1
|
Richhariya V, Tripathy A, Carvalho O, Gomes J, Nine MJ, Silva FS. Capillary-Enhanced Biomimetic Adhesion on Icy Surfaces for High-Performance Antislip Shoe-Soles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2450-2461. [PMID: 39722588 DOI: 10.1021/acsami.4c14496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The World Health Organization (WHO) reports 684,000 deaths/year due to slips and falls (SFs), with ∼38 million people requiring medical attention per annum. In particular, SFs on ice surfaces account for 45% of all SF incidents, costing over $100 billion globally in healthcare, intensive care, and insurance expenses. Current antislip solutions focus on hydrophobicity to repel interfacial fluids, aiming to maintain solid-to-solid contact. However, these solutions often wear out quickly, clog, or become ineffective. Wet ice is particularly challenging due to its nanometer-thick quasi-liquid layer (QLL), which makes it extremely slippery. Inspired by the capillary suction adhesion observed in gecko footpads and the slip resistance of frog toepads on wet surfaces, we developed an innovative approach to regulate ice adhesion and deadhesion. The solution presented in this work mimics this mechanism by employing textured microcavities into silicone rubber (SR)/zirconia (ZrO2) closely mirroring the properties of gecko and frog toepads. Given the dynamics of walking, the surface exhibited hydrophilicity-induced capillary suction of the QLL, facilitating their rapid frost to achieve greater mechanical interlocking. The developed textures displayed capillary suction within 1.5 ms, resulting in a maximum friction coefficient of 3.46 on wet ice. This breakthrough outcome provides a robust, durable solution to significantly reduce SFs on ice surfaces, saving lives and livelihoods.
Collapse
Affiliation(s)
- Vipin Richhariya
- Centre for MicroElectroMechanical Systems (CMEMS), University of Minho, Azurem Campus, 4800-058 Guimaraes, Portugal
| | - Ashis Tripathy
- School of Electronics Engineering (SENSE), Vellore Institute of Technology, Chennai 600127, Tamil Nadu, India
| | - Oscar Carvalho
- Centre for MicroElectroMechanical Systems (CMEMS), University of Minho, Azurem Campus, 4800-058 Guimaraes, Portugal
| | - Jose Gomes
- Centre for MicroElectroMechanical Systems (CMEMS), University of Minho, Azurem Campus, 4800-058 Guimaraes, Portugal
| | - Md Julker Nine
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Filipe Samuel Silva
- Centre for MicroElectroMechanical Systems (CMEMS), University of Minho, Azurem Campus, 4800-058 Guimaraes, Portugal
| |
Collapse
|
2
|
Li H, Tan P, Rao Y, Bhattacharya S, Wang Z, Kim S, Gangopadhyay S, Shi H, Jankovic M, Huh H, Li Z, Maharjan P, Wells J, Jeong H, Jia Y, Lu N. E-Tattoos: Toward Functional but Imperceptible Interfacing with Human Skin. Chem Rev 2024; 124:3220-3283. [PMID: 38465831 DOI: 10.1021/acs.chemrev.3c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The human body continuously emits physiological and psychological information from head to toe. Wearable electronics capable of noninvasively and accurately digitizing this information without compromising user comfort or mobility have the potential to revolutionize telemedicine, mobile health, and both human-machine or human-metaverse interactions. However, state-of-the-art wearable electronics face limitations regarding wearability and functionality due to the mechanical incompatibility between conventional rigid, planar electronics and soft, curvy human skin surfaces. E-Tattoos, a unique type of wearable electronics, are defined by their ultrathin and skin-soft characteristics, which enable noninvasive and comfortable lamination on human skin surfaces without causing obstruction or even mechanical perception. This review article offers an exhaustive exploration of e-tattoos, accounting for their materials, structures, manufacturing processes, properties, functionalities, applications, and remaining challenges. We begin by summarizing the properties of human skin and their effects on signal transmission across the e-tattoo-skin interface. Following this is a discussion of the materials, structural designs, manufacturing, and skin attachment processes of e-tattoos. We classify e-tattoo functionalities into electrical, mechanical, optical, thermal, and chemical sensing, as well as wound healing and other treatments. After discussing energy harvesting and storage capabilities, we outline strategies for the system integration of wireless e-tattoos. In the end, we offer personal perspectives on the remaining challenges and future opportunities in the field.
