1
|
Wang L, Quine S, Frickenstein AN, Lee M, Yang W, Sheth VM, Bourlon MD, He Y, Lyu S, Garcia-Contreras L, Zhao YD, Wilhelm S. Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2308446. [PMID: 38828467 PMCID: PMC11142462 DOI: 10.1002/adfm.202308446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Indexed: 06/05/2024]
Abstract
Most nanomedicines require efficient in vivo delivery to elicit diagnostic and therapeutic effects. However, en route to their intended tissues, systemically administered nanoparticles often encounter delivery barriers. To describe these barriers, we propose the term "nanoparticle blood removal pathways" (NBRP), which summarizes the interactions between nanoparticles and the body's various cell-dependent and cell-independent blood clearance mechanisms. We reviewed nanoparticle design and biological modulation strategies to mitigate nanoparticle-NBRP interactions. As these interactions affect nanoparticle delivery, we studied the preclinical literature from 2011-2021 and analyzed nanoparticle blood circulation and organ biodistribution data. Our findings revealed that nanoparticle surface chemistry affected the in vivo behavior more than other nanoparticle design parameters. Combinatory biological-PEG surface modification improved the blood area under the curve by ~418%, with a decrease in liver accumulation of up to 47%. A greater understanding of nanoparticle-NBRP interactions and associated delivery trends will provide new nanoparticle design and biological modulation strategies for safer, more effective, and more efficient nanomedicines.
Collapse
Affiliation(s)
- Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Skyler Quine
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Michael Lee
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Vinit M. Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Margaret D. Bourlon
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73117, USA
| | - Yuxin He
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Shanxin Lyu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Lucila Garcia-Contreras
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73117, USA
| | - Yan D. Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73012, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, Oklahoma, 73019, USA
| |
Collapse
|
2
|
Delille F, Balloul E, Hajj B, Hanafi M, Morand C, Xu XZ, Dumas S, Coulon A, Lequeux N, Pons T. Sulfobetaine-Phosphonate Block Copolymer Coated Iron Oxide Nanoparticles for Genomic Locus Targeting and Magnetic Micromanipulation in the Nucleus of Living Cells. NANO LETTERS 2023. [PMID: 37390368 DOI: 10.1021/acs.nanolett.3c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Exerting forces on biomolecules inside living cells would allow us to probe their dynamic interactions in their native environment. Magnetic iron oxide nanoparticles represent a unique tool capable of pulling on biomolecules with the application of an external magnetic field gradient; however, their use has been restricted to biomolecules accessible from the extracellular medium. Targeting intracellular biomolecules represents an additional challenge due to potential nonspecific interactions with cytoplasmic or nuclear components. We present the synthesis of sulfobetaine-phosphonate block copolymer ligands, which provide magnetic nanoparticles that are stealthy and targetable in living cells. We demonstrate, for the first time, their efficient targeting in the nucleus and their use for magnetic micromanipulation of a specific genomic locus in living cells. We believe that these stable and sensitive magnetic nanoprobes represent a promising tool to manipulate specific biomolecules in living cells and probe the mechanical properties of living matter at the molecular scale.
Collapse
Affiliation(s)
- Fanny Delille
- Laboratoire Physique et Etude des Matériaux, ESPCI-Paris, PSL Research University, CNRS, Sorbonne Université, UMR 8213, 10, rue Vauquelin, 75005 Paris, France
| | - Elie Balloul
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, 75005 Paris, France
| | - Bassam Hajj
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, 75005 Paris, France
| | - Mohamed Hanafi
- Sciences et Ingénierie de la Matière Molle, UMR 7615, ESPCI Paris PSL-CNRS-Sorbonne Université, 10 Rue Vauquelin, 75005 Paris, France
| | - Colin Morand
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, 75005 Paris, France
- Laboratoire Dynamique du Noyau, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, 75005 Paris, France
| | - Xiang Zhen Xu
- Laboratoire Physique et Etude des Matériaux, ESPCI-Paris, PSL Research University, CNRS, Sorbonne Université, UMR 8213, 10, rue Vauquelin, 75005 Paris, France
| | - Simon Dumas
- Institut Pierre-Gilles de Gennes, Institut Curie, Sorbonne Université, PSL Research University, 6 rue Jean Calvin, 75005 Paris, France
| | - Antoine Coulon
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, 75005 Paris, France
- Laboratoire Dynamique du Noyau, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, 75005 Paris, France
| | - Nicolas Lequeux
- Laboratoire Physique et Etude des Matériaux, ESPCI-Paris, PSL Research University, CNRS, Sorbonne Université, UMR 8213, 10, rue Vauquelin, 75005 Paris, France
| | - Thomas Pons
- Laboratoire Physique et Etude des Matériaux, ESPCI-Paris, PSL Research University, CNRS, Sorbonne Université, UMR 8213, 10, rue Vauquelin, 75005 Paris, France
| |
Collapse
|
3
|
Delille F, Pu Y, Lequeux N, Pons T. Designing the Surface Chemistry of Inorganic Nanocrystals for Cancer Imaging and Therapy. Cancers (Basel) 2022; 14:2456. [PMID: 35626059 PMCID: PMC9139368 DOI: 10.3390/cancers14102456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/27/2022] Open
Abstract
Inorganic nanocrystals, such as gold, iron oxide and semiconductor quantum dots, offer promising prospects for cancer diagnostics, imaging and therapy, due to their specific plasmonic, magnetic or fluorescent properties. The organic coating, or surface ligands, of these nanoparticles ensures their colloidal stability in complex biological fluids and enables their functionalization with targeting functions. It also controls the interactions of the nanoparticle with biomolecules in their environment. It therefore plays a crucial role in determining nanoparticle biodistribution and, ultimately, the imaging or therapeutic efficiency. This review summarizes the various strategies used to develop optimal surface chemistries for the in vivo preclinical and clinical application of inorganic nanocrystals. It discusses the current understanding of the influence of the nanoparticle surface chemistry on its colloidal stability, interaction with proteins, biodistribution and tumor uptake, and the requirements to develop an optimal surface chemistry.
Collapse
Affiliation(s)
- Fanny Delille
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Yuzhou Pu
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Nicolas Lequeux
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Thomas Pons
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
4
|
Fluorinated vs. Zwitterionic-Polymer Grafted Surfaces for Adhesion Prevention of the Fungal Pathogen Candida albicans. Polymers (Basel) 2020; 12:polym12020398. [PMID: 32050664 PMCID: PMC7077729 DOI: 10.3390/polym12020398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 11/17/2022] Open
Abstract
Fluorinated (F6) and zwitterionic, as well as phosphorylcholine (MPC) and sulfobetaine (MSA), copolymers containing a low amount (1 and 5 mol%) of 3-(trimethoxysilyl)propyl methacrylate (PTMSi) were prepared and covalently grafted to glass slides by using the trimethoxysilyl groups as anchorage points. Glass-surface functionalization and polymer-film stability upon immersion in water were proven by contact angle and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) measurements. Antifouling performance of the grafted films was assayed against the yeast Candida albicans, the most common Candida species, which causes over 80% of candidiasis. Results revealed that the F6 fluorinated, hydrophobic copolymers performed much better in reducing the adhesion of C. albicans, with respect to both corresponding zwitterionic, hydrophilic MPC and MSA counterparts, and were similar to the glass negative control, which is well-known to inhibit the adhesion of C. albicans. A composition-dependent activity was also found, with the films of copolymer with 99 mol% F6 fluorinated co-units performing best.
Collapse
|
5
|
Drijvers E, Liu J, Harizaj A, Wiesner U, Braeckmans K, Hens Z, Aubert T. Efficient Endocytosis of Inorganic Nanoparticles with Zwitterionic Surface Functionalization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38475-38482. [PMID: 31559824 DOI: 10.1021/acsami.9b12398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PEGylation, which has traditionally been the method of choice to enhance the colloidal stability of nanostructures designed for biological applications and to prevent nonspecific protein adsorption, is now being challenged by short zwitterionic ligands. Inspired by the zwitterionic nature of cell membranes, these ligands have the potential to push forward the field of nanoparticles for nanomedicine. In this work, we report a thorough analysis of the surface chemistry of silica-coated luminescent CdSe/CdS quantum dots functionalized with either PEG-silane or zwitterionic sulfobetaine-silane by quantitative nuclear magnetic resonance spectroscopy. We demonstrate the differences in the cellular uptake propensity between particles with these two ligands. Although both ligands offer good colloidal stability in a crowded cell culture medium, the zwitterionic-functionalized nanoparticles with an optimized ligand density showed to be more easily endocytosed by HeLa cells. This approach can readily be transferred to other nanoparticle systems offering a wealth of unique properties, with great potential for intracellular bioapplications.
Collapse
Affiliation(s)
| | | | | | - Ulrich Wiesner
- Department of Materials Science and Engineering , Cornell University , Ithaca , New York 14853 , United States
| | | | | | - Tangi Aubert
- Department of Materials Science and Engineering , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
6
|
Debayle M, Balloul E, Dembele F, Xu X, Hanafi M, Ribot F, Monzel C, Coppey M, Fragola A, Dahan M, Pons T, Lequeux N. Zwitterionic polymer ligands: an ideal surface coating to totally suppress protein-nanoparticle corona formation? Biomaterials 2019; 219:119357. [DOI: 10.1016/j.biomaterials.2019.119357] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/01/2019] [Accepted: 07/13/2019] [Indexed: 01/08/2023]
|
7
|
Petroff MG, Garcia EA, Dengler RA, Herrera-Alonso M, Bevan MA. kT-Scale Interactions and Stability of Colloids with Adsorbed Zwitterionic and Ethylene Oxide Copolymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Matthew G. Petroff
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Elena Alexandra Garcia
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Raymond A. Dengler
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Margarita Herrera-Alonso
- Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Michael A. Bevan
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
8
|
Elbert KC, Lee JD, Wu Y, Murray CB. Improved Chemical and Colloidal Stability of Gold Nanoparticles through Dendron Capping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13333-13338. [PMID: 30350692 DOI: 10.1021/acs.langmuir.8b02960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoparticle (NP) stability is imperative for commercialization of nanotechnology. In this study, we compare the stability of Au NPs with surfaces functionalized with oleylamine, dodecanethiol, and two dendritic ligands of different generations. Dendrimer ligands provide a significant increase in the chemical stability of Au NPs when analyzed by cyanide-induced NP decomposition as well as an investigation into their colloidal stability at ambient conditions. These results were supported by absorption measurements, transmission electron microscopy, thermogravimetric analysis, nuclear magnetic resonance, and small-angle transmission X-ray scattering and show that dendrimers play a key role in improving the chemical and colloidal stability of NPs.
Collapse
|
9
|
Trapiella-Alfonso L, Pons T, Lequeux N, Leleu L, Grimaldi J, Tasso M, Oujagir E, Seguin J, d'Orlyé F, Girard C, Doan BT, Varenne A. Clickable-Zwitterionic Copolymer Capped-Quantum Dots for in Vivo Fluorescence Tumor Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17107-17116. [PMID: 29701456 DOI: 10.1021/acsami.8b04708] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
In the last decades, fluorescent quantum dots (QDs) have appeared as high-performance biological fluorescent nanoprobes and have been explored for a variety of biomedical optical imaging applications. However, many central challenges still exist concerning the control of the surface chemistry to ensure high biocompatibility, low toxicity, antifouling, and specific active targeting properties. Regarding in vivo applications, circulation time and clearance of the nanoprobe are also key parameters to control the design and characterization of new optical imaging agents. Herein, the complete design and characterization of a peptide-near-infrared-QD-based nanoprobe for biomedical optical imaging is presented from the synthesis of the QDs and the zwitterionic-azide copolymer ligand, enabling a bio-orthogonal coupling, till the final in vivo test through all the characterization steps. The developed nanoprobes show high fluorescence emission, controlled grafting rate, low toxicity, in vitro active specific targeting, and in vivo long circulating blood time. This is, to our knowledge, the first report characterizing the in vivo circulation kinetics and tumor accumulation of targeted zwitterionic QDs.
Collapse
Affiliation(s)
- Laura Trapiella-Alfonso
- PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé , 75005 Paris , France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC Univ. Paris 6 , 10 rue Vauquelin , F-75231 Paris Cedex 5 , France
| | - Thomas Pons
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC Univ. Paris 6 , 10 rue Vauquelin , F-75231 Paris Cedex 5 , France
| | - Nicolas Lequeux
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC Univ. Paris 6 , 10 rue Vauquelin , F-75231 Paris Cedex 5 , France
| | - Ludovic Leleu
- PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé , 75005 Paris , France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
| | - Juliette Grimaldi
- PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé , 75005 Paris , France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC Univ. Paris 6 , 10 rue Vauquelin , F-75231 Paris Cedex 5 , France
| | - Mariana Tasso
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC Univ. Paris 6 , 10 rue Vauquelin , F-75231 Paris Cedex 5 , France
| | - Edward Oujagir
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
| | - Johanne Seguin
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
| | - Fanny d'Orlyé
- PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé , 75005 Paris , France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
| | - Christian Girard
- PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé , 75005 Paris , France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
| | - Bich-Thuy Doan
- PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé , 75005 Paris , France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
| | - Anne Varenne
- PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé , 75005 Paris , France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
| |
Collapse
|