53:117-125. [PMID: 32979727 DOI: 10.1016/j.coph.2020.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/02/2020] [Accepted: 08/20/2020] [Indexed: 11/18/2022]
Abstract
Hypoxia is a major impediment to many foremost cancer treatments that require O2 for generation of tumoricidal reactive oxygen species. Liquid perfluorocarbons (PFCs) are inert gas solvents that help alleviate this oxygen deficit situation. PFC nanoemulsions have demonstrated oxygen delivery to tissues. The lifetime of 1O2 in PFCs is considerably expanded. PFC nanodroplets extravasate and accumulate in tumors. Alternatively, PFCs stabilize injectable O2 microbubbles. On-demand local O2 delivery is facilitated by ultrasound. Liquid PFC nanodroplets that convert into microbubbles upon activation provide another shuttle for O2-delivery. PFC nanocarriers can also be enriched with fluorescent dyes, radiopaque materials, photo(sono)sensitizers, loaded with chemotherapeutics, and fitted with targeting devices, or stimuli-responsive functions for image-guided theranostics. We review recent literature on PFC-based O2 carriers to enhance the efficacy of radiotherapy, photo(sono)dynamic therapy and chemotherapy. Of particular relevance to this series of reviews, PFC-based carriers may provide novel strategies to promote T-cell trafficking into tumors to improve immune responses.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 23 rue du Loess, 67034, Strasbourg, France.
| |
Collapse
|
32
|
Wan Y, Lu G, Wei WC, Huang YH, Li S, Chen JX, Cui X, Xiao YF, Li X, Liu Y, Meng XM, Wang P, Xie HY, Zhang J, Wong KT, Lee CS. Stable Organic Photosensitizer Nanoparticles with Absorption Peak beyond 800 Nanometers and High Reactive Oxygen Species Yield for Multimodality Phototheranostics. ACS NANO 2020; 14:9917-9928. [PMID: 32706236 DOI: 10.1021/acsnano.0c02767] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Effective multimodality phototheranostics under deep-penetration laser excitation is highly desired for tumor medicine, which is still at a deadlock due to lack of versatile photosensitizers with absorption located in the long-wavelength region. Herein, we demonstrate a stable organic photosensitizer nanoparticle based on molecular engineering of benzo[c]thiophene (BT)-based photoactivated molecules with strong wavelength-tunable absorption in the near-infrared region. Via molecular design, the absorption and singlet oxygen generation of BT molecules would be reliably tuned. Importantly, the nanoparticles with a red-shifted absorption peak of 843 nm not only show over 10-fold reactive oxygen species yield compared with indocyanine green but also demonstrate a notable photothermal effect and photoacoustic signal upon 808 nm excitation. The in vitro and in vivo experiments substantiate good multimodal anticancer efficacy and imaging performance of BT theranostics. This work provides an organic photosensitizer nanoparticle with long-wavelength excitation and high photoenergy conversion efficiency for multimodality phototherapy.
Collapse
Affiliation(s)
- Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Guihong Lu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Wei-Chih Wei
- Department of Chemistry, National Taiwan University, Institute of Atomic and Molecular Science Academia Sinica, Taipei 10617, Taiwan
| | - Yi-Hsuan Huang
- Department of Chemistry, National Taiwan University, Institute of Atomic and Molecular Science Academia Sinica, Taipei 10617, Taiwan
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Jia-Xiong Chen
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Ya-Fang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Xiaozhen Li
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Yanhong Liu
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
- Technical Institute of Physics And Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xiang-Min Meng
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
- Technical Institute of Physics And Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Pengfei Wang
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
- Technical Institute of Physics And Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hai-Yan Xie
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Ken-Tsung Wong
- Department of Chemistry, National Taiwan University, Institute of Atomic and Molecular Science Academia Sinica, Taipei 10617, Taiwan
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| |
Collapse
|
33
|
Xia L, Wu J, Huang B, Gao Y, Tian J, Zhang W. Enhanced photodynamic therapy through supramolecular photosensitizers with an adamantyl-functionalized porphyrin and a cyclodextrin dimer. Chem Commun (Camb) 2020; 56:11134-11137. [PMID: 32815939 DOI: 10.1039/d0cc03574b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A supramolecular photosensitizer was constructed using a tetra-adamantane-functionalized porphyrin and a dimer of permethyl-β-cyclodextrin through host-guest interaction and self-assembly. The porphyrin/cyclodextrin alternating structure of supramolecular photosensitizers not only enhances the water solubility of the photosensitizers, but also effectively inhibits the aggregation-induced quenching of porphyrin photosensitizers.
