1
|
Cheng Q, Wang W, Dong X, Chai Y, Goto T, Tu R, Yan L, Yu A, Dai H. An Adaptable Drug Delivery System Facilitates Peripheral Nerve Repair by Remodeling the Microenvironment. Biomacromolecules 2024; 25:1509-1526. [PMID: 38376392 DOI: 10.1021/acs.biomac.3c01094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The multifaceted process of nerve regeneration following damage remains a significant clinical issue, due to the lack of a favorable regenerative microenvironment and insufficient endogenous biochemical signaling. However, the current nerve grafts have limitations in functionality, as they require a greater capacity to effectively regulate the intricate microenvironment associated with nerve regeneration. In this regard, we proposed the construction of a functional artificial scaffold based on a "two-pronged" approach. The whole system was developed by encapsulating Tazarotene within nanomicelles formed through self-assembly of reactive oxygen species (ROS)-responsive amphiphilic triblock copolymer, all of which were further loaded into a thermosensitive injectable hydrogel. Notably, the hydrogel exhibits obvious temperature sensitivity at a concentration of 6 wt %, and the nanoparticles possess concentration-dependent H2O2-response capability with a controlled release profile in 48 h. The combined strategy promoted the repair of injured peripheral nerves, attributed to the dual role of the materials, which mainly involved providing structural support, modulating the immune microenvironment, and enhancing angiogenesis. Overall, this study opens up intriguing prospects in tissue engineering.
Collapse
Affiliation(s)
- Qiang Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Weixing Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xianzhen Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Yunhui Chai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Takashi Goto
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Rong Tu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Lesan Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| |
Collapse
|
2
|
Princen K, Marien N, Guedens W, Graulus GJ, Adriaensens P. Hydrogels with Reversible Crosslinks for Improved Localised Stem Cell Retention: A Review. Chembiochem 2023; 24:e202300149. [PMID: 37220343 DOI: 10.1002/cbic.202300149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Successful stem cell applications could have a significant impact on the medical field, where many lives are at stake. However, the translation of stem cells to the clinic could be improved by overcoming challenges in stem cell transplantation and in vivo retention at the site of tissue damage. This review aims to showcase the most recent insights into developing hydrogels that can deliver, retain, and accommodate stem cells for tissue repair. Hydrogels can be used for tissue engineering, as their flexibility and water content makes them excellent substitutes for the native extracellular matrix. Moreover, the mechanical properties of hydrogels are highly tuneable, and recognition moieties to control cell behaviour and fate can quickly be introduced. This review covers the parameters necessary for the physicochemical design of adaptable hydrogels, the variety of (bio)materials that can be used in such hydrogels, their application in stem cell delivery and some recently developed chemistries for reversible crosslinking. Implementing physical and dynamic covalent chemistry has resulted in adaptable hydrogels that can mimic the dynamic nature of the extracellular matrix.
Collapse
Affiliation(s)
- Ken Princen
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Neeve Marien
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Wanda Guedens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Geert-Jan Graulus
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Peter Adriaensens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
3
|
Zhao D, Rong Y, Li D, He C, Chen X. Thermo-induced physically crosslinked polypeptide-based block copolymer hydrogels for biomedical applications. Regen Biomater 2023; 10:rbad039. [PMID: 37265604 PMCID: PMC10229375 DOI: 10.1093/rb/rbad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 06/03/2023] Open
Abstract
Stimuli-responsive synthetic polypeptide-containing block copolymers have received considerable attention in recent years. Especially, unique thermo-induced sol-gel phase transitions were observed for elaborately-designed amphiphilic diblock copolypeptides and a range of poly(ethylene glycol) (PEG)-polypeptide block copolymers. The thermo-induced gelation mechanisms involve the evolution of secondary conformation, enhanced intramolecular interactions, as well as reduced hydration and increased chain entanglement of PEG blocks. The physical parameters, including polymer concentrations, sol-gel transition temperatures and storage moduli, were investigated. The polypeptide hydrogels exhibited good biocompatibility in vitro and in vivo, and displayed biodegradation periods ranging from 1 to 5 weeks. The unique thermo-induced sol-gel phase transitions offer the feasibility of minimal-invasive injection of the precursor aqueous solutions into body, followed by in situ hydrogel formation driven by physiological temperature. These advantages make polypeptide hydrogels interesting candidates for diverse biomedical applications, especially as injectable scaffolds for 3D cell culture and tissue regeneration as well as depots for local drug delivery. This review focuses on recent advances in the design and preparation of injectable, thermo-induced physically crosslinked polypeptide hydrogels. The influence of composition, secondary structure and chirality of polypeptide segments on the physical properties and biodegradation of the hydrogels are emphasized. Moreover, the studies on biomedical applications of the hydrogels are intensively discussed. Finally, the major challenges in the further development of polypeptide hydrogels for practical applications are proposed.
Collapse
Affiliation(s)
- Dan Zhao
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yan Rong
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dong Li
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | | | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Song Y, Zhang Y, Qu Q, Zhang X, Lu T, Xu J, Ma W, Zhu M, Huang C, Xiong R. Biomaterials based on hyaluronic acid, collagen and peptides for three-dimensional cell culture and their application in stem cell differentiation. Int J Biol Macromol 2023; 226:14-36. [PMID: 36436602 DOI: 10.1016/j.ijbiomac.2022.11.213] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
In recent decades, three-dimensional (3D) cell culture technologies have been developed rapidly in the field of tissue engineering and regeneration, and have shown unique advantages and great prospects in the differentiation of stem cells. Herein, the article reviews the progress and advantages of 3D cell culture technologies in the field of stem cell differentiation. Firstly, 3D cell culture technologies are divided into two main categories: scaffoldless and scaffolds. Secondly, the effects of hydrogels scaffolds and porous scaffolds on stem cell differentiation in the scaffold category were mainly reviewed. Among them, hydrogels scaffolds are divided into natural hydrogels and synthetic hydrogels. Natural materials include polysaccharides, proteins, and their derivatives, focusing on hyaluronic acid, collagen and polypeptides. Synthetic materials mainly include polyethylene glycol (PEG), polyacrylic acid (PAA), polyvinyl alcohol (PVA), etc. In addition, since the preparation techniques have a large impact on the properties of porous scaffolds, several techniques for preparing porous scaffolds based on different macromolecular materials are reviewed. Finally, the future prospects and challenges of 3D cell culture in the field of stem cell differentiation are reviewed. This review will provide a useful guideline for the selection of materials and techniques for 3D cell culture in stem cell differentiation.