Collapse
Affiliation(s)
- Hongbian Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Philip Tan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yifan Rao
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarnab Bhattacharya
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zheliang Wang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sangjun Kim
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Susmita Gangopadhyay
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hongyang Shi
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matija Jankovic
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heeyong Huh
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengjie Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pukar Maharjan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathan Wells
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyoyoung Jeong
- Department of Electrical and Computer Engineering, University of California Davis, Davis, California 95616, United States
| | - Yaoyao Jia
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Huang K, Si Y, Wu H, Chen Y, Zhang S, Shi S, Guo C, Hu J. Electrosprayed Environment-Friendly Dry Triode-Like Facial Masks for Skincare. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1899-1910. [PMID: 38146149 DOI: 10.1021/acsami.3c15815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The cosmetics industry has a worrying impact on the environment, including the plastics used in products and packaging and environmentally unfriendly additives. In this study, we present an environment-friendly triode-like facial mask (TFM) that utilizes only green and degradable raw materials, nontoxic and harmless solvents, and electric energy to achieve distinct switchable directional water transport properties, avoids a wet storage environment, and reduces excessive packaging. The TFM demonstrates droplet stability when not in contact with the skin while facilitating rapid liquid transfer (15 μL) within durations of 2.8 s (dry skin) and 1.9 s (moist skin) upon contact. We elucidate the underlying mechanism behind this triode-like behavior, emphasizing the synergistic interaction of the wettability gradient, Gibbs pinning, and additional circumferential capillary force. Moreover, the TFM exhibits a reduction in the proportion of aging cells, decreasing from 44.33 to 13.75%, while simultaneously providing antibacterial and skin-beautifying effects. The TFM brings a novel experience while also holding the potential to reduce environmental pollution in the production, packaging, use, and recycling of cosmetics products.
Collapse
Affiliation(s)
- Kaisong Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R. 999077, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R. 999077, China
| | - Hanbai Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R. 999077, China
| | - Yuhan Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R. 999077, China
| | - Shuai Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R. 999077, China
| | - Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R. 999077, China
| | - Chunxia Guo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R. 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R. 999077, China
| |
Collapse
|
4
|
Eslami H, Materzok T, Müller-Plathe F. Molecular Structure and Dynamics in Wet Gecko β-Keratin. ACS Biomater Sci Eng 2023; 9:257-268. [PMID: 36525337 DOI: 10.1021/acsbiomaterials.2c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Molecular dynamics simulations are performed to investigate the molecular picture of water sorption in gecko keratin and the influence of relative humidity (RH) on the local structure and dynamics in water-swollen keratin. At low RHs, water sorption occurs through hydrogen bonding of water with the hydrophilic groups of keratin. At high RHs (>80%), additional water molecules connect to the first "layer" of amide-connected water molecules (multimolecular sorption) through hydrogen bonds, giving rise to a sigmoidal shape of the sorption isotherm. This causes the formation of large chain-like clusters surrounding the hydrophilic groups of keratin, which upon a further increase of the RH form a percolating water network. An examination of the dynamics of water molecules sorbed in keratin demonstrates that there are two states, bound and free, for water. The dynamics of water in these states depends on the RH. At low RHs, large-scale translational motions of tightly bound water molecules to keratin are needed to remake the entire hydration shell of the keratin. At high RHs (>80%), the water molecules more quickly exchange between the two states. The center-of-mass mean-square displacement of water molecules indicates a hopping motion of water molecules in the keratin solvation shell. The hopping mechanism is more pronounced at RHs < 80%. At higher RHs, water translation through water clusters (water network) dominates. We have observed two regimes for the dependence of dynamical properties on the RH: a regime of gradual increase of the dynamics over 10% < RH < 80% and a regime of drastic dynamic acceleration at RH > 80%. The latter regime begins exactly where the water uptake and the volume swelling also increase much more and where a drastic change in the elastic properties of gecko keratin has been observed. A nearly linear relation between the relaxation times for all dynamical processes and the water content of gecko keratin is observed.