Collapse
Affiliation(s)
- Lei Xia
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | | | | | | | | | | |
Collapse
|
34
|
Yan K, Zhang Y, Mu C, Xu Q, Jing X, Wang D, Dang D, Meng L, Ma J. Versatile Nanoplatforms with enhanced Photodynamic Therapy: Designs and Applications. Theranostics 2020; 10:7287-7318. [PMID: 32641993 PMCID: PMC7330854 DOI: 10.7150/thno.46288] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
As an emerging antitumor strategy, photodynamic therapy (PDT) has attracted intensive attention for the treatment of various malignant tumors owing to its noninvasive nature and high spatial selectivity in recent years. However, the therapeutic effect is unsatisfactory on some occasions due to the presence of some unfavorable factors including nonspecific accumulation of PS towards malignant tissues, the lack of endogenous oxygen in tumors, as well as the limited light penetration depth, further hampering practical application. To circumvent these limitations and improve real utilization efficiency, various enhanced strategies have been developed and explored during the past years. In this review, we give an overview of the state-of-the-art advances progress on versatile nanoplatforms for enhanced PDT considering the enhancement from targeting or responsive, chemical and physical effect. Specifically, these effects mainly include organelle-targeting function, tumor microenvironment responsive release photosensitizers (PS), self-sufficient O2 (affinity oxygen and generating oxygen), photocatalytic water splitting, X-rays light stimulate, surface plasmon resonance enhancement, and the improvement by resonance energy transfer. When utilizing these strategies to improve the therapeutic effect, the advantages and limitations are addressed. Finally, the challenges and prospective will be discussed and demonstrated for the future development of advanced PDT with enhanced efficacy.
Collapse
Affiliation(s)
- Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yabin Zhang
- Key Laboratory of Testing Technology for Manufacturing Process of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chenglong Mu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qunna Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xunan Jing
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Daquan Wang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Dongfeng Dang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Lingjie Meng
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
35
|
Zhang N, Mei K, Guan P, Hu X, Zhao Y. Protein-Based Artificial Nanosystems in Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907256. [PMID: 32378796 DOI: 10.1002/smll.201907256] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 05/21/2023]
Abstract
Proteins, like actors, play different roles in specific applications. In the past decade, significant achievements have been made in protein-engineered biomedicine for cancer therapy. Certain proteins such as human serum albumin, working as carriers for drug/photosensitizer delivery, have entered clinical use due to their long half-life, biocompatibility, biodegradability, and inherent nonimmunogenicity. Proteins with catalytic abilities are promising as adjuvant agents for other therapeutic modalities or as anticancer drugs themselves. These catalytic proteins are usually defined as enzymes with high biological activity and substrate specificity. However, clinical applications of these kinds of proteins remain rare due to protease-induced denaturation and weak cellular permeability. Based on the characteristics of different proteins, tailor-made protein-based nanosystems could make up for their individual deficiencies. Therefore, elaborately designed protein-based nanosystems, where proteins serve as drug carriers, adjuvant agents, or therapeutic drugs to make full use of their intrinsic advantages in cancer therapy, are reviewed. Up-to-date progress on research in the field of protein-based nanomedicine is provided.