Collapse
Affiliation(s)
- Yuanyuan Song
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Xiaoli Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Tao Lu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Jianhua Xu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Wenjing Ma
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Miaomiao Zhu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| |
Collapse
|
5
|
Lin Q, Ow V, Boo YJ, Teo VTA, Wong JHM, Tan RPT, Xue K, Lim JYC, Loh XJ. Branched PCL-Based Thermogelling Copolymers: Controlling Polymer Architecture to Tune Drug Release Profiles. Front Bioeng Biotechnol 2022; 10:864372. [PMID: 35433644 PMCID: PMC9006874 DOI: 10.3389/fbioe.2022.864372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022] Open
Abstract
Temperature-responsive hydrogels, or thermogels, are a unique class of biomaterials that show facile and spontaneous transition from solution to gel when warmed. Their high biocompatibility, and ease of formulation with both small molecule drugs and biologics have made these materials prime candidates as injectable gel depots for sustained local drug delivery. At present, controlling the kinetics and profile of drug release from thermogels is achieved mainly by varying the ratio of hydrophobic: hydrophilic composition and the polymer molecular weight. Herein, we introduce polymer branching as a hitherto-overlooked polymer design parameter that exhibits profound influences on the rate and profile of drug release. Through a family of amphiphilic thermogelling polymers with systematic variations in degree of branching, we demonstrate that more highly-branched polymers are able to pack less efficiently with each other during thermogel formation, with implications on their physical properties and stability towards gel erosion. This in turn resulted in faster rates of release for both encapsulated small molecule hydrophobic drug and protein. Our results demonstrate the possibility of exploiting polymer branching as a hitherto-overlooked design parameter for tailoring the kinetics and profile of drug release in injectable thermogel depots.
Collapse
Affiliation(s)
- Qianyu Lin
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (NUS), Singapore, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Valerie Ow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yi Jian Boo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Vincent T. A. Teo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Joey H. M. Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rebekah P. T. Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jason Y. C. Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), Singapore, Singapore
- *Correspondence: Jason Y. C. Lim, ; Xian Jun Loh,
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), Singapore, Singapore
- *Correspondence: Jason Y. C. Lim, ; Xian Jun Loh,
| |
Collapse
|
6
|
Constantinou AP, Nele V, Doutch JJ, S. Correia J, Moiseev RV, Cihova M, Gaboriau DCA, Krell J, Khutoryanskiy VV, Stevens MM, Georgiou TK. Investigation of the Thermogelation of a Promising Biocompatible ABC Triblock Terpolymer and Its Comparison with Pluronic F127. Macromolecules 2022; 55:1783-1799. [PMID: 35431333 PMCID: PMC9007541 DOI: 10.1021/acs.macromol.1c02123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/27/2022] [Indexed: 01/15/2023]
Abstract
![]()
Thermoresponsive polymers with the
appropriate structure form physical
networks upon changes in temperature, and they find utility in formulation
science, tissue engineering, and drug delivery. Here, we report a
cost-effective biocompatible alternative, namely OEGMA30015-b-BuMA26-b-DEGMA13, which forms gels at low concentrations (as low as 2% w/w);
OEGMA300, BuMA, and DEGMA stand for oligo(ethylene glycol) methyl
ether methacrylate (MM = 300 g mol–1), n-butyl methacrylate, and di(ethylene glycol) methyl ether methacrylate,
respectively. This polymer is investigated in depth and is compared
to its commercially available counterpart, Poloxamer P407 (Pluronic
F127). To elucidate the differences in their macroscale gelling behavior,
we investigate their nanoscale self-assembly by means of small-angle
neutron scattering and simultaneously recording their rheological
properties. Two different gelation mechanisms are revealed. The triblock
copolymer inherently forms elongated micelles, whose length increases
by temperature to form worm-like micelles, thus promoting gelation.
In contrast, Pluronic F127’s micellization is temperature-driven,
and its gelation is attributed to the close packing of the micelles.
The gel structure is analyzed through cryogenic scanning and transmission
electron microscopy. Ex vivo gelation study upon intracameral injections
demonstrates excellent potential for its application to improve drug
residence in the eye.
Collapse
Affiliation(s)
| | - Valeria Nele
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - James J. Doutch
- ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory, Didcot OX11 ODE, UK
| | - Joana S. Correia
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Roman V. Moiseev
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK
| | - Martina Cihova
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - David C. A. Gaboriau
- Facility for Imaging by Light Microscopy, NHLI, Imperial College London, London SW7 2AZ, UK
| | - Jonathan Krell
- Department of Surgery & Cancer, Imperial College London, London SW7 2AZ, UK
| | - Vitaliy V. Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | | |
Collapse
|
7
|
Ow V, Loh XJ. Recent developments of temperature‐responsive polymers for ophthalmic applications. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Valerie Ow
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) Singapore Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) Singapore Singapore
| |
Collapse
|
8
|
Liu H, Prachyathipsakul T, Koyasseril-Yehiya TM, Le SP, Thayumanavan S. Molecular bases for temperature sensitivity in supramolecular assemblies and their applications as thermoresponsive soft materials. MATERIALS HORIZONS 2022; 9:164-193. [PMID: 34549764 PMCID: PMC8757657 DOI: 10.1039/d1mh01091c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Thermoresponsive supramolecular assemblies have been extensively explored in diverse formats, from injectable hydrogels to nanoscale carriers, for a variety of applications including drug delivery, tissue engineering and thermo-controlled catalysis. Understanding the molecular bases behind thermal sensitivity of materials is fundamentally important for the rational design of assemblies with optimal combination of properties and predictable tunability for specific applications. In this review, we summarize the recent advances in this area with a specific focus on the parameters and factors that influence thermoresponsive properties of soft materials. We summarize and analyze the effects of structures and architectures of molecules, hydrophilic and lipophilic balance, concentration, components and external additives upon the thermoresponsiveness of the corresponding molecular assemblies.
