1
|
Zhou J, Chen L, Ma Z, Liao X, Yan Y, Chen Z, Yang Y, Wang R, Yu W, Wang Y, Nie X, Huo P, Fang X, Zhang J, Zhou Y, Song B, Yuan N. Dibenzothiophene S, S-Dioxide-Containing Dipolar Molecules As Efficient Hole-Transport Materials for p-i-n Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57851-57859. [PMID: 39392065 DOI: 10.1021/acsami.4c12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Organic-inorganic hybrid perovskite solar cells (OIH-PSCs) have developed rapidly in the past decade, and the commercialization of OIH-PSCs demands low-cost hole-transport materials (HTMs) with high performance and stability. The present study synthesized two organic HTMs containing dibenzothiophene S-dioxide as the acceptor unit and triphenylamine as the donor (denoted by TPAF-SO2 and TPA-SO2). In TPAF-SO2, the methoxy group and adjacent fluorine atom were introduced to decrease the highest occupied molecular orbital energy level. In TPA-SO2, the methyl sulfide group is the end group that can passivate the lead ion. TPAF-SO2 and TPA-SO2 exhibit hole-transport mobilities as high as 1.12 × 10-3 and 2.31 × 10-3 cm2 v-1 s-1, respectively, and strongly passivate Pb vacancies. Compared with TPAF-SO2, TPA-SO2 is more suitable for the growth of perovskite crystals. The perovskite grown on the latter has a lower trap density and higher carrier mobility; thus, both the nonradiative recombination and the charge-transport loss are decreased. The OIH-PSC based on TPA-SO2 as the HTM achieved a power conversion efficiency (PCE) as high as 22.08%, whereas the device based on TPAF-SO2 achieved a PCE of only 18.42%. In addition, the unencapsulated device based on TPA-SO2 can maintain 85% of the initial PCE after being stored in N2 for 1200 h, whereas the device based on TPAF-SO2 decayed rapidly to zero in 800 h under the same conditions.
Collapse
Affiliation(s)
- Junjie Zhou
- School of Material Science & Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Lei Chen
- School of Material Science & Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Zijun Ma
- School of Material Science & Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Xiwei Liao
- School of Material Science & Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Yujing Yan
- School of Material Science & Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Ziyin Chen
- School of Material Science & Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Yuhang Yang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Rui Wang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wei Yu
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yichen Wang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoting Nie
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Pengyun Huo
- School of Material Science & Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Xiang Fang
- School of Material Science & Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Jing Zhang
- School of Material Science & Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Yi Zhou
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Bo Song
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ningyi Yuan
- School of Material Science & Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, Jiangsu, China
| |
Collapse
|
2
|
Chiu SW, Hsu A, Ying L, Liaw YK, Lin KT, Ruan J, Samuel IDW, Hsu BBY. Achieving Bright Organic Light-Emitting Field-Effect Transistors with Sustained Efficiency through Hybrid Contact Design. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37310808 DOI: 10.1021/acsami.3c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic light-emitting field-effect transistors (OLEFETs) with bilayer structures have been widely studied due to their potential to integrate high-mobility organic transistors and efficient organic light-emitting diodes. However, these devices face a major challenge of imbalance charge transport, leading to a severe efficiency roll-off at high brightness. Here, we propose a solution to this challenge by introducing a transparent organic/inorganic hybrid contact with specially designed electronic structures. Our design aims to steadily accumulate the electrons injected into the emissive polymer, allowing the light-emitting interface to effectively capture more holes even when the hole current increases. Our numerical simulations show that the capture efficiency of these steady electrons will dominate charge recombination and lead to a sustained external quantum efficiency of 0.23% over 3 orders of magnitude of brightness (4 to 7700 cd/m2) and current density (1.2 to 2700 mA/cm2) from -4 to -100 V. The same enhancement is retained even after increasing the external quantum efficiency (EQE) to 0.51%. The high and tunable brightness with stable efficiency offered by hybrid-contact OLEFETs makes them ideal light-emitting devices for various applications. These devices have the potential to revolutionize the field of organic electronics by overcoming the fundamental challenge of imbalance charge transport.
Collapse
Affiliation(s)
- Shih-Wei Chiu
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - An Hsu
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Lei Ying
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yong-Kang Liaw
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kun-Ta Lin
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jrjeng Ruan
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
| | - Ben B Y Hsu
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
3
|
Chen G, Wu H, Feng C, Deng Z, Li Z, Nie M, He B, Hao H, Li X, He Z. Efficient Cathode Buffer Material Based on Dibenzothiophene- S, S-dioxide for Both Conventional and Inverted Organic Solar Cells. ACS OMEGA 2022; 7:38613-38621. [PMID: 36340129 PMCID: PMC9631918 DOI: 10.1021/acsomega.2c04060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
A novel conjugated molecule (PBSON) based on a main chain composed of bis(dibenzothiophene-S,S-dioxide) fused cyclopentadiene and side chains containing amino groups is presented as an efficient cathode buffer material (CBM) for organic solar cells (OSCs). PBSON showed a deep highest occupied molecular orbital (HOMO) energy level of -6.01 eV, which was beneficial for building hole-blocking layers at the cathodes of OSCs. The energy bandgap of PBSON reached 3.17 eV, implying high transmittance to visible and near-infrared light, which meant PBSON should be suitable for the applications to most inverted OSCs. The scanning Kelvin probe microscopy measurement and theoretical calculation on the PBSON/cathode interfacial interaction proved the excellent work function-regulating abilities of PBSON for various cathodes, suggesting that PBSON could promote the formation of Ohmic contacts at the cathodes and thus improve the transport and collection of electron carriers for OSCs. The characterization of electron-only devices demonstrated the good electron-transporting performance of PBSON at the cathodes. In the conventional OSCs, it was hinted that PBSON might restrain the infiltrations of evaporated cathode atoms into the active films, consequently reducing the reverse leakage currents. As a result, PBSON was able to boost the power conversion efficiencies (PCEs) by 58.2 and 56.4% for both conventional and inverted OSCs of the typical PTB7:PC71BM system, respectively, as compared to the unadorned devices. In terms of the classical PTB7-Th:PC71BM system, substantial increases in PCEs could also be found with PBSON interlayers, which were 54.7 and 59.8% for the conventional device and inverted device, respectively. Therefore, PBSON is a kind of promising CBM for realizing both conventional and inverted OSCs of high performance.
Collapse
Affiliation(s)
- Guiting Chen
- School
of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Hongli Wu
- Institute
of Polymer Optoelectronic Materials and Devices, State Key Laboratory
of Luminescent Materials and Devices, South
China University of Technology, Guangzhou 510640, China
| | - Chuang Feng
- Institute
of Polymer Optoelectronic Materials and Devices, State Key Laboratory
of Luminescent Materials and Devices, South
China University of Technology, Guangzhou 510640, China
| | - Zhikai Deng
- School
of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Zhuyang Li
- School
of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Mingxin Nie
- School
of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Baitian He
- School
of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Hongqing Hao
- School
of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Xin Li
- School
of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Zhicai He
- Institute
of Polymer Optoelectronic Materials and Devices, State Key Laboratory
of Luminescent Materials and Devices, South
China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Wang X, Feng C, Liu P, He Z, Cao Y. Origin of the Additive-Induced V OC Change in Non-Fullerene Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107106. [PMID: 35088934 DOI: 10.1002/smll.202107106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Additives are often used to adjust the morphology of the active layer to improve the performance of organic solar cells (OSCs). Here, taking typical high-efficiency non-fullerene systems as examples, the effect of the additive on the device performance in non-fullerene OSCs is systematically investigated. Surprisingly, an unpresented VOC change is observed in the opposite direction of the two typical systems (PM6:Y6 and PTB7-Th: ITIC) appearing after the incorporation of the additive DIO, which can be affected by the morphological differences as indicated by the several morphological studies. The bewildering VOC change caused by the additive in different material systems is supposed to originate from the different energy level variations as verified by the energy level studies. Molecular dynamic (MD) and density functional theory (DFT) calculations are also included to get an insight into the dynamic of the additive-induced morphological differences that are supposed to contribute to the energy level changes. Combining a series of morphological and energic studies as well as the theoretical calculations, the origin of unforeseeable VOC changes caused by additives in non-fullerene OSCs is clarified, and provides in-depth insights into the effects of additives on device performance.
Collapse
Affiliation(s)
- Xiaojing Wang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chuang Feng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Peng Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhicai He
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
5
|
Luz EQ, Santana FS, Silverio GL, Tullio SCMC, Iodice B, Prola LDT, Barbosa RV, Rampon DS. Crystal structures of 3-halo-2-organochalcogenylbenzo[ b]chalcogenophenes. Acta Crystallogr E Crystallogr Commun 2022; 78:275-281. [PMID: 35371552 PMCID: PMC8900512 DOI: 10.1107/s2056989022000962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/27/2022] [Indexed: 11/15/2022]
Abstract
The structure of the title compounds 3-bromo-2-(phenyl-sulfan-yl)benzo[b]thiophene (C14H9BrS2; 1), 3-iodo-2-(phenyl-sulfan-yl)benzo[b]thio-phene (C14H9IS2; 2), 3-bromo-2-(phenyl-selan-yl)benzo[b]seleno-phene (C14H9BrSe2; 3), and 3-iodo-2-(phenyl-selan-yl)benzo[b]seleno-phene (C14H9ISe2; 4) were determined by single-crystal X-ray diffraction; all structures presented monoclinic (P21/c) symmetry. The phenyl group is distant from the halogen atom to minimize the steric hindrance repulsion for all structures. Moreover, the structures of 3 and 4 show an almost linear alignment of halogen-selenium-carbon atoms arising from the intra-molecular orbital inter-action between a lone pair of electrons on the halogen atom and the anti-bonding σ*Se-C orbital (n halogen→σ*Se-C). This inter-action leads to significant differences in the three-dimensional packing of the mol-ecules, which are assembled through π-π and C-H⋯π inter-actions. These data provide a better comprehension of the inter-molecular packing in benzo[b]chalcogenophenes, which is relevant for optoelectronic applications.
Collapse
Affiliation(s)
- Eduardo Q. Luz
- Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry, Federal University of Paraná-UFPR, PO Box 19061, Curitiba, PR, 81531-980, Brazil
| | - Francielli S. Santana
- Department of Chemistry, Federal University of Paraná-UFPR, PO Box 19061, Curitiba, PR, 81531-980, Brazil
| | - Gabriel L. Silverio
- Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry, Federal University of Paraná-UFPR, PO Box 19061, Curitiba, PR, 81531-980, Brazil
| | | | - Bianca Iodice
- IOTO USA – 1997N Greene Street – Greenville, NC 27834, USA
| | - Liziê D. T. Prola
- Department of Chemistry and Biology, Federal University of Technology - Paraná, Rua Deputado Heitor de Alencar Furtado, 5000, 81280-340, Curitiba, Brazil
| | - Ronilson V. Barbosa
- IOTO INTERNATIONAL - Rodovia Gumercindo Boza 20088 – Campo Magro – PR, 83535-000, Brazil
| | - Daniel S. Rampon
- Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry, Federal University of Paraná-UFPR, PO Box 19061, Curitiba, PR, 81531-980, Brazil
| |
Collapse
|
6
|
Luz EQ, Silvério GL, Seckler D, Lima DB, Santana FS, Barbosa RV, Montes D'Oca CR, Rampon DS. One‐Pot Synthesis of 3‐Halo‐2‐organochalcogenylbenzo[
b
]chalcogenophenes from 1‐(2,2‐Dibromovinyl)‐2‐organochalcogenylbenzenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eduardo Q. Luz
- Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry Federal University of Paraná-UFPR P. O. Box 19061 Curitiba PR, 81531-980 Brazil
| | - Gabriel L. Silvério
- Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry Federal University of Paraná-UFPR P. O. Box 19061 Curitiba PR, 81531-980 Brazil
| | - Diego Seckler
- Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry Federal University of Paraná-UFPR P. O. Box 19061 Curitiba PR, 81531-980 Brazil
| | - David B. Lima
- Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry Federal University of Paraná-UFPR P. O. Box 19061 Curitiba PR, 81531-980 Brazil
| | - Francielli S. Santana
- Department of Chemistry Federal University of Paraná-UFPR P. O. Box 19061 Curitiba PR, 81531-980 Brazil
| | - Ronilson V. Barbosa
- Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry Federal University of Paraná-UFPR P. O. Box 19061 Curitiba PR, 81531-980 Brazil
| | - Caroline R. Montes D'Oca
- Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry Federal University of Paraná-UFPR P. O. Box 19061 Curitiba PR, 81531-980 Brazil
| | - Daniel S. Rampon
- Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry Federal University of Paraná-UFPR P. O. Box 19061 Curitiba PR, 81531-980 Brazil
| |
Collapse
|
7
|
Lin L, Huang Z, Luo Y, Peng T, He B, Chen G, Hao H, Li X, Cai P, Yang W. Alcohol-soluble fluorene derivate functionalized with pyridyl groups as a high-performance cathode interfacial material in organic solar cells. NEW J CHEM 2021. [DOI: 10.1039/d0nj06143c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The synthesis and application as a cathode interlayer in organic photovoltaics of a fluorene derivative with pyridyl functional chains are presented.
Collapse
Affiliation(s)
- Lin Lin
- School of Chemistry and Environment
- Jiaying University
- Meizhou 514015
- China
| | - Zeping Huang
- School of Chemistry and Environment
- Jiaying University
- Meizhou 514015
- China
| | - Yuanqi Luo
- School of Chemistry and Environment
- Jiaying University
- Meizhou 514015
- China
| | - Tingen Peng
- School of Chemistry and Environment
- Jiaying University
- Meizhou 514015
- China
| | - Baitian He
- School of Chemistry and Environment
- Jiaying University
- Meizhou 514015
- China
| | - Guiting Chen
- School of Chemistry and Environment
- Jiaying University
- Meizhou 514015
- China
| | - Hongqing Hao
- School of Chemistry and Environment
- Jiaying University
- Meizhou 514015
- China
| | - Xin Li
- School of Chemistry and Environment
- Jiaying University
- Meizhou 514015
- China
| | - Ping Cai
- School of Materials Science and Engineering & Guangxi Key Laboratory of Information Materials
- Guilin University of Electronic Technology
- Guilin 541004
- China
| | - Wei Yang
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
8
|
Peglow TJ, Bartz RH, Martins CC, Belladona AL, Luchese C, Wilhelm EA, Schumacher RF, Perin G. Synthesis of 2-Organylchalcogenopheno[2,3-b]pyridines from Elemental Chalcogen and NaBH 4 /PEG-400 as a Reducing System: Antioxidant and Antinociceptive Properties. ChemMedChem 2020; 15:1741-1751. [PMID: 32667720 DOI: 10.1002/cmdc.202000358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Indexed: 12/29/2022]
Abstract
An alternative method to prepare 2-organylchalcogenopheno[2,3-b]pyridines was developed by the insertion of chalcogen species (selenium, sulfur or tellurium), generated in situ, into 2-chloro-3-(organylethynyl)pyridines by using the NaBH4 /PEG-400 reducing system, followed by an intramolecular cyclization. It was possible to obtain a series of compounds with up to 93 % yield in short reaction times. Among the synthesized products, 2-organyltelluropheno[2,3-b]pyridines have not been described in the literature so far. Moreover, the compounds 2-phenylthieno[2,3-b]pyridine (3 b) and 2-phenyltelluropheno[2,3-b]pyridine (3 c) exhibited significant antioxidant potential in different in vitro assays. Further studies demonstrated that compound 3 b exerted an antinociceptive effect in acute inflammatory and non-inflammatory pain models, thus indicating the involvement of the central and peripheral nervous systems on its pharmacological action. More specifically, our results suggest that the intrinsic antioxidant property of compound 3 b might contribute to attenuating the nociception and inflammatory process on local injury induced by complete Freund's adjuvant (CFA).
Collapse
Affiliation(s)
- Thiago J Peglow
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Ricardo H Bartz
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Carolina C Martins
- LaFarBio-CCQFA, Universidade Federal de Pelotas - UFPel, 96010-900, Pelotas, RS, Brazil
| | - Andrei L Belladona
- CCNE, Universidade Federal de Santa Maria - UFSM, 97105-900, Santa Maria, RS, Brazil
| | - Cristiane Luchese
- LaFarBio-CCQFA, Universidade Federal de Pelotas - UFPel, 96010-900, Pelotas, RS, Brazil
| | - Ethel A Wilhelm
- LaFarBio-CCQFA, Universidade Federal de Pelotas - UFPel, 96010-900, Pelotas, RS, Brazil
| | - Ricardo F Schumacher
- CCNE, Universidade Federal de Santa Maria - UFSM, 97105-900, Santa Maria, RS, Brazil
| | - Gelson Perin
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
9
|
Chen G, Cheng D, Zou W, Cai Z, Xie Y, Chen Y, He B, Hao H, Yang W, Cao Y. Dibenzothiophene- S, S-dioxide-bispyridinium-fluorene-based polyelectrolytes for cathode buffer layers of polymer solar cells. Polym Chem 2020. [DOI: 10.1039/d0py00416b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The successful applications of PFSOPyCl and its newly synthesized derivative PFSOPyCl-E cathode modifiers in inverted polymer solar cells are presented.
Collapse
Affiliation(s)
- Guiting Chen
- School of Chemistry and Environment
- Jiaying University
- Meizhou 514015
- China
| | - Dan Cheng
- School of Chemistry and Environment
- Jiaying University
- Meizhou 514015
- China
| | - Wenyan Zou
- School of Chemistry and Environment
- Jiaying University
- Meizhou 514015
- China
| | - Ziyan Cai
- School of Chemistry and Environment
- Jiaying University
- Meizhou 514015
- China
| | - Yufeng Xie
- School of Chemistry and Environment
- Jiaying University
- Meizhou 514015
- China
| | - Yaqi Chen
- School of Chemistry and Environment
- Jiaying University
- Meizhou 514015
- China
| | - Baitian He
- School of Chemistry and Environment
- Jiaying University
- Meizhou 514015
- China
| | - Hongqing Hao
- School of Chemistry and Environment
- Jiaying University
- Meizhou 514015
- China
| | - Wei Yang
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
10
|
Chen G, Qian G, Yi S, He Z, Wu HB, Yang W, Zhang B, Cao Y. Molecular Engineering on Bis(benzothiophene- S, S-dioxide)-Based Large-Band Gap Polymers for Interfacial Modifications in Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45969-45978. [PMID: 31694372 DOI: 10.1021/acsami.9b15704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of effectively universal interfacial materials for both conventional and inverted polymer solar cells (PSCs) plays a very crucial role in achieving highly photovoltaic performance and feasible device engineering. In this study, two novel alcohol-soluble conjugated polymers (PBSON-P and PBSON-FEO) with bis(benzothiophene-S,S-dioxide)-fused aromatics (FBTO) as the core unit and amino as functional groups are synthesized. They are utilized as universal cathode interfacial layers for both conventional and inverted PSCs simultaneously. Ascribing to the enlarged conjugated planarity and higher electron affinity for an FBTO unit, both PBSON-P and PBSON-FEO exhibit versatile electron-transporting abilities. They show wide band gaps that are important for light absorption in inverted PSCs, at which point PBSON-P and PBSON-FEO are more progressive than some of the reported small band gap cathode interfacial materials. Importantly, PBSON-P and PBSON-FEO display deep highest occupied molecular orbital energy levels, which can block holes at the cathode and thus increase the fill factor. As a result, both conventional and inverted PSCs using PBSON-P and PBSON-FEO as cathode interlayers realize high photovoltaic performance. Therefore, this series of novel polymers are amphibious cathode interfacial materials for high-performance conventional and inverted PSCs.
Collapse
Affiliation(s)
- Guiting Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
- School of Chemistry and Environment , Jiaying University , Meizhou 514015 , P. R. China
| | - Gaoheng Qian
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Shuwang Yi
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Zhicai He
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Hong-Bin Wu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Wei Yang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Bin Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
- Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, School of Materials Science and Engineering , Changzhou University , Changzhou 213164 , P. R. China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| |
Collapse
|
11
|
Perin G, Soares LK, Hellwig PS, Silva MS, Neto JSS, Roehrs JA, Barcellos T, Lenardão EJ. Synthesis of 2,3-bis-organochalcogenyl-benzo[b]chalcogenophenes promoted by Oxone®. NEW J CHEM 2019. [DOI: 10.1039/c9nj00526a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report here an alternative and tunable metal-free synthesis of benzo[b]chalcogenophenes via the electrophilic cyclization of 2-functionalized chalcogenoalkynes promoted by Oxone®.
Collapse
Affiliation(s)
- Gelson Perin
- LASOL-CCQFA
- Universidade Federal de Pelotas – UFPel
- 96010-900, Pelotas
- Brazil
| | - Liane K. Soares
- LASOL-CCQFA
- Universidade Federal de Pelotas – UFPel
- 96010-900, Pelotas
- Brazil
| | - Paola S. Hellwig
- LASOL-CCQFA
- Universidade Federal de Pelotas – UFPel
- 96010-900, Pelotas
- Brazil
| | - Marcio S. Silva
- LASOL-CCQFA
- Universidade Federal de Pelotas – UFPel
- 96010-900, Pelotas
- Brazil
| | - José S. S. Neto
- LASOL-CCQFA
- Universidade Federal de Pelotas – UFPel
- 96010-900, Pelotas
- Brazil
| | - Juliano A. Roehrs
- Instituto Federal Sul-Rio-Grandense
- Campus Pelotas – Praça Vinte de Setembro
- Brazil
| | - Thiago Barcellos
- Laboratory of Biotechnology of Natural and Synthetic Products – Universidade de Caxias do Sul – UCS
- Caxias do Sul
- Brazil
| | - Eder J. Lenardão
- LASOL-CCQFA
- Universidade Federal de Pelotas – UFPel
- 96010-900, Pelotas
- Brazil
| |
Collapse
|
12
|
Chen G, Li X, Chen Z, Tang C, Yang W, Cao Y. Synthesis and optical and electrochemical properties of polycyclic aromatic compounds based on bis(benzothiophene)-fused fluorene. CR CHIM 2018. [DOI: 10.1016/j.crci.2018.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Chen G, Liu S, He Z, Wu HB, Yang W, Zhang B, Cao Y. Pyridine-incorporated alcohol-soluble neutral polyfluorene derivatives as efficient cathode-modifying layers for polymer solar cells. Polym Chem 2017. [DOI: 10.1039/c7py01521f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A class of novel alcohol-soluble polyfluorene derivatives with a pyridine group incorporating at the side chains of fluorene is developed to modify the cathode interfaces of both conventional and inverted polymer solar cells.
Collapse
Affiliation(s)
- Guiting Chen
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou
- 510640
| | - Sha Liu
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou
- 510640
| | - Zhicai He
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou
- 510640
| | - Hong-Bin Wu
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou
- 510640
| | - Wei Yang
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou
- 510640
| | - Bin Zhang
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou
- 510640
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou
- 510640
| |
Collapse
|