Collapse
Affiliation(s)
- Nan Zhang
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Kun Mei
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ping Guan
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiaoling Hu
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
36
|
Zhang Y, Wan Y, Chen Y, Blum NT, Lin J, Huang P. Ultrasound-Enhanced Chemo-Photodynamic Combination Therapy by Using Albumin "Nanoglue"-Based Nanotheranostics. ACS NANO 2020; 14:5560-5569. [PMID: 32343559 DOI: 10.1021/acsnano.9b09827] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The combination of photodynamic therapy (PDT) and chemotherapy is considered to enhance the antitumor immunity and combat multidrug resistance. Some preclinical studies have reported a positive therapeutic outcome of using ultrasound (US) irradiation to enhance chemotherapy, but the combination of these three modalities has yet to be investigated. On the basis of the discovery of a strong affinity between a photosensitizer sinoporphyrin sodium (DVDMS) and human serum albumin (HSA), a clinically used albumin-paclitaxel (HSA-PTX) nanoparticle is utilized as a "nanoglue" to load a large amount of DVDMS by simple mixing. The five conformations of HSA and DVDMS with highest affinity were calculated using AutoDock Vina. The obtained albumin "nanoglue"-based nanotheranostics, HSA-PTX-DVDMS (HPD), has better fluorescence imaging and PDT performance than free DVDMS, probably due to the reduced quenching of DVDMS after dispersion in albumin. An efficacious tumor-targeting enhancement of chemotherapy by US irradiation is verified in a bilateral subcutaneous 4T1 tumors model. With the aid of US irradiation, the combined PDT and chemotherapy mediated by HPD achieve effective tumor growth inhibition. Overall, this "nanoglue"-based nanotheranostics is composed of several clinically used elements and integrates three clinical modalities with application prospects in clinic.
Collapse
Affiliation(s)
- Yifan Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Yilin Wan
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Yantao Chen
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nicholas Thomas Blum
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| |
Collapse
|
37
|
Li R, Peng F, Cai J, Yang D, Zhang P. Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects. Asian J Pharm Sci 2020; 15:311-325. [PMID: 32636949 PMCID: PMC7327776 DOI: 10.1016/j.ajps.2019.06.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/28/2019] [Accepted: 06/20/2019] [Indexed: 01/23/2023] Open
Abstract
Cancer is a big challenge that has plagued the human beings for ages and one of the most effective treatments is chemotherapy. However, the low tumor-targeting ability limits the wide clinical application of chemotherapy. The microenvironment plays a critical role in many aspects of tumor genesis. It generates the tumor vasculature and it is highly implicated in the progression to metastasis. To maintain a suitable environment for tumor progression, there are special microenvironment in tumor cell, such as low pH, high level of glutathione (GSH) and reactive oxygen species (ROS), and more special enzymes, which is different to normal cell. Microenvironment-targeted therapy strategy could create new opportunities for therapeutic targeting. Compared to other targeting strategies, microenvironment-targeted therapy strategy will control the drug release into tumor cells more accurately. Redox responsive drug delivery systems (DDSs) are developed based on the high level of GSH in tumor cells. However, there are also GSH in normal cell though its level is lower. In order to control the release of drugs more accurately and reduce side effects, other drug release stimuli have been introduced to redox responsive DDSs. Under the synergistic reaction of two stimuli, redox dual-stimuli responsive DDSs will control the release of drugs more accurately and quickly and even increase the accumulation. This review summarizes strategies of redox dual-stimuli responsive DDSs such as pH, light, enzyme, ROS, and magnetic guide to delivery chemotherapeutic agents more accurately, aiming at providing new ideas for further promoting the drug release, enhancing tumor-targeting and improving anticancer effects. To better illustrate the redox dual-stimuli responsive DDS, preparations of carriers are also briefly described in the review.
Collapse
Affiliation(s)
- Ruirui Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Feifei Peng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jia Cai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dandan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Peng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
38
|
Qu J, Teng D, Sui G, Guan S, Wang Y, Wang Q, Lin Y, Ran H, Wang Z, Wang H. A photothermal-hypoxia sequentially activatable phase-change nanoagent for mitochondria-targeting tumor synergistic therapy. Biomater Sci 2020; 8:3116-3129. [PMID: 32352102 DOI: 10.1039/d0bm00003e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To enhance the specificity and efficiency of anti-tumor therapies, we have designed a multifunctional nanoparticle platform for photochemotherapy using fluorescence (FL) and photoacoustic (PA) imaging guidance. Nanoparticles (NPs) composed of a eutectic mixture of natural fatty acids that undergo a solid-liquid phase transition at 39 °C were used to encapsulate materials for the rapid and uniform release of the hypoxia-activated prodrug tirapazamine (TPZ) and the photosensitizer IR780, which targets the mitochondria of tumor cells and can be used to induce hypoxic cell death via photodynamic therapy and photothermal therapy. In vitro, the NPs containing TPZ and IR7890 exhibited appreciable cell uptake and triggered drug release when irradiated with a NIR laser. In vivo, photochemotherapy of the NPs achieved the best anti-tumor efficacy under PA and FL imaging guidance and monitoring. By combining IR780 mitochondria-targeting phototherapy with TPZ, we observed improved anti-tumor effectiveness and this has the potential to reduce the side effects of traditional chemotherapy. Herein, we demonstrate a new intracellular photochemotherapy nanosystem that co-encapsulates photosensitizers and hypoxia-activated drugs to enhance the overall anti-tumor effect precisely and efficiently.