Collapse
Affiliation(s)
- Hongxu Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| | | | | | - Stephanie P Le
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Centre for Bioactive Delivery, Institute for Applied Life Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
9
|
Peters JT, Wechsler ME, Peppas NA. Advanced biomedical hydrogels: molecular architecture and its impact on medical applications. Regen Biomater 2021; 8:rbab060. [PMID: 34925879 PMCID: PMC8678442 DOI: 10.1093/rb/rbab060] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels are cross-linked polymeric networks swollen in water, physiological aqueous solutions or biological fluids. They are synthesized by a wide range of polymerization methods that allow for the introduction of linear and branched units with specific molecular characteristics. In addition, they can be tuned to exhibit desirable chemical characteristics including hydrophilicity or hydrophobicity. The synthesized hydrogels can be anionic, cationic, or amphiphilic and can contain multifunctional cross-links, junctions or tie points. Beyond these characteristics, hydrogels exhibit compatibility with biological systems, and can be synthesized to render systems that swell or collapse in response to external stimuli. This versatility and compatibility have led to better understanding of how the hydrogel's molecular architecture will affect their physicochemical, mechanical and biological properties. We present a critical summary of the main methods to synthesize hydrogels, which define their architecture, and advanced structural characteristics for macromolecular/biological applications.
Collapse
Affiliation(s)
- Jonathan T Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Marissa E Wechsler
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Bldg. B, Austin, TX 78712, USA
| |
Collapse
|
10
|
Wei M, Hsu YI, Asoh TA, Sung MH, Uyama H. Injectable poly(γ-glutamic acid)-based biodegradable hydrogels with tunable gelation rate and mechanical strength. J Mater Chem B 2021; 9:3584-3594. [PMID: 33909743 DOI: 10.1039/d1tb00412c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Polypeptide-based hydrogels have potential applications in polymer therapeutics and regenerative medicine. However, designing reliable polypeptide-based hydrogels with a rapid injection time and controllable stiffness for clinical applications remains a challenge. Herein, a class of injectable poly(γ-glutamic acid) (PGA)-based hydrogels were constructed using furfurylamine and tyramine-modified PGA (PGA-Fa-Tyr) and the crosslinker dimaleimide poly(ethylene glycol) (MAL-PEG-MAL), through a facile strategy combining enzymatic crosslinking and Diels-Alder (DA) reaction. The injectable hydrogels could be quickly gelatinized and the gelation time, ranging from 10 to 95 s, could be controlled by varying the hydrogen peroxide (H2O2) concentration. Compared with hydrogels formed by single enzymatic crosslinking, the compressive stress and strain of the injectable hydrogels were remarkably enhanced because of the occurrence of the subsequent DA reaction in the hydrogels, suggesting the DA network imparted an outstanding toughening effect on the hydrogels. Furthermore, the mechanical strength, swelling ratio, pore size, and degradation behavior of the injectable hydrogels could be easily controlled by changing the molar ratios of H2O2/Tyr or furan/maleimide. More importantly, injectable hydrogels encapsulating bovine serum albumin exhibited sustained release behavior. Thus, the developed hydrogels hold great potential for applications in biomedical fields, such as tissue engineering and cell/drug delivery.
Collapse
Affiliation(s)
- Meng Wei
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Yu-I Hsu
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Taka-Aki Asoh
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Moon-Hee Sung
- Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul, Korea
| | - Hiroshi Uyama
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
11
|
Skopinska-Wisniewska J, De la Flor S, Kozlowska J. From Supramolecular Hydrogels to Multifunctional Carriers for Biologically Active Substances. Int J Mol Sci 2021; 22:7402. [PMID: 34299020 PMCID: PMC8307912 DOI: 10.3390/ijms22147402] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/04/2023] Open
Abstract
Supramolecular hydrogels are 3D, elastic, water-swelled materials that are held together by reversible, non-covalent interactions, such as hydrogen bonds, hydrophobic, ionic, host-guest interactions, and metal-ligand coordination. These interactions determine the hydrogels' unique properties: mechanical strength; stretchability; injectability; ability to self-heal; shear-thinning; and sensitivity to stimuli, e.g., pH, temperature, the presence of ions, and other chemical substances. For this reason, supramolecular hydrogels have attracted considerable attention as carriers for active substance delivery systems. In this paper, we focused on the various types of non-covalent interactions. The hydrogen bonds, hydrophobic, ionic, coordination, and host-guest interactions between hydrogel components have been described. We also provided an overview of the recent studies on supramolecular hydrogel applications, such as cancer therapy, anti-inflammatory gels, antimicrobial activity, controlled gene drug delivery, and tissue engineering.
Collapse
Affiliation(s)
| | - Silvia De la Flor
- Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain;
| | - Justyna Kozlowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland;
| |
Collapse
|
12
|
Shi J, Yu L, Ding J. PEG-based thermosensitive and biodegradable hydrogels. Acta Biomater 2021; 128:42-59. [PMID: 33857694 DOI: 10.1016/j.actbio.2021.04.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/09/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Injectable thermosensitive hydrogels are free-flowing polymer solutions at low or room temperature, making them easy to encapsulate the therapeutic payload or cells via simply mixing. Upon injection into the body, in situ forming hydrogels triggered by body temperature can act as drug-releasing reservoirs or cell-growing scaffolds. Finally, the hydrogels are eliminated from the administration sites after they accomplish their missions as depots or scaffolds. This review outlines the recent progress of poly(ethylene glycol) (PEG)-based biodegradable thermosensitive hydrogels, especially those composed of PEG-polyester copolymers, PEG-polypeptide copolymers and poly(organophosphazene)s. The material design, performance regulation, thermogelation and degradation mechanisms, and corresponding applications in the biomedical field are summarized and discussed. A perspective on the future thermosensitive hydrogels is also highlighted. STATEMENT OF SIGNIFICANCE: Thermosensitive hydrogels undergoing reversible sol-to-gel phase transitions in response to temperature variations are a class of promising biomaterials that can serve as minimally invasive injectable systems for various biomedical applications. Hydrophilic PEG is a main component in the design and fabrication of thermoresponsive hydrogels due to its excellent biocompatibility. By incorporating hydrophobic segments, such as polyesters and polypeptides, into PEG-based systems, biodegradable and thermosensitive hydrogels with adjustable properties in vitro and in vivo have been developed and have recently become a research hotspot of biomaterials. The summary and discussion on molecular design, performance regulation, thermogelation and degradation mechanisms, and biomedical applications of PEG-based thermosensitive hydrogels may offer a demonstration of blueprint for designing new thermogelling systems and expanding their application scope.