Collapse
Affiliation(s)
- Hossein Eslami
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, Darmstadt64287, Germany.,Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr75168, Iran
| | - Tobias Materzok
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, Darmstadt64287, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, Darmstadt64287, Germany
| |
Collapse
|
5
|
Xia S, Chen Y, Fu W, Tian J, Zhou Y, Sun Y, Cao R, Zou H, Liang M. A humidity-resistant bio-inspired microfibrillar adhesive fabricated using a phenyl-rich polysiloxane elastomer for reliable skin patches. J Mater Chem B 2022; 10:9179-9187. [PMID: 36341761 DOI: 10.1039/d2tb01955h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Steady adhesion under varying humidity conditions is fundamentally challenging due to the barrier of interfacial water molecules. Here, we demonstrate a humidity-resistant gecko-inspired microfibrillar adhesive fabricated by using a specific phenyl-rich polysiloxane. In contrast with the great decline of macroadhesion with increasing humidity for the typical polydimethylsiloxane (PDMS) microfibrillar adhesives, strong macroadhesion of a microfibrillar adhesive fabricated using synthetic phenyl-rich polysiloxane maintains adhesion well across a wide relative humidity range (1% to 95%). Moreover, the pull-off strength is increased by 500% compared to that of phenyl-absent PDMS microfibrillar adhesives at extremely high humidity. Mechanism analysis demonstrates that the synergistic interplay of strong interfacial hydrophobicity leading to dry contact and bulk energy dissipation through massive aromatic π-π interactions contributes greatly to the reliable and strong humidity macroadhesion. The present results provide a better understanding of humidity macroadhesion as well as application potential for microfibrillar adhesives, which are proven to be reliable skin adhesive patches for long-term health-care that have to be exposed to varying humidity conditions of the skin surface.
Collapse
Affiliation(s)
- Shuang Xia
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Yukun Chen
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Wenxin Fu
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinfeng Tian
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Yilin Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Yini Sun
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Ruoxuan Cao
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Huawei Zou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Mei Liang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Khani M, Materzok T, Eslami H, Gorb S, Müller-Plathe F. Water uptake by gecko β-keratin and the influence of relative humidity on its mechanical and volumetric properties. J R Soc Interface 2022; 19:20220372. [PMID: 36128704 PMCID: PMC9490342 DOI: 10.1098/rsif.2022.0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/31/2022] [Indexed: 11/12/2022] Open
Abstract
Grand canonical ensemble molecular dynamics simulations are done to calculate the water content of gecko β-keratin as a function of relative humidity (RH). For comparison, we experimentally measured the water uptake of scales of the skin of cobra Naja nigricollis. The calculated sigmoidal sorption isotherm is in good agreement with experiment. To examine the softening effect of water on gecko keratin, we have calculated the mechanical properties of dry and wet keratin samples, and we have established relations between the mechanical properties and the RH. We found that a higher RH causes a decrease in the Young's modulus, the yield stress, the yield strain, the stress at failure and an increase in the strain at failure of the gecko keratin. At low RHs (less than 80%), the change in the mechanical properties is small, with most of the changes occurring at higher RHs. The changes in the macroscopic properties of the keratin are explained by the action of sorbed water on the molecular scale. It causes keratin to swell, thereby increasing the distances between amino acids. This has a weakening effect on amino acid interactions and softens the keratin material. The effect is more pronounced at higher RHs.
Collapse
Affiliation(s)
- Marzieh Khani
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
| | - Tobias Materzok
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Hossein Eslami
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
| | - Stanislav Gorb
- Zoological Institute, Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| |
Collapse
|
7
|
Dynamic Simulation and Parameter Analysis of Contact Mechanics for Mimicking Geckos’ Foot Setae Array. CRYSTALS 2022. [DOI: 10.3390/cryst12020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
According to the dynamic characteristics of the adhesion desorption process between gecko-like polyurethane setae and the contact surface, the microcontact principle of an elastic sphere and plane is established based on the Johnson–Kendall–Robert model. On this basis, combined with the cantilever beam model, microscale adhesive contact models in the case of a single and an array of setae are obtained. The contact process is numerically simulated and verified by the adhesion desorption test. After that, the effects of external preload, the elastic modulus of setae material, the surface energy, and the surface roughness on the contact force and depth during the dynamic contact process of setae are studied. The results show that the error between the simulation and test is 15.9%, and the simulation model could reflect the real contact procedure. With the increase in preload, the push-off force of the setae array would grow and remain basically constant after reaching saturation. Increasing the elastic modulus of setae material would reduce the contact depth, but have little effect on the maximum push-off force; with the increase in the surface energy of the contact object, both the push-off force between the objects and the contact depth during desorption would increase. With the increase in wall roughness, the push-off force curve of the setae array becomes smoother, but the maximum push-off force would decrease. By exploring the dynamic mechanical characteristics of the micro angle of setae, the corresponding theoretical basis is provided for the numerical simulation of the adsorption force of macro materials.
Collapse
|
8
|
Liu L, Wan KT, Liu KK. Influence of Relative Humidity on Interparticle Capillary Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12714-12722. [PMID: 34664966 DOI: 10.1021/acs.langmuir.1c02167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A homemade instrument is designed to directly characterize the adhesion between two rigid polymeric microspheres in the presence of moist air. The tensile load is measured as a function of approach distance at designated relative humidity (RH). The measurement is consistent with our model from the first approximation. The model is further extended to include a rough surface. Capillary adhesion force is shown to be monotonically increasing with RH for smooth surfaces but becomes more pronounced at low RH for rough surfaces. Moisture has a profound influence on interparticle adhesion, which has significant impacts on a wide range of industrial applications.
Collapse
Affiliation(s)
- Lidong Liu
- School of Engineering, University of Warwick, Library Road, Coventry CV4 7AL, U.K
| | - Kai-Tak Wan
- Mechanical & Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kuo-Kang Liu
- School of Engineering, University of Warwick, Library Road, Coventry CV4 7AL, U.K
| |
Collapse
|
9
|
Luo X, Dong X, Hou Y, Zhang L, Zhang P, Cai J, Zhao M, Ramos MA, Hu TS, Zhao H, Xu Q. Photo-Detachable Self-Cleaning Surfaces Inspired by Gecko Toepads. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8410-8416. [PMID: 34213347 DOI: 10.1021/acs.langmuir.1c00568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Strong, reversible, and self-cleaning adhesion in the toe pads of geckos allow the lizards to climb on a variety of vertical and inverted surfaces, regardless of the surface conditions, whether hydrophobic or hydrophilic, smooth or tough, wet or dry, clean or dirty. Development of synthetic gecko-inspired surfaces has drawn a great attention over the past two decades. Despite many external-stimuli responsive mechanisms (i.e., thermal, electrical, magnetic) have been successfully demonstrated, smart adhesives controlled by light signals still substantially lag behind. Here, in this report, we integrate tetramethylpiperidinyloxyl (TEMPO)-doped polydopamine (PDA), namely, TDPDA, with PDMS micropillars using a template-assisted casting method, to achieve both improved adhesion and self-cleaning performances. To the best of our knowledge, this is the first report on PDA being used as a doping nanoparticle in bioinspired adhesive surfaces to achieve highly efficient self-cleaning controllable by light signals. Notably, the adhesion of the 5% TDPDA-PDMS sample is ∼688.75% higher than that of the pure PDMS at the individual pillar level, which helps to explain the highly efficient self-cleaning mechanism. The sample surfaces (named TDPDA-PDMS) can efficiently absorb 808 nm wavelength of light and heat up from 25 °C to 80.9 °C in 3 min with NIR irradiation. The temperature rise causes significant reduction of adhesion, which results in outstanding self-cleaning rate of up to 55.8% within five steps. The exploration of the photoenabled switching mechanism with outstanding sensitivity may bring the biomimetic smart surfaces into a new dimension, rendering varied applications, e.g., in miniaturized climbing robot, artificial intelligence programmable manipulation/assembly/filtration, active self-cleaning solar panels, including high output sensors and devices in many engineering and biomedical frontiers.
Collapse
Affiliation(s)
- Xiaohang Luo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Xiaoxiao Dong
- College of Mechanical Transportation Engineering, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yanguang Hou
- College of Mechanical Transportation Engineering, China University of Petroleum (Beijing), Beijing 102249, China
| | - Lifu Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Penghao Zhang
- Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jiaye Cai
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Ming Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Melvin A Ramos
- Department of Mechanical Engineering, California State University, Los Angeles, California 90032, United States
| | - Travis Shihao Hu
- Department of Mechanical Engineering, California State University, Los Angeles, California 90032, United States
| | - Hong Zhao
- College of Mechanical Transportation Engineering, China University of Petroleum (Beijing), Beijing 102249, China
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
10
|
Hensel R, Thiemecke J, Booth JA. Preventing Catastrophic Failure of Microfibrillar Adhesives in Compliant Systems Based on Statistical Analysis of Adhesive Strength. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19422-19429. [PMID: 33847491 DOI: 10.1021/acsami.1c00978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Adhesives based on fibrillar surface microstructures have shown great potential for handling applications requiring strong, reversible, and switchable adhesion. Recently, the importance of the statistical distribution of adhesive strength of individual fibrils in controlling the overall performance was revealed. Strength variations physically correspond to different interfacial defect sizes, which, among other factors, are related to surface roughness. For analysis of the strength distribution, Weibull's statistical theory of fracture was introduced. In this study, the importance of the statistical properties in controlling the stability of attachment is explored. Considering the compliance of the loading system, we develop a stability criterion based on the Weibull statistical parameters. It is shown that when the distribution in fibril adhesive strength is narrow, the global strength is higher but unstable detachment is more likely. Experimental variation of the loading system compliance for a specimen of differing statistical properties shows a transition to unstable detachment at low system stiffness, in good agreement with the theoretical stability map. This map serves to inform the design of gripper compliance, when coupled with statistical analysis of strength on the target surface of interest. Such a treatment could prevent catastrophic failure by spontaneous detachment of an object from an adhesive gripper.
Collapse
Affiliation(s)
- René Hensel
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Jonathan Thiemecke
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Jamie A Booth
- Mechanical Engineering Department, California State University, Northridge, California 91330, United States
| |
Collapse
|
11
|
Mitchell CT, Dayan CB, Drotlef DM, Sitti M, Stark AY. The effect of substrate wettability and modulus on gecko and gecko-inspired synthetic adhesion in variable temperature and humidity. Sci Rep 2020; 10:19748. [PMID: 33184356 PMCID: PMC7665207 DOI: 10.1038/s41598-020-76484-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/28/2020] [Indexed: 01/23/2023] Open
Abstract
Gecko adhesive performance increases as relative humidity increases. Two primary mechanisms can explain this result: capillary adhesion and increased contact area via material softening. Both hypotheses consider variable relative humidity, but neither fully explains the interactive effects of temperature and relative humidity on live gecko adhesion. In this study, we used live tokay geckos (Gekko gecko) and a gecko-inspired synthetic adhesive to investigate the roles of capillary adhesion and material softening on gecko adhesive performance. The results of our study suggest that both capillary adhesion and material softening contribute to overall gecko adhesion, but the relative contribution of each depends on the environmental context. Specifically, capillary adhesion dominates on hydrophilic substrates, and material softening dominates on hydrophobic substrates. At low temperature (12 °C), both capillary adhesion and material softening likely produce high adhesion across a range of relative humidity values. At high temperature (32 °C), material softening plays a dominant role in adhesive performance at an intermediate relative humidity (i.e., 70% RH).
Collapse
Affiliation(s)
- Christopher T Mitchell
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, PA, 19085, USA
| | - Cem Balda Dayan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Dirk-M Drotlef
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Alyssa Y Stark
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, PA, 19085, USA.
| |
Collapse
|
12
|
Roh S, Williams AH, Bang RS, Stoyanov SD, Velev OD. Soft dendritic microparticles with unusual adhesion and structuring properties. NATURE MATERIALS 2019; 18:1315-1320. [PMID: 31611673 DOI: 10.1038/s41563-019-0508-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
The interplay between morphology, excluded volume and adhesivity of particles critically determines the physical properties of numerous soft materials and coatings1-6. Branched particles2 or nanofibres3, nanofibrillated cellulose4 or fumed silica5 can enhance the structure-building abilities of colloids, whose adhesion may also be increased by capillarity or binding agents6. Nonetheless, alternative mechanisms of strong adhesion found in nature involve fibrillar mats with numerous subcontacts (contact splitting)7-11 as seen in the feet of gecko lizards and spider webs12-17. Here, we describe the fabrication of hierarchically structured polymeric microparticles having branched nanofibre coronas with a dendritic morphology. Polymer precipitation in highly turbulent flow results in microparticles with fractal branching and nanofibrillar contact splitting that exhibit gelation at very low volume fractions, strong interparticle adhesion and binding into coatings and non-woven sheets. These soft dendritic particles also have potential advantages for food, personal care or pharmaceutical product formulations.
Collapse
Affiliation(s)
- Sangchul Roh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Austin H Williams
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Rachel S Bang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Simeon D Stoyanov
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, the Netherlands
- Department of Mechanical Engineering, University College London, London, UK
- Unilever Research and Development, Vlaardingen, the Netherlands
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
13
|
Stark AY, Mitchell CT. Stick or Slip: Adhesive Performance of Geckos and Gecko-Inspired Synthetics in Wet Environments. Integr Comp Biol 2019; 59:214-226. [PMID: 30873552 DOI: 10.1093/icb/icz008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The gecko adhesive system has inspired hundreds of synthetic mimics principally focused on replicating the strong, reversible, and versatile properties of the natural system. For geckos native to the tropics, versatility includes the need to remain attached to substrates that become wet from high humidity and frequent rain. Paradoxically, van der Waals forces, the principal mechanism responsible for gecko adhesion, reduce to zero when two contacting surfaces separate even slightly by entrapped water layers. A series of laboratory studies show that instead of slipping, geckos maintain and even improve their adhesive performance in many wet conditions (i.e., on wet hydrophobic substrates, on humid substrates held at low temperatures). The mechanism for this is not fully clarified, and likely ranges in scale from the chemical and material properties of the gecko's contact structures called setae (e.g., setae soften and change surface confirmation when exposed to water), to their locomotor biomechanics and decision-making behavior when encountering water on a substrate in their natural environment (e.g., some geckos tend to run faster and stop more frequently on misted substrates than dry). Current work has also focused on applying results from the natural system to gecko-inspired synthetic adhesives, improving their performance in wet conditions. Gecko-inspired synthetic adhesives have also provided a unique opportunity to test hypotheses about the natural system in semi-natural conditions replicated in the laboratory. Despite many detailed studies focused on the role of water and humidity on gecko and gecko-inspired synthetic adhesion, there remains several outstanding questions: (1) what, if any, role does capillary or capillary-like adhesion play on overall adhesive performance of geckos and gecko-inspired synthetics, (2) how do chemical and material changes at the surface and in the bulk of gecko setae and synthetic fibrils change when exposed to water, and what does this mean for adhesive performance, and (3) how much water do geckos encounter in their native environment, and what is their corresponding behavioral response? This review will detail what we know about gecko adhesion in wet environments, and outline the necessary next steps in biological and synthetic system investigations.
Collapse
Affiliation(s)
- Alyssa Y Stark
- Department of Biology, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085, USA
| | - Christopher T Mitchell
- Department of Biology, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085, USA
| |
Collapse
|
14
|
Wang Y, Kang V, Arzt E, Federle W, Hensel R. Strong Wet and Dry Adhesion by Cupped Microstructures. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26483-26490. [PMID: 31241296 PMCID: PMC6660100 DOI: 10.1021/acsami.9b07969] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
Recent advances in bio-inspired microfibrillar adhesives have resulted in technologies that allow reliable attachment to a variety of surfaces. Because capillary and van der Waals forces are considerably weakened underwater, fibrillar adhesives are however far less effective in wet environments. Although various strategies have been proposed to achieve strong reversible underwater adhesion, strong adhesives that work both in air and underwater without additional surface treatments have yet to be developed. In this study, we report a novel design-cupped microstructures (CM)-that generates strong controllable adhesion in air and underwater. We measured the adhesive performance of cupped polyurethane microstructures with three different cup angles (15, 30, and 45°) and the same cup diameter of 100 μm in dry and wet conditions in comparison to standard mushroom-shaped microstructures (MSMs) of the same dimensions. In air, 15°CM performed comparably to the flat MSM of the same size with an adhesion strength (force per real contact area) of up to 1.3 MPa, but underwater, 15°CM achieved 20 times stronger adhesion than MSM (∼1 MPa versus ∼0.05 MPa). Furthermore, the cupped microstructures exhibit self-sealing properties, whereby stronger pulls lead to longer stable attachment and much higher adhesion through the formation of a better seal.
Collapse
Affiliation(s)
- Yue Wang
- INM − Leibniz Institute for New Materials, Campus D2 2, Saarbrücken 66123, Germany
| | - Victor Kang
- Department
of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Eduard Arzt
- INM − Leibniz Institute for New Materials, Campus D2 2, Saarbrücken 66123, Germany
- Department
of Materials Science and Engineering, Saarland
University, Campus D2
2, Saarbrücken 66123, Germany
| | - Walter Federle
- Department
of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - René Hensel
- INM − Leibniz Institute for New Materials, Campus D2 2, Saarbrücken 66123, Germany
| |
Collapse
|
15
|
Qiao S, Wang L, Ha KH, Lu N. Suction effects of craters under water. SOFT MATTER 2018; 14:8509-8520. [PMID: 30349915 DOI: 10.1039/c8sm01601a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Octopus-inspired cratered surfaces have recently emerged as a new class of reusable physical adhesives. Preload-dependent adhesion and enhanced adhesion under water distinguish them from the well-studied gecko-inspired pillared surfaces. Despite growing experimental evidence, modeling frameworks and mechanistic understanding of cratered surfaces are still very limited. We recently developed a framework to evaluate suction forces produced by isolated craters in air. In this paper, we focus on underwater craters. The suction force-preload relation predicted by this framework has been validated by experiments carried out with an incompressible fluid under small and moderate preloads. Our model breaks down under a large preload due to multiple possible reasons including liquid vaporization. A direct comparison between liquid and air-filled craters has been carried out and the dependence on the depth of water has been revealed. We find that the suction forces generated by underwater craters scale with the specimen modulus but exhibit non-monotonic dependence on the aspect ratio of the craters.
Collapse
Affiliation(s)
- Shutao Qiao
- Center for Mechanics of Solids, Structures and Materials, Department of Aerospace Engineering and Engineering Mechanics, the University of Texas at Austin, 210 E. 24th St, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
16
|
Ngo TH, Tran HV, Nguyen TA, Dao TP, Wang DA. Design and kinetostatic modeling of a compliant gripper for grasp and autonomous release of objects. Adv Robot 2018. [DOI: 10.1080/01691864.2018.1503094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Tien-Hoang Ngo
- Graduate Institute of Precision Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Hong-Van Tran
- Graduate Institute of Precision Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Thang-An Nguyen
- Graduate Institute of Precision Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Thanh-Phong Dao
- Division of Computational Mechatronics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Dung-An Wang
- Graduate Institute of Precision Engineering, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
17
|
Lee SH, Kim SW, Kang BS, Chang PS, Kwak MK. Scalable and continuous fabrication of bio-inspired dry adhesives with a thermosetting polymer. SOFT MATTER 2018; 14:2586-2593. [PMID: 29442124 DOI: 10.1039/c7sm02354e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Many research groups have developed unique micro/nano-structured dry adhesives by mimicking the foot of the gecko with the use of molding methods. Through these previous works, polydimethylsiloxane (PDMS) has been developed and become the most commonly used material for making artificial dry adhesives. The material properties of PDMS are well suited for making dry adhesives, such as conformal contacts with almost zero preload, low elastic moduli for stickiness, and easy cleaning with low surface energy. From a performance point of view, dry adhesives made with PDMS can be highly advantageous but are limited by its low productivity, as production takes an average of approximately two hours. Given the low productivity of PDMS, some research groups have developed dry adhesives using UV-curable materials, which are capable of continuous roll-to-roll production processes. However, UV-curable materials were too rigid to produce good adhesion. Thus, we established a PDMS continuous-production system to achieve good productivity and adhesion performance. We designed a thermal roll-imprinting lithography (TRL) system for the continuous production of PDMS microstructures by shortening the curing time by controlling the curing temperature (the production speed is up to 150 mm min-1). Dry adhesives composed of PDMS were fabricated continuously via the TRL system.
Collapse
Affiliation(s)
- Sung Ho Lee
- School of Mechanical Engineering, Kyungpook National University, Daegu, 41566, Korea
| | | | | | | | | |
Collapse
|
18
|
Ma X, Liu Q, Xu D, Zhu Y, Kim S, Cui Y, Zhong L, Liu M. Capillary-Force-Assisted Clean-Stamp Transfer of Two-Dimensional Materials. NANO LETTERS 2017; 17:6961-6967. [PMID: 29058919 DOI: 10.1021/acs.nanolett.7b03449] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A simple and clean method of transferring two-dimensional (2D) materials plays a critical role in the fabrication of 2D electronics, particularly the heterostructure devices based on the artificial vertical stacking of various 2D crystals. Currently, clean transfer techniques rely on sacrificial layers or bulky crystal flakes (e.g., hexagonal boron nitride) to pick up the 2D materials. Here, we develop a capillary-force-assisted clean-stamp technique that uses a thin layer of evaporative liquid (e.g., water) as an instant glue to increase the adhesion energy between 2D crystals and polydimethylsiloxane (PDMS) for the pick-up step. After the liquid evaporates, the adhesion energy decreases, and the 2D crystal can be released. The thin liquid layer is condensed to the PDMS surface from its vapor phase, which ensures the low contamination level on the 2D materials and largely remains their chemical and electrical properties. Using this method, we prepared graphene-based transistors with low charge-neutral concentration (3 × 1010 cm-2) and high carrier mobility (up to 48 820 cm2 V-1 s-1 at room temperature) and heterostructure optoelectronics with high operation speed. Finally, a capillary-force model is developed to explain the experiment.
Collapse
Affiliation(s)
- Xuezhi Ma
- Department of Electrical and Computer Engineering, ‡Department of Chemical and Environmental Engineering, §Department of Physics, and ∥Material Science and Engineering Program, Bourns College of Engineering, University of California , Riverside, California 92521, United States
| | - Qiushi Liu
- Department of Electrical and Computer Engineering, ‡Department of Chemical and Environmental Engineering, §Department of Physics, and ∥Material Science and Engineering Program, Bourns College of Engineering, University of California , Riverside, California 92521, United States
| | - Da Xu
- Department of Electrical and Computer Engineering, ‡Department of Chemical and Environmental Engineering, §Department of Physics, and ∥Material Science and Engineering Program, Bourns College of Engineering, University of California , Riverside, California 92521, United States
| | - Yangzhi Zhu
- Department of Electrical and Computer Engineering, ‡Department of Chemical and Environmental Engineering, §Department of Physics, and ∥Material Science and Engineering Program, Bourns College of Engineering, University of California , Riverside, California 92521, United States
| | - Sanggon Kim
- Department of Electrical and Computer Engineering, ‡Department of Chemical and Environmental Engineering, §Department of Physics, and ∥Material Science and Engineering Program, Bourns College of Engineering, University of California , Riverside, California 92521, United States
| | - Yongtao Cui
- Department of Electrical and Computer Engineering, ‡Department of Chemical and Environmental Engineering, §Department of Physics, and ∥Material Science and Engineering Program, Bourns College of Engineering, University of California , Riverside, California 92521, United States
| | - Lanlan Zhong
- Department of Electrical and Computer Engineering, ‡Department of Chemical and Environmental Engineering, §Department of Physics, and ∥Material Science and Engineering Program, Bourns College of Engineering, University of California , Riverside, California 92521, United States
| | - Ming Liu
- Department of Electrical and Computer Engineering, ‡Department of Chemical and Environmental Engineering, §Department of Physics, and ∥Material Science and Engineering Program, Bourns College of Engineering, University of California , Riverside, California 92521, United States
| |
Collapse
|