Collapse
Affiliation(s)
- Jia Qu
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lan Y, Zhu X, Tang M, Wu Y, Zhang J, Liu J, Zhang Y. Construction of a near-infrared responsive upconversion nanoplatform against hypoxic tumors via NO-enhanced photodynamic therapy. NANOSCALE 2020; 12:7875-7887. [PMID: 32227004 DOI: 10.1039/c9nr10453d] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photodynamic therapy (PDT) has been extensively used to treat cancer and other malignant diseases because it can offer many unique advantages over other medical treatments such as less invasive, fewer side effects, lower cost, etc. Despite great progress, the efficiency of PDT treatment, as an oxygen-dependent therapy, is still limited by the hypoxic microenvironment in the human tumor region. In this work, we have developed a near-infrared (NIR) activated theranostic nanoplatform based on upconversion nanoparticles (UCNPs), which incorporates PDT photosensitizer (curcumin) and NO donor (Roussin's black salt) in order to overcome hypoxia-associated resistance by reducing cellular respiration with NO presence in the PDT treatment. Our results suggest that the photo-released NO upon NIR illumination can greatly decrease the oxygen consumption rate and hence increase singlet oxygen generation, which ultimately leads to an increased number of cancer cell deaths, especially under hypoxic condition. It is believed that the methodology developed in this study enables to relieve the hypoxia-induced resistance in PDT treatment and also holds great potential for overcoming hypoxia challenges in other oxygen-dependent therapies.
Collapse
Affiliation(s)
- Ying Lan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Tong X, Gan S, Wu J, Hu Y, Yuan A. A nano-photosensitizer based on covalent organic framework nanosheets with high loading and therapeutic efficacy. NANOSCALE 2020; 12:7376-7382. [PMID: 32207476 DOI: 10.1039/c9nr10787h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photooxidation provides a promising strategy for photocatalysis, photodynamic therapy, and environmental protection. Unfortunately, most organic photosensitizers possess weak hydrophilicity and a π-π conjugated structure, leading to singlet oxygen self-quenching, poor loadability and therefore unsatisfactory photooxidation efficiency. Thus, dispersion of these photosensitizers within a two-dimensional porous covalent organic framework has become a feasible strategy to hinder their self-aggregation and augment their loading capacity. Here, we report a phthalocyanine-based photosensitizer loaded on covalent organic framework nanosheets. This nano-photosensitizer exhibits highly dispersed organic fluorescent phthalocyanines and a high loading capacity. The fabricated nanosheets restrict self-aggregation of photosensitizer molecules and enhance the photooxidation activity, which may offer a new paradigm for photooxidation and its multiple applications.
Collapse
Affiliation(s)
- Xiaoning Tong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, and School of Life Science and Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China.
| | | | | | | | | |
Collapse
|
41
|
Yang Y, Tu J, Yang D, Raymond JL, Roy RA, Zhang D. Photo- and Sono-Dynamic Therapy: A Review of Mechanisms and Considerations for Pharmacological Agents Used in Therapy Incorporating Light and Sound. Curr Pharm Des 2020; 25:401-412. [PMID: 30674248 DOI: 10.2174/1381612825666190123114107] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/15/2019] [Indexed: 01/06/2023]
Abstract
As irreplaceable energy sources of minimally invasive treatment, light and sound have, separately, laid solid foundations in their clinic applications. Constrained by the relatively shallow penetration depth of light, photodynamic therapy (PDT) typically involves involves superficial targets such as shallow seated skin conditions, head and neck cancers, eye disorders, early-stage cancer of esophagus, etc. For ultrasound-driven sonodynamic therapy (SDT), however, to various organs is facilitated by the superior... transmission and focusing ability of ultrasound in biological tissues, enabling multiple therapeutic applications including treating glioma, breast cancer, hematologic tumor and opening blood-brain-barrier (BBB). Considering the emergence of theranostics and precision therapy, these two classic energy sources and corresponding sensitizers are worth reevaluating. In this review, three typical therapies using light and sound as a trigger, PDT, SDT, and combined PDT and SDT are introduced. The therapeutic dynamics and current designs of pharmacological sensitizers involved in these therapies are presented. By introducing both the history of the field and the most up-to-date design strategies, this review provides a systemic summary on the development of PDT and SDT and fosters inspiration for researchers working on 'multi-modal' therapies involving light and sound.
Collapse
Affiliation(s)
- Yanye Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Dongxin Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Jason L Raymond
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom.,Oxford-Suzhou Centre for Advanced Research, Suzhou, China
| | - Ronald A Roy
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.,Department of Engineering Science, University of Oxford, Oxford, United Kingdom.,Oxford-Suzhou Centre for Advanced Research, Suzhou, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
42
|
Demazeau M, Gibot L, Mingotaud AF, Vicendo P, Roux C, Lonetti B. Rational design of block copolymer self-assemblies in photodynamic therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:180-212. [PMID: 32082960 PMCID: PMC7006492 DOI: 10.3762/bjnano.11.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/04/2019] [Indexed: 05/10/2023]
Abstract
Photodynamic therapy is a technique already used in ophthalmology or oncology. It is based on the local production of reactive oxygen species through an energy transfer from an excited photosensitizer to oxygen present in the biological tissue. This review first presents an update, mainly covering the last five years, regarding the block copolymers used as nanovectors for the delivery of the photosensitizer. In particular, we describe the chemical nature and structure of the block copolymers showing a very large range of existing systems, spanning from natural polymers such as proteins or polysaccharides to synthetic ones such as polyesters or polyacrylates. A second part focuses on important parameters for their design and the improvement of their efficiency. Finally, particular attention has been paid to the question of nanocarrier internalization and interaction with membranes (both biomimetic and cellular), and the importance of intracellular targeting has been addressed.
Collapse
Affiliation(s)
- Maxime Demazeau
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Clément Roux
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
43
|
Deng L, Sheng D, Liu M, Yang L, Ran H, Li P, Cai X, Sun Y, Wang Z. A near-infrared laser and H2O2 activated bio-nanoreactor for enhanced photodynamic therapy of hypoxic tumors. Biomater Sci 2020; 8:858-870. [PMID: 31808470 DOI: 10.1039/c9bm01126a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synergistic photodynamic therapy of mitochondria-targeting and O2 self-supply can be achieved in a sample near-infrared laser and H2O2 activated bio-nanoreactor.
Collapse
Affiliation(s)
- Liming Deng
- Institute of Ultrasound Imaging & Department of Ultrasound
- The Second Affiliated Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Chongqing
- P. R. China
| | - Danli Sheng
- Department of Ultrasound
- Fudan University Shanghai Cancer Center
- Shanghai
- P. R. China
| | - Mingzhu Liu
- Institute of Ultrasound Imaging & Department of Ultrasound
- The Second Affiliated Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Chongqing
- P. R. China
| | - Lu Yang
- Department of Breast and Thyroid Surgery
- The Second Affiliated Hospital of Chongqing Medical University
- Chongqing
- P. R. China
| | - Haitao Ran
- Institute of Ultrasound Imaging & Department of Ultrasound
- The Second Affiliated Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Chongqing
- P. R. China
| | - Pan Li
- Institute of Ultrasound Imaging & Department of Ultrasound
- The Second Affiliated Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Chongqing
- P. R. China
| | - Xiaojun Cai
- Shanghai Institute of Ultrasound in Medicine
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- P. R. China
| | - Yang Sun
- Institute of Ultrasound Imaging & Department of Ultrasound
- The Second Affiliated Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Chongqing
- P. R. China
| | - Zhigang Wang
- Institute of Ultrasound Imaging & Department of Ultrasound
- The Second Affiliated Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Chongqing
- P. R. China
| |
Collapse
|
44
|
Feng G, Zhang GQ, Ding D. Design of superior phototheranostic agents guided by Jablonski diagrams. Chem Soc Rev 2020; 49:8179-8234. [DOI: 10.1039/d0cs00671h] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarizes how Jablonski diagrams guide the design of advanced organic optical agents and improvement of disease phototheranostic efficacies.
Collapse
Affiliation(s)
- Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- AIE Institute
- School of Materials Science and Engineering
- South China University of Technology
| | - Guo-Qiang Zhang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education, and College of Life Sciences
- Nankai University
- Tianjin 300071
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education, and College of Life Sciences
- Nankai University
- Tianjin 300071
| |
Collapse
|
45
|
Li X, Feng X, Sun C, Liu Y, Zhao Q, Wang S. Mesoporous carbon‑manganese nanocomposite for multiple imaging guided oxygen-elevated synergetic therapy. J Control Release 2019; 319:104-118. [PMID: 31881317 DOI: 10.1016/j.jconrel.2019.12.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022]
Abstract
Despite of the extensive application of photodynamic therapy (PDT)nowadays, several restrictions have emerged such as hydrophobility, undesired phototoxicity and low selectivity of photosensitizer as well as the hypoxic tumor microenvironment. To address these challenges, a multifunctional mesoporous carbon‑manganese nanocomposite (MC-MnO2) is developed to load Chlorin e6 (Ce6) with a high loading capacity. The MC-MnO2 can prevent Ce6 from being activated by the sunlight to reduce unintentional phototoxicity significantly and realize the hypoxia relief via reacting with the H2O2 overexpressed in tumor tissue, meanwhile, the reduced product Mn2+ ion could act as a T1/T2-weighted MRI contrast. Based on the broad absorption of MC-MnO2 within the range of NIR, the nanoparticle has the potential for serving as a photothermal agent and photoacoustic imaging (PAI) agent. The PEG and iRGD are further decorated on MC-MnO2 (iPMC-MnO2) to improve the biocompatibility, targeting and penetration of the nanoparticle. Taking full advantage of the good photothermal effect of iPMC-MnO2, the photothermal therapy (PTT) and enhanced PDT are subtly integrated into one system, developing an intelligent multimodal diagnostic and therapeutic nanoplatform and realizing our "one nanoparticle fits all" dream.
Collapse
Affiliation(s)
- Xian Li
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Xiaoqiang Feng
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Changshan Sun
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yixuan Liu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Qinfu Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| | - Siling Wang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| |
Collapse
|
46
|
Yang G, Chen C, Zhu Y, Liu Z, Xue Y, Zhong S, Wang C, Gao Y, Zhang W. GSH-Activatable NIR Nanoplatform with Mitochondria Targeting for Enhancing Tumor-Specific Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44961-44969. [PMID: 31692323 DOI: 10.1021/acsami.9b15996] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Developing smart photosensitizers that are sensitive to tumor-specific signals for minimal side effects and enhanced antitumor efficacy is a tremendous challenge for tumor phototherapies. Herein, we construct a nanoplatform with glutathione (GSH)-activatable and mitochondria-targeted pro-photosensitizer encapsulated by ultrasensitive pH-responsive polymer for achieving imaging-guided tumor-specific photodynamic therapy (PDT). The GSH-activatable pro-photosensitizer, di-cyanine (DCy7), has been synthesized where two cyanine moieties are covalently conjugated by a disulfide bond, and the hydrophobic DCy7 is further encapsulated with an amphiphilic pH-responsive diblock copolymer POEGMA-b-PDPA to form P@DCy7 nanoparticles. Upon endocytosis by cancer cells, P@DCy7 nanoparticles dissociate at endosome first and then DCy7 is released to cytoplasm and subsequently activated by the high concentration of GSH, finally targets mitochondria for organelle-targeted PDT. Moreover, intracellular antioxidant GSH is consumed during the activation procedure that is beneficial to efficient PDT. These P@DCy7 nanoparticles display selective phototoxicity against tumor cells (HepG2 or 4T1 cells) over normal cells (BEAS-2B cells) in vitro, and their GSH-activatable enhanced PDT efficacy is further confirmed in tumor-bearing mice. Thus, P@DCy7 nanoparticles allow for accurate and highly efficient PDT with minimal side effects, providing an attractive nanoplatform for organelle-targeted precise PDT.
Collapse
|
47
|
Sahu A, Kwon I, Tae G. Improving cancer therapy through the nanomaterials-assisted alleviation of hypoxia. Biomaterials 2019; 228:119578. [PMID: 31678843 DOI: 10.1016/j.biomaterials.2019.119578] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023]
Abstract
Hypoxia, resulting from the imbalance between oxygen supply and consumption is a critical component of the tumor microenvironment. It has a paramount impact on cancer growth, metastasis and has long been known as a major obstacle for cancer therapy. However, none of the clinically approved anticancer therapeutics currently available for human use directly tackles this problem. Previous clinical trials of targeting tumor hypoxia with bioreductive prodrugs have failed to demonstrate satisfactory results. Therefore, new ideas are needed to overcome the hypoxia barrier. The method of modulating hypoxia to improve the therapeutic activity is of great interest but remains a considerable challenge. One of the emerging concepts is to supply or generate oxygen at the tumor site to increase the partial oxygen pressure and thereby reverse the hypoxia and its effects. In this review, we present an overview of the recent progress in the development of novel nanomaterials for the alleviation of hypoxic microenvironment. Two main strategies for hypoxia augmentation, i) direct delivery of O2 into the tumor, and ii) in situ O2 generations in the tumor microenvironment through different methods such as catalytic decomposition of endogenous hydrogen peroxide (H2O2) and light-triggered water splitting are discussed in detail. At present, these emerging nanomaterials are in their early phase and expected to grow rapidly in the coming years. Despite the promising start, there are several challenges needed to overcome for successful clinical translation.
Collapse
Affiliation(s)
- Abhishek Sahu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
48
|
Yu Q, Huang T, Liu C, Zhao M, Xie M, Li G, Liu S, Huang W, Zhao Q. Oxygen self-sufficient NIR-activatable liposomes for tumor hypoxia regulation and photodynamic therapy. Chem Sci 2019; 10:9091-9098. [PMID: 31827751 PMCID: PMC6889832 DOI: 10.1039/c9sc03161h] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/01/2019] [Indexed: 01/25/2023] Open
Abstract
The inherent hypoxic environment in tumors severely resists the efficacy of photodynamic therapy. To address this problem, herein, the strategy of using oxygen self-sufficient liposomes (denoted as CaO2/B1/NH4HCO3 lipo), which contained aza-BODIPY dye (B1) and CaO2 nanoparticles in the hydrophobic layer and NH4HCO3 in the hydrophilic cavity, was presented to overcome hypoxia-associated photodynamic resistance. Under near-infrared (NIR) irradiation, NIR-absorbable B1 was activated to induce hyperthermia and further triggered the decomposition of NH4HCO3. Subsequently, with the aid of NH4HCO3 and CaO2 nanoparticles, oxygen was rapidly and self-sufficiently generated, during which clean by-products were produced. Furthermore, the increased amount of oxygen promoted the singlet oxygen production in the presence of B1, which served as a photosensitizer because of the heavy atom effect. The oxygen self-sufficient system improved the anticancer efficiency and alleviated the hypoxic environment in vivo, which demonstrated a valuable attempt to regulate intratumoral hypoxia and overcome the limitation of current photodynamic therapy systems. To our knowledge, this highlights the first example of using NIR light to activate CaO2 nanoparticle-containing liposomes for the modulation of the hypoxic environment in tumors.
Collapse
Affiliation(s)
- Qi Yu
- Key Laboratory for Organic Electronics and Information Displays , Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China .
| | - Tianci Huang
- Key Laboratory for Organic Electronics and Information Displays , Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China .
| | - Chao Liu
- Key Laboratory for Organic Electronics and Information Displays , Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China .
| | - Menglong Zhao
- Key Laboratory for Organic Electronics and Information Displays , Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China .
| | - Mingjuan Xie
- Key Laboratory for Organic Electronics and Information Displays , Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China .
| | - Guo Li
- Key Laboratory for Organic Electronics and Information Displays , Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China .
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays , Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China .
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays , Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China .
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , Xi'an 710072 , Shaanxi , P. R. China .
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays , Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China .
| |
Collapse
|
49
|
Yan S, Huang Q, Chen J, Song X, Chen Z, Huang M, Xu P, Zhang J. Tumor-targeting photodynamic therapy based on folate-modified polydopamine nanoparticles. Int J Nanomedicine 2019; 14:6799-6812. [PMID: 31692522 PMCID: PMC6711554 DOI: 10.2147/ijn.s216194] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/27/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Photodynamic therapy (PDT), a clinical anticancer therapeutic modality, has a long history in clinical cancer treatments since the 1970s. However, PDT has not been widely used largely because of metabolic problems and off-target phototoxicities of the current clinical photosensitizers. PURPOSE The objective of the study is to develop a high-efficiency and high-specificity carrier to precisely deliver photosensitizers to tumor sites, aiming at addressing metabolic problems, as well as the systemic damages current clinical photosensitizers are known to cause. METHODS We synthesized a polydopamine (PDA)-based carrier with the modification of folic acid (FA), which is to target the overexpressed folate receptors on tumor surfaces. We used this carrier to load a cationic phthalocyanine-type photosensitizer (Pc) and generated a PDA-FA-Pc nanomedicine. We determined the antitumor effects and the specificity to tumor cell lines in vitro. In addition, we established human cancer-xenografted mice models to evaluate the tumor-targeting property and anticancer efficacies in vivo. RESULTS Our PDA-FA-Pc nanomedicine demonstrated a high stability in normal physiological conditions, however, could specifically release photosensitizers in acidic conditions, eg, tumor microenvironment and lysosomes in cancer cells. Additionally, PDA-FA-Pc nanomedicine demonstrated a much higher cellular uptake and phototoxicity in cancer cell lines than in healthy cell lines. Moreover, the in vivo imaging data indicated excellent tumor-targeting properties of PDA-FA-Pc nanomedicine in human cancer-xenografted mice. Lastly, PDA-FA-Pc nanomedicine was found to significantly suppress tumor growth within two human cancer-xenografted mice models. CONCLUSION Our current study not only demonstrates PDA-FA-Pc nanomedicine as a highly potent and specific anticancer agent, but also suggests a strategy to address the metabolic and specificity problems of clinical photosensitizers.
Collapse
Affiliation(s)
- Shufeng Yan
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming, Fujian365004, People’s Republic of China
| | - Qingqing Huang
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming, Fujian365004, People’s Republic of China
| | - Jincan Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian350002, People’s Republic of China
| | - Xiaorong Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian350002, People’s Republic of China
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian350002, People’s Republic of China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, People’s Republic of China
| | - Peng Xu
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore138673, Singapore
| | - Juncheng Zhang
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming, Fujian365004, People’s Republic of China
| |
Collapse
|
50
|
Li W, Yong J, Xu Y, Wang Y, Zhang Y, Ren H, Li X. Glutathione depletion and dual-model oxygen balance disruption for photodynamic therapy enhancement. Colloids Surf B Biointerfaces 2019; 183:110453. [PMID: 31465940 DOI: 10.1016/j.colsurfb.2019.110453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023]
Abstract
Photodynamic therapy (PDT) is a prospective approach to cure tumor diseases. However, tumor micro-environment is notably characterized with severe hypoxia and high expression of glutathione (GSH), which seriously limit its clinical application. Here, based on the characteristics of perfluorocarbon (PFC) to dissolve substantial oxygen (O2) and the sensitivity of reductive GSH to S-NO group, we designed GSH depletion and dual-model O2 supply strategies to promote PDT enhancement. The PFC nanoliposomes (FI@Lip) and biocompatible NO donor S-nitrosated human serum albumin (HSA-SNO) were combined to synergistically combat the obstacle of tumor micro-environment, reducing GSH concentration and increasing singlet oxygen (1O2) generation. In vitro, after irradiation with NIR laser, the PFC in FI@Lip dissolved more O2 to increase 1O2 generation. In addition, with co-delivery of HSA-SNO, it can effectively promote GSH depletion to recover 1O2 level and release NO concurrently to inhibit mitochondrial respiration. This combination strategy of FI@Lip and HSA-SNO obviously relieved intracellular hypoxia and decreased GSH to increase more toxic 1O2 generation for PDT enhancement. The present work will play as an enlightening role in PDT design and clinical application in the near future.
Collapse
Affiliation(s)
- Weilan Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Jiahui Yong
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Yan Xu
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Yonglu Wang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Yifan Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|