Collapse
|
13
|
Zhang K, Xue K, Loh XJ. Thermo-Responsive Hydrogels: From Recent Progress to Biomedical Applications. Gels 2021; 7:77. [PMID: 34202514 PMCID: PMC8293033 DOI: 10.3390/gels7030077] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022] Open
Abstract
Thermogels are also known as thermo-sensitive or thermo-responsive hydrogels and can undergo a sol-gel transition as the temperature increases. This thermogelling behavior is the result of combined action from multiscale thermo-responsive mechanisms. From micro to macro, these mechanisms can be attributed to LCST behavior, micellization, and micelle aggregation of thermogelling polymers. Due to its facile phase conversion properties, thermogels are injectable yet can form an in situ gel in the human body. Thermogels act as a useful platform biomaterial that operates at physiological body temperatures. The purpose of this review is to summarize the recent progress in thermogel research, including investigations on the thermogel gelation mechanism and its applications in drug delivery, 3D cell culture, and tissue engineering. The review also discusses emerging directions in the study of thermogels.
Collapse
Affiliation(s)
- Kaiwen Zhang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology (SUSTech), 1088 Xueyuan Avenue, Shenzhen 518055, China;
| | - Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
14
|
Li Z, Liang B. Modulation of phase transition of poly(
N
‐isopropylacrylamide)‐based microgels for pulsatile drug release. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Zhifeng Li
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute, Sichuan University Chengdu China
| | - Bing Liang
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute, Sichuan University Chengdu China
| |
Collapse
|
15
|
Wu X, Wang X, Chen X, Yang X, Ma Q, Xu G, Yu L, Ding J. Injectable and thermosensitive hydrogels mediating a universal macromolecular contrast agent with radiopacity for noninvasive imaging of deep tissues. Bioact Mater 2021; 6:4717-4728. [PMID: 34136722 PMCID: PMC8165329 DOI: 10.1016/j.bioactmat.2021.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
It is very challenging to visualize implantable medical devices made of biodegradable polymers in deep tissues. Herein, we designed a novel macromolecular contrast agent with ultrahigh radiopacity (iodinate content > 50%) via polymerizing an iodinated trimethylene carbonate monomer into the two ends of poly(ethylene glycol) (PEG). A set of thermosensitive and biodegradable polyester-PEG-polyester triblock copolymers with varied polyester compositions synthesized by us, which were soluble in water at room temperature and could spontaneously form hydrogels at body temperature, were selected as the demonstration materials. The addition of macromolecular contrast agent did not obviously compromise the injectability and thermogelation properties of polymeric hydrogels, but conferred them with excellent X-ray opacity, enabling visualization of the hydrogels at clinically relevant depths through X-ray fluoroscopy or Micro-CT. In a mouse model, the 3D morphology of the radiopaque hydrogels after injection into different target sites was visible using Micro-CT imaging, and their injection volume could be accurately obtained. Furthermore, the subcutaneous degradation process of a radiopaque hydrogel could be non-invasively monitored in a real-time and quantitative manner. In particular, the corrected degradation curve based on Micro-CT imaging well matched with the degradation profile of virgin polymer hydrogel determined by the gravimetric method. These findings indicate that the macromolecular contrast agent has good universality for the construction of various radiopaque polymer hydrogels, and can nondestructively trace and quantify their degradation in vivo. Meanwhile, the present methodology developed by us affords a platform technology for deep tissue imaging of polymeric materials.
Collapse
Affiliation(s)
- Xiaohui Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, China
| | - Xin Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, China
| | - Xiaobin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, China
| | - Xiaowei Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, China
| | - Qian Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, China
| | - Guohua Xu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, China.,Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong, 519000, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, China.,Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong, 519000, China
| |
Collapse
|
16
|
Yan Z, Meng X, Su Y, Chen Y, Zhang L, Xiao J. Double layer composite membrane for preventing tendon adhesion and promoting tendon healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111941. [PMID: 33812576 DOI: 10.1016/j.msec.2021.111941] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 02/03/2023]
Abstract
Electrospun membranes and hydrogels are widely used to prevent tendon adhesion. Hydrophobic anti-inflammatory drugs could be fully loaded on the electrospinning membrane through the electrospinning process, which can better prevent tendon adhesion. Basic fibroblast growth factor (bFGF) could promote tendon healing. However, the bioactivity of free bFGF is easily inactivated, therefore, a suitable carrier is needed. As a carrier, hydrogel has little effect on the bioactivity of the protein drugs. In this work, a poly(lactic-co-glycolic) acid (PLGA) electrospun membrane loaded with ibuprofen (IBU) was prepared and named EMI. Additionally, Methoxy poly(ethylene glycol)-block-poly(L-valine) (PEG-PLV) was synthesized. bFGF was added to the PEG-PLV solution, a hydrogel containing bFGF (PLVB) was obtained after gelling. PLVB was applied to the surface of EMI, a double-layer composite membrane named EMI-PLVB was obtained. This membrane was used to prevent Achilles tendon adhesion and promote healing. IBU and bFGF in EMI-PLVB were continuously released in vitro. The inflammatory factors at the tendon healing site were significantly reduced, and the production of type I collagen (Col- I) and type III Collagen (Col-III) at the tendon healing site was also increased in vivo. In conclusion, this double-layer composite membrane drug release system can effectively prevent tendon adhesion and promote tendon healing.
Collapse
Affiliation(s)
- Zuofa Yan
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Liaoning, PR China
| | - Xiangjun Meng
- Ophthalmology Department, Affiliated Zhongshan Hospital of Dalian University, Liaoning 116001, PR China
| | - Yun Su
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Liaoning, PR China.
| | - Yiqing Chen
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Liaoning, PR China
| | - Lidong Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Liaoning, PR China
| | - Jialu Xiao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Liaoning, PR China
| |
Collapse
|
17
|
Roy HS, Singh R, Ghosh D. SARS-CoV-2 and tissue damage: current insights and biomaterial-based therapeutic strategies. Biomater Sci 2021; 9:2804-2824. [PMID: 33666206 DOI: 10.1039/d0bm02077j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The effect of SARS-CoV-2 infection on humanity has gained worldwide attention and importance due to the rapid transmission, lack of treatment options and high mortality rate of the virus. While scientists across the world are searching for vaccines/drugs that can control the spread of the virus and/or reduce the risks associated with infection, patients infected with SARS-CoV-2 have been reported to have tissue/organ damage. With most tissues/organs having limited regenerative potential, interventions that prevent further damage or facilitate healing would be helpful. In the past few decades, biomaterials have gained prominence in the field of tissue engineering, in view of their major role in the regenerative process. Here we describe the effect of SARS-CoV-2 on multiple tissues/organs, and provide evidence for the positive role of biomaterials in aiding tissue repair. These findings are further extrapolated to explore their prospects as a therapeutic platform to address the tissue/organ damage that is frequently observed during this viral outbreak. This study suggests that the biomaterial-based approach could be an effective strategy for regenerating tissues/organs damaged by SARS-CoV-2.
Collapse
Affiliation(s)
- Himadri Shekhar Roy
- Department of Biological Science, Institute of Nanoscience and Technology (INST), Habitat Centre, Sector 64, Phase 10, Mohali-160062, Punjab, India.
| | - Rupali Singh
- Department of Biological Science, Institute of Nanoscience and Technology (INST), Habitat Centre, Sector 64, Phase 10, Mohali-160062, Punjab, India.
| | - Deepa Ghosh
- Department of Biological Science, Institute of Nanoscience and Technology (INST), Habitat Centre, Sector 64, Phase 10, Mohali-160062, Punjab, India.
| |
Collapse
|
18
|
Park MH, Park J, Lee HJ, Jeong B. Alpha-beta transition induced by C18-conjugation of polyalanine and its implication in aqueous solution behavior of poly(ethylene glycol)-polyalanine block copolymers. Biomater Res 2020; 24:23. [PMID: 33334374 PMCID: PMC7745361 DOI: 10.1186/s40824-020-00200-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aqueous solution behavior of thermosensitive PEG-PA block copolymers as well as secondary structure of PA is expected to significantly change through modification of the hydrophobic PA by long chain alkyl (C18) groups with different configurations. METHOD Oleoyl and stearoyl (C18) groups were conjugated to poly(ethylene glycol)-poly(L-alanine) (PEG-PA; EG45A16) diblock copolymers to compare their conjugation effect on nano-assemblies and corresponding aqueous solution behavior of the polymers. RESULTS Due to the nature of a hydrophilic PEG block and a hydrophobic PA or C18-modified PA, PEG-PA, oleoyl group-conjugated PEG-PA (PEG-PAO), and stearoyl group-conjugated PEG-PA (PEG-PAS) block copolymers form micelles in water. Compared with PEG-PA, the micelle size of PEG-PAO and PEG-PAS increased. Circular dichroism and FTIR spectra of aqueous polymer solutions showed that β sheet content increased, whereas α helix content decreased by C18 modification of PEG-PA. PEG-PAS showed better performance in ice crystallization inhibition than PEG-PAO. The sol-to-gel transition temperatures of aqueous PEG-PAO solutions were 25-37 °C higher than those of aqueous PEG-PA solutions, whereas aqueous PEG-PAS solutions remained as gels in the temperature range of 0-80 °C. 1H-NMR spectra indicated that the oleoyl groups increased core mobility, whereas stearoyl groups decreased the core mobility of the micelles in water. The difference in micromobility between PAO and PAS interfered or promoted gelation of the aqueous polymer solutions, respectively. CONCLUSIONS This study suggests that a hydrophobic C18-modification of polypeptide induces α helix-to-β sheet transition of the polypeptide; however, aqueous solution behaviors including ice recrystallization inhibition and gelation are significantly affected by the nature of the hydrophobic molecule.
Collapse
Affiliation(s)
- Min Hee Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, South Korea
| | - Jinkyung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, South Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, South Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, South Korea.
| |
Collapse
|
19
|
Gao Z, Zhang Z, Guo J, Hao J, Zhang P, Cui J. Polypeptide Nanoparticles with pH-Sheddable PEGylation for Improved Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13656-13662. [PMID: 33147977 DOI: 10.1021/acs.langmuir.0c02532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The variation of tumor microenvironments provides a tool for the construction of stimulus-responsive nanomedicines to enhance drug delivery efficacy. Herein, the assembly of drug-loaded polypeptide nanoparticles (NPs) with pH-sheddable modification of poly(ethylene glycol) (PEG) is prepared to enhance therapeutic efficiency. Poly(l-lysine) and poly(l-glutamic acid) were self-assembled to fabricate polypeptide NPs by electrostatic interactions, followed by PEGylation based on amidation reaction. The NP sizes can be controlled by tuning the molecular weight or the ratio of polypeptides. The PEG coating is cleavable at the tumor acid microenvironment to reverse the surface charge and reduce the NP size, which effectively enhances cell uptake. In addition, the presence of reducing reagent (e.g., glutathione) in cancer cells induces the drug (i.e., cisplatin) release from the polypeptide NPs and subsequently results in the cell toxicity. This reported method highlights the engineering of transformable polypeptide drug carriers, which provides a promising way for enhanced drug delivery efficacy.
Collapse
Affiliation(s)
- Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhonghe Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- Department of Medical Imaging, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Jianman Guo
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
20
|
Ding X, Zhao H, Li Y, Lee AL, Li Z, Fu M, Li C, Yang YY, Yuan P. Synthetic peptide hydrogels as 3D scaffolds for tissue engineering. Adv Drug Deliv Rev 2020; 160:78-104. [PMID: 33091503 DOI: 10.1016/j.addr.2020.10.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/25/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
The regeneration of tissues and organs poses an immense challenge due to the extreme complexity in the research work involved. Despite the tissue engineering approach being considered as a promising strategy for more than two decades, a key issue impeding its progress is the lack of ideal scaffold materials. Nature-inspired synthetic peptide hydrogels are inherently biocompatible, and its high resemblance to extracellular matrix makes peptide hydrogels suitable 3D scaffold materials. This review covers the important aspects of peptide hydrogels as 3D scaffolds, including mechanical properties, biodegradability and bioactivity, and the current approaches in creating matrices with optimized features. Many of these scaffolds contain peptide sequences that are widely reported for tissue repair and regeneration and these peptide sequences will also be discussed. Furthermore, 3D biofabrication strategies of synthetic peptide hydrogels and the recent advances of peptide hydrogels in tissue engineering will also be described to reflect the current trend in the field. In the final section, we will present the future outlook in the design and development of peptide-based hydrogels for translational tissue engineering applications.
Collapse
Affiliation(s)
- Xin Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Huimin Zhao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yuzhen Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Ashlynn Lingzhi Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Zongshao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Mengjing Fu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Chengnan Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
21
|
Kim H, Woo Y, Patel M, Jeong B. Thermogelling Inclusion Complex System for Fine-Tuned Osteochondral Differentiation of Mesenchymal Stem Cells. Biomacromolecules 2020; 21:3176-3185. [PMID: 32640158 DOI: 10.1021/acs.biomac.0c00623] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
How to control osteochondral differentiation of mesenchymal stem cells at a proper stage is a key issue for articular cartilage regeneration. To solve this problem, injectable scaffolds with different chemical functional groups were designed by introducing one equivalent of α-cyclodextrin (α-CD) carboxylate and α-CD phosphate along poly(ethylene glycol)-poly(l-alanine) (PEG-L-PA) block copolymers. Dynamic light scattering, transmission electron microscopy images, and two-dimensional NMR spectra indicated that the PEG-L-PA block copolymers formed inclusion complexes with α-CD derivatives. Aqueous solutions of PEG-L-PA block copolymers (P), α-CD carboxylate/PEG-L-PA block copolymers (PCC), and α-CD phosphate/PEG-L-PA block copolymers (PCP) underwent sol-to-gel transition as the temperature increased. The storage moduli of P, PCC, and PCP gels ranged from 1000 to 1300 Pa at 37 °C. Tonsil-derived mesenchymal stem cells (TMSCs) were incorporated in situ in the gel during thermogelation of P, PCC, and PCP, which became the three-dimensional cell culture systems with different functional groups. After 21 days of incubation of TMSCs in the P, PCC, and PCP systems, the chondrogenic differentiation biomarker of type II collagen significantly increased in the P system, whereas the osteogenic biomarkers of osteocalcin and runt-related transcription factor 2 significantly increased in the PCP system. Both chondrogenic and osteogenic biomarkers were highly expressed in the PCC system. This study proved that thermogelling inclusion complex systems consisting of PEG-L-PA block copolymers and α-CD derivatives could be an excellent injectable matrix for fine-controlling osteochondral differentiation of mesenchymal stem cells.
Collapse
Affiliation(s)
- Heeju Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Yejin Woo
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| |
Collapse
|
22
|
da Silva Morais A, Vieira S, Zhao X, Mao Z, Gao C, Oliveira JM, Reis RL. Advanced Biomaterials and Processing Methods for Liver Regeneration: State-of-the-Art and Future Trends. Adv Healthc Mater 2020; 9:e1901435. [PMID: 31977159 DOI: 10.1002/adhm.201901435] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/13/2019] [Indexed: 12/17/2022]
Abstract
Liver diseases contribute markedly to the global burden of mortality and disease. The limited organ disposal for orthotopic liver transplantation results in a continuing need for alternative strategies. Over the past years, important progress has been made in the field of tissue engineering (TE). Many of the early trials to improve the development of an engineered tissue construct are based on seeding cells onto biomaterial scaffolds. Nowadays, several TE approaches have been developed and are applied to one vital organ: the liver. Essential elements must be considered in liver TE-cells and culturing systems, bioactive agents or growth factors (GF), and biomaterials and processing methods. The potential of hepatocytes, mesenchymal stem cells, and others as cell sources is demonstrated. They need engineered biomaterial-based scaffolds with perfect biocompatibility and bioactivity to support cell proliferation and hepatic differentiation as well as allowing extracellular matrix deposition and vascularization. Moreover, they require a microenvironment provided using conventional or advanced processing technologies in order to supply oxygen, nutrients, and GF. Herein the biomaterials and the conventional and advanced processing technologies, including cell-sheets process, 3D bioprinting, and microfluidic systems, as well as the future trends in these major fields are discussed.
Collapse
Affiliation(s)
- Alain da Silva Morais
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
| | - Sílvia Vieira
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
| | - Xinlian Zhao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Joaquim M. Oliveira
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineUniversity of Minho 4805‐017 Barco Guimarães Portugal
| | - Rui L. Reis
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineUniversity of Minho 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
23
|
Zhang D, Qi D, Wang J, Yu S, He C, Deng M. Effects of ethyl-L-glutamated and phenylalanine ratio/sequence on the secondary structure and gelation properties of their PEGylated copolymers. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Centore R, Totsingan F, Amason AC, Lyons S, Zha RH, Gross RA. Self-Assembly-Assisted Kinetically Controlled Papain-Catalyzed Formation of mPEG- b-Phe(Leu) x. Biomacromolecules 2020; 21:493-507. [PMID: 31820938 DOI: 10.1021/acs.biomac.9b01237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Self-assembling peptide materials are promising next-generation materials with applications that include tissue engineering scaffolds, drug delivery, bionanomedicine, and enviro-responsive materials. Despite these advances, synthetic methods to form peptides and peptide-polymer conjugates still largely rely on solid-phase peptide synthesis (SPPS) and N-carboxyanhydride ring-opening polymerization (NCA-ROP), while green methods remain largely undeveloped. This work demonstrates a protease-catalyzed peptide synthesis (PCPS) capable of directly grafting leucine ethyl ester (Leu-OEt) from the C-terminus of a methoxy poly(ethylene glycol)-phenylalanine ethyl ester macroinitiator in a one-pot, aqueous reaction. By using the natural tendency of the growing hydrophobic peptide segment to self-assemble, a large narrowing of the (Leu)x distributions for both mPEG45-b-Phe(Leu)x and oligo(Leu)x coproducts, relative to oligo(Leu)x synthesized in the absence of a macroinitiator (mPEG45-Phe-OEt), was achieved. A mechanism is described where in situ β-sheet coassembly of mPEG45-b-Phe(Leu)x and oligo(Leu)x coproducts during polymerization prevents peptide hydrolysis, providing a means to control the degree of polymerization (DP) and dispersity of diblock (Leu)x segments (matrix-assisted laser desorption time-of-flight (MALDI-TOF) x = 5.1, dispersity ≤ 1.02). The use of self-assembly to control the uniformity of peptides synthesized by PCPS paves the way for precise peptide block copolymer architectures with various polymer backbones and amino acid compositions synthesized by a green process.
Collapse
|
25
|
Hoang Thi TT, Sinh LH, Huynh DP, Nguyen DH, Huynh C. Self-Assemblable Polymer Smart-Blocks for Temperature-Induced Injectable Hydrogel in Biomedical Applications. Front Chem 2020; 8:19. [PMID: 32083052 PMCID: PMC7005785 DOI: 10.3389/fchem.2020.00019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/08/2020] [Indexed: 12/29/2022] Open
Abstract
Self-assembled temperature-induced injectable hydrogels fabricated via self-assembly of polymer smart-blocks have been widely investigated as drug delivery systems and platforms for tissue regeneration. Polymer smart-blocks that can be self-assembly play an important role in fabrication of hydrogels because they can self-assemble to induce the gelation of their copolymer in aqueous solution. The self-assembly occurs in response to an external stimulus change, such as temperature, pH, glucose, ionic strength, light, magnetic field, electric field, or their combination, which results in property transformations like hydrophobicity, ionization, and conformational change. The self-assembly smart-block based copolymers exist as a solution in aqueous media at certain conditions that are suitable for mixing with bioactive molecules and/or cells. However, this solution turns into a hydrogel due to the self-assembly of the smart-blocks under exposure to an external stimulus change in vitro or injection into the living body for a controllable release of loaded bioactive molecules or serving as a biomaterial scaffold for tissue regeneration. This work reports current scenery in the development of these self-assembly smart-blocks for fabrication of temperature-induced injectable physically cross-linked hydrogels and their potential application as drug delivery systems and platforms for tissue engineering.
Collapse
Affiliation(s)
- Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Le Hoang Sinh
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Dai Phu Huynh
- Faculty of Materials Technology and Polymer Research Center, Ho Chi Minh City University of Technology, VNU HCM, Ho Chi Minh City, Vietnam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Cong Huynh
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
26
|
Wei S, Chen F, Geng Z, Cui R, Zhao Y, Liu C. Self-assembling RATEA16 peptide nanofiber designed for rapid hemostasis. J Mater Chem B 2020; 8:1897-1905. [DOI: 10.1039/c9tb02590a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, we synthesized a novel polypeptide material, RATEA16, by the solid phase method, and investigated the secondary structure, self-assembly performance, gelation ability, biocompatibility and hemostatic efficiencyin vitroandin vivo.
Collapse
Affiliation(s)
- Shuda Wei
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Fangping Chen
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- The State Key Laboratory of Bioreactor Engineering
| | - Zhen Geng
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Ruihua Cui
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yujiao Zhao
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- The State Key Laboratory of Bioreactor Engineering
| |
Collapse
|
27
|
Rasines Mazo A, Allison-Logan S, Karimi F, Chan NJA, Qiu W, Duan W, O’Brien-Simpson NM, Qiao GG. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem Soc Rev 2020; 49:4737-4834. [DOI: 10.1039/c9cs00738e] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides a comprehensive overview of the latest advances in the synthesis, architectural design and biomedical applications of polypeptides and their hybrids.
Collapse
Affiliation(s)
- Alicia Rasines Mazo
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Stephanie Allison-Logan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Fatemeh Karimi
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Nicholas Jun-An Chan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wenlian Qiu
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wei Duan
- School of Medicine
- Deakin University
- Geelong
- Australia
| | - Neil M. O’Brien-Simpson
- Centre for Oral Health Research
- Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology
- University of Melbourne
- Parkville
- Australia
| | - Greg G. Qiao
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| |
Collapse
|
28
|
Patel M, Lee HJ, Son S, Kim H, Kim J, Jeong B. Iron Ion-Releasing Polypeptide Thermogel for Neuronal Differentiation of Mesenchymal Stem Cells. Biomacromolecules 2019; 21:143-151. [DOI: 10.1021/acs.biomac.9b01096] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Seungyi Son
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Heeju Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Jinheung Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| |
Collapse
|
29
|
Cho KA, Lee HJ, Jeong H, Kim M, Jung SY, Park HS, Ryu KH, Lee SJ, Jeong B, Lee H, Kim HS. Tonsil-derived stem cells as a new source of adult stem cells. World J Stem Cells 2019; 11:506-518. [PMID: 31523370 PMCID: PMC6716082 DOI: 10.4252/wjsc.v11.i8.506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Located near the oropharynx, the tonsils are the primary mucosal immune organ. Tonsil tissue is a promising alternative source for the high-yield isolation of adult stem cells, and recent studies have reported the identification and isolation of tonsil-derived stem cells (T-SCs) from waste surgical tissue following tonsillectomies in relatively young donors (i.e., under 10 years old). As such, T-SCs offer several advantages, including superior proliferation and a shorter doubling time compared to bone marrow-derived mesenchymal stem cells (MSCs). T-SCs also exhibit multi-lineage differentiation, including mesodermal, endodermal (e.g., hepatocytes and parathyroid-like cells), and even ectodermal cells (e.g., Schwann cells). To this end, numbers of researchers have evaluated the practical use of T-SCs as an alternative source of autologous or allogenic MSCs. In this review, we summarize the details of T-SC isolation and identification and provide an overview of their application in cell therapy and regenerative medicine.
Collapse
Affiliation(s)
- Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07985, South Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, South Korea
| | - Hansaem Jeong
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Miri Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Soo Yeon Jung
- Department of Otorhinolaryngology, College of Medicine, Ewha Womans University, Seoul 07985, South Korea
| | - Hae Sang Park
- Department of Otorhinolaryngology, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Kyung-Ha Ryu
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul 07985, South Korea
| | - Seung Jin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, South Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Han Su Kim
- Department of Otorhinolaryngology, College of Medicine, Ewha Womans University, Seoul 07985, South Korea
| |
Collapse
|
30
|
Agarwal T, Subramanian B, Maiti TK. Liver Tissue Engineering: Challenges and Opportunities. ACS Biomater Sci Eng 2019; 5:4167-4182. [PMID: 33417776 DOI: 10.1021/acsbiomaterials.9b00745] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver tissue engineering aims at the possibility of reproducing a fully functional organ for the treatment of acute and chronic liver disorders. Approaches in this field endeavor to replace organ transplantation (gold standard treatment for liver diseases in a clinical setting) with in vitro developed liver tissue constructs. However, the complexity of the liver microarchitecture and functionality along with the limited supply of cellular components of the liver pose numerous challenges. This review provides a comprehensive outlook onto how the physicochemical, mechanobiological, and spatiotemporal aspects of the substrates could be tuned to address current challenges in the field. We also highlight the strategic advancements made in the field so far for the development of artificial liver tissue. We further showcase the currently available prototypes in research and clinical trials, which shows the hope for the future of liver tissue engineering.
Collapse
|
31
|
Oh SY, Choi YM, Kim HY, Park YS, Jung SC, Park JW, Woo SY, Ryu KH, Kim HS, Jo I. Application of Tonsil-Derived Mesenchymal Stem Cells in Tissue Regeneration: Concise Review. Stem Cells 2019; 37:1252-1260. [PMID: 31287931 PMCID: PMC6852396 DOI: 10.1002/stem.3058] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/23/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022]
Abstract
Since the discovery of stem cells and multipotency characteristics of mesenchymal stem cells (MSCs), there has been tremendous development in regenerative medicine. MSCs derived from bone marrow have been widely used in various research applications, yet there are limitations such as invasiveness of obtaining samples, low yield and proliferation rate, and questions regarding their practicality in clinical applications. Some have suggested that MSCs from other sources, specifically those derived from palatine tonsil tissues, that is, tonsil‐derived MSCs (TMSCs), could be considered as a new potential therapeutic tool in regenerative medicine due to their superior proliferation rate and differentiation capabilities with low immunogenicity and ease of obtaining. Several studies have determined that TMSCs have differentiation potential not only into the mesodermal lineage but also into the endodermal as well as ectodermal lineages, expanding their potential usage and placing them as an appealing option to consider for future studies in regenerative medicine. In this review, the differentiation capacities of TMSCs and their therapeutic competencies from past studies are addressed. stem cells2019;37:1252–1260
Collapse
Affiliation(s)
- Se-Young Oh
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Young Min Choi
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ha Yeong Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yoon Shin Park
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Kyung-Ha Ryu
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Han Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Shanks HR, Milani AH, Lu D, Saunders BR, Carney L, Adlam DJ, Hoyland JA, Blount C, Dickinson M. Core-Shell-Shell Nanoparticles for NIR Fluorescence Imaging and NRET Swelling Reporting of Injectable or Implantable Gels. Biomacromolecules 2019; 20:2694-2702. [PMID: 31185170 PMCID: PMC7007186 DOI: 10.1021/acs.biomac.9b00463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/31/2019] [Indexed: 11/29/2022]
Abstract
Injectable gels that support load are desirable for restoring the mechanical properties of degenerated load-bearing tissue. As these gels become increasingly sophisticated, the need to remotely image them and monitor their swelling increases. However, imaging such gels and monitoring their swelling using noninvasive means is challenging. Here, we use a very low concentration of near-infrared (NIR) core-shell-shell (CSS) reporter nanoparticles to both image and monitor swelling changes of two load-supporting gels. The load-supporting injectable gel consisted of covalently interlinked pH-responsive microgel (MG) particles. The latter gel was not cytotoxic and is termed a doubly cross-linked microgel (DX MG). Inclusion of a complementary fluorescent dye enabled ratiometric monitoring of gel swelling changes in response to pH via nonradiative resonance energy transfer (NRET). In addition, changes in the CSS nanoparticle emission intensity provided a NIR-only method that could also be used to monitor gel swelling. The gel was able to be imaged using NIR light, after being subcutaneously injected into a tissue model. To demonstrate versatility of our approach, CSS and the dye were included within a model implantable gel (poly(acrylamide/acrylic acid)) and fluorescent detection of swelling investigated. Because the concentrations of the reporting species were too low to affect the mechanical properties, our approach to remote gel imaging and swelling monitoring has good potential for application in injectable gels and implants.
Collapse
Affiliation(s)
- Hannah R. Shanks
- School
of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, U.K.
| | - Amir H. Milani
- School
of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, U.K.
| | - Dongdong Lu
- School
of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, U.K.
| | - Brian R. Saunders
- School
of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, U.K.
| | - Louise Carney
- School
of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, U.K.
| | - Daman J. Adlam
- Division
of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology,
Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, U.K.
| | - Judith A. Hoyland
- Division
of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology,
Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, U.K.
- NIHR
Manchester Biomedical Research Centre, Manchester University NHS Foundation
Trust, Manchester Academic Health Science
Centre, Manchester, M20 2LR, U.K.
| | - Christopher Blount
- Photon
Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
- School
of Physics & Astronomy, University of
Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Mark Dickinson
- Photon
Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
- School
of Physics & Astronomy, University of
Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| |
Collapse
|
33
|
Darge HF, Andrgie AT, Tsai HC, Lai JY. Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications. Int J Biol Macromol 2019; 133:545-563. [DOI: 10.1016/j.ijbiomac.2019.04.131] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 01/19/2023]
|
34
|
Xu WK, Tang JY, Yuan Z, Cai CY, Chen XB, Cui SQ, Liu P, Yu L, Cai KY, Ding JD. Accelerated Cutaneous Wound Healing Using an Injectable Teicoplanin-loaded PLGA-PEG-PLGA Thermogel Dressing. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2212-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Hoque J, Sangaj N, Varghese S. Stimuli-Responsive Supramolecular Hydrogels and Their Applications in Regenerative Medicine. Macromol Biosci 2019; 19:e1800259. [PMID: 30295012 PMCID: PMC6333493 DOI: 10.1002/mabi.201800259] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/10/2018] [Indexed: 12/16/2022]
Abstract
Supramolecular hydrogels are a class of self-assembled network structures formed via non-covalent interactions of the hydrogelators. These hydrogels capable of responding to external stimuli are considered to be smart materials due to their ability to undergo sol-gel and/or gel-sol transition upon subtle changes in their surroundings. Such stimuli-responsive hydrogels are intriguing biomaterials with applications in tissue engineering, delivery of cells and drugs, modulating tissue environment to promote innate tissue repair, and imaging for medical diagnostics among others. This review summarizes the recent developments in stimuli-responsive supramolecular hydrogels and their potential applications in regenerative medicine. Specifically, various structural aspects of supramolecular hydrogelators involved in self-assembly, the role of external stimuli in tuning/controlling their phase transitions, and how these functions could be harnessed to advance applications in regenerative medicine are focused on. Finally, the key challenges and future prospects for these versatile materials are briefly described.
Collapse
Affiliation(s)
- Jiaul Hoque
- Department of Orthopaedic Surgery, Duke University, Durham 27710, NC,
| | - Nivedita Sangaj
- Department of Orthopaedic Surgery, Duke University, Durham 27710, NC
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Department of Biomedical Engineering, Department of Mechanical Engineering and Materials Science, Duke University, Durham 27710, NC
| |
Collapse
|
36
|
Lei K, Tang L. Surgery-free injectable macroscale biomaterials for local cancer immunotherapy