1
|
Cao Q, Lü W, Wang XR, Guan X, Wang L, Yan S, Wu T, Wang X. Nonvolatile Multistates Memories for High-Density Data Storage. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42449-42471. [PMID: 32812741 DOI: 10.1021/acsami.0c10184] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the current information age, the realization of memory devices with energy efficient design, high storage density, nonvolatility, fast access, and low cost is still a great challenge. As a promising technology to meet these stringent requirements, nonvolatile multistates memory (NMSM) has attracted lots of attention over the past years. Owing to the capability to store data in more than a single bit (0 or 1), the storage density is dramatically enhanced without scaling down the memory cell, making memory devices more efficient and less expensive. Multistates in a single cell also provide an unconventional in-memory computing platform beyond the Von Neumann architecture and enable neuromorphic computing with low power consumption. In this review, an in-depth perspective is presented on the recent progress and challenges on the device architectures, material innovation, working mechanisms of various types of NMSMs, including flash, magnetic random-access memory (MRAM), resistive random-access memory (RRAM), ferroelectric random-access memory (FeRAM), and phase-change memory (PCM). The intriguing properties and performance of these NMSMs, which are the key to realizing highly integrated memory hierarchy, are discussed and compared.
Collapse
Affiliation(s)
- Qiang Cao
- Spintronics Institute, University of Jinan, Jinan 250022, China
| | - Weiming Lü
- Spintronics Institute, University of Jinan, Jinan 250022, China
| | - X Renshaw Wang
- School of Physical and Mathematical Sciences & School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore
| | - Xinwei Guan
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lan Wang
- School of Science, ARC Centre of Excellence in Future Low-Energy Electronics Technologies, RMIT University, Melbourne, Victoria 3001, Australia
| | - Shishen Yan
- Spintronics Institute, University of Jinan, Jinan 250022, China
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | |
Collapse
|
2
|
Li J, Li N, Ge C, Huang H, Sun Y, Gao P, He M, Wang C, Yang G, Jin K. Giant Electroresistance in Ferroionic Tunnel Junctions. iScience 2019; 16:368-377. [PMID: 31220760 PMCID: PMC6584484 DOI: 10.1016/j.isci.2019.05.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/07/2019] [Accepted: 05/29/2019] [Indexed: 11/24/2022] Open
Abstract
Oxide-based resistive switching devices, including ferroelectric tunnel junctions and resistance random access memory, are promising candidates for the next-generation non-volatile memory technology. In this work, we propose a ferroionic tunnel junction to realize a giant electroresistance. It functions as a ferroelectric tunnel junction at low resistance state and as a Schottky junction at high resistance state, due to interface engineering through the field-induced migration of oxygen vacancies. An extremely large electroresistance with ON/OFF ratios of 5.1×107 at room temperature and 2.1×109 at 10 K is achieved, using an ultrathin BaTiO3-δ layer as the ferroelectric barrier and a semiconducting Nb-doped SrTiO3 substrate as the bottom electrode. The results point toward an appealing way for the design of high-performance resistive switching devices based on ultrathin oxide heterostructures by ionic controlled interface engineering.
Collapse
Affiliation(s)
- Jiankun Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ning Li
- International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Chen Ge
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Polar Materials and Devices, Ministry of Education, Shanghai 200241, China.
| | - Heyi Huang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuanwei Sun
- International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Peng Gao
- International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China; Collaborative Innovation Centre of Quantum Matter, Beijing 100871, China.
| | - Meng He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Can Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Guozhen Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.
| |
Collapse
|
3
|
Guo R, Zhou Y, Wu L, Wang Z, Lim Z, Yan X, Lin W, Wang H, Yoong HY, Chen S, Venkatesan T, Wang J, Chow GM, Gruverman A, Miao X, Zhu Y, Chen J. Control of Synaptic Plasticity Learning of Ferroelectric Tunnel Memristor by Nanoscale Interface Engineering. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12862-12869. [PMID: 29617112 DOI: 10.1021/acsami.8b01469] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Brain-inspired computing is an emerging field, which intends to extend the capabilities of information technology beyond digital logic. The progress of the field relies on artificial synaptic devices as the building block for brainlike computing systems. Here, we report an electronic synapse based on a ferroelectric tunnel memristor, where its synaptic plasticity learning property can be controlled by nanoscale interface engineering. The effect of the interface engineering on the device performance was studied. Different memristor interfaces lead to an opposite virgin resistance state of the devices. More importantly, nanoscale interface engineering could tune the intrinsic band alignment of the ferroelectric/metal-semiconductor heterostructure over a large range of 1.28 eV, which eventually results in different memristive and spike-timing-dependent plasticity (STDP) properties of the devices. Bidirectional and unidirectional gradual resistance modulation of the devices could therefore be controlled by tuning the band alignment. This study gives useful insights on tuning device functionalities through nanoscale interface engineering. The diverse STDP forms of the memristors with different interfaces may play different specific roles in various spike neural networks.
Collapse
Affiliation(s)
- Rui Guo
- Department of Materials Science and Engineering , National University of Singapore , 117575 , Singapore
- NUSNNI-Nanocore , National University of Singapore , 117411 , Singapore
| | - Yaxiong Zhou
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Lijun Wu
- Condensed Matter Physics & Materials Science Division, Brookhaven National Laboratory , Upton, New York , New York 11973 , United States
| | - Zhuorui Wang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Zhishiuh Lim
- NUSNNI-Nanocore , National University of Singapore , 117411 , Singapore
| | - Xiaobing Yan
- Department of Materials Science and Engineering , National University of Singapore , 117575 , Singapore
| | - Weinan Lin
- Department of Materials Science and Engineering , National University of Singapore , 117575 , Singapore
| | - Han Wang
- Department of Materials Science and Engineering , National University of Singapore , 117575 , Singapore
| | - Herng Yau Yoong
- Department of Materials Science and Engineering , National University of Singapore , 117575 , Singapore
| | - Shaohai Chen
- Department of Materials Science and Engineering , National University of Singapore , 117575 , Singapore
| | - Thirumalai Venkatesan
- Department of Materials Science and Engineering , National University of Singapore , 117575 , Singapore
- NUSNNI-Nanocore , National University of Singapore , 117411 , Singapore
- Department of Physics , National University of Singapore , 117542 , Singapore
- Department of Electrical and Computer Engineering , National University of Singapore , 117583 , Singapore
| | - John Wang
- Department of Materials Science and Engineering , National University of Singapore , 117575 , Singapore
| | - Gan Moog Chow
- Department of Materials Science and Engineering , National University of Singapore , 117575 , Singapore
| | - Alexei Gruverman
- Department of Physics and Astronomy , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States
| | - Xiangshui Miao
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yimei Zhu
- Condensed Matter Physics & Materials Science Division, Brookhaven National Laboratory , Upton, New York , New York 11973 , United States
| | - Jingsheng Chen
- Department of Materials Science and Engineering , National University of Singapore , 117575 , Singapore
- NUSNNI-Nanocore , National University of Singapore , 117411 , Singapore
| |
Collapse
|
4
|
Wang L, Kim R, Kim Y, Kim CH, Hwang S, Cho MR, Shin YJ, Das S, Kim JR, Kalinin SV, Kim M, Yang SM, Noh TW. Electronic-Reconstruction-Enhanced Tunneling Conductance at Terrace Edges of Ultrathin Oxide Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702001. [PMID: 29024168 DOI: 10.1002/adma.201702001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/06/2017] [Indexed: 06/07/2023]
Abstract
Quantum mechanical tunneling of electrons across ultrathin insulating oxide barriers has been studied extensively for decades due to its great potential in electronic-device applications. In the few-nanometers-thick epitaxial oxide films, atomic-scale structural imperfections, such as the ubiquitously existed one-unit-cell-high terrace edges, can dramatically affect the tunneling probability and device performance. However, the underlying physics has not been investigated adequately. Here, taking ultrathin BaTiO3 films as a model system, an intrinsic tunneling-conductance enhancement is reported near the terrace edges. Scanning-probe-microscopy results demonstrate the existence of highly conductive regions (tens of nanometers wide) near the terrace edges. First-principles calculations suggest that the terrace-edge geometry can trigger an electronic reconstruction, which reduces the effective tunneling barrier width locally. Furthermore, such tunneling-conductance enhancement can be discovered in other transition metal oxides and controlled by surface-termination engineering. The controllable electronic reconstruction can facilitate the implementation of oxide electronic devices and discovery of exotic low-dimensional quantum phases.
Collapse
Affiliation(s)
- Lingfei Wang
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rokyeon Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoonkoo Kim
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Choong H Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangwoon Hwang
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Myung Rae Cho
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeong Jae Shin
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Saikat Das
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Rae Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sergei V Kalinin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Miyoung Kim
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Mo Yang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Physics, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Tae Won Noh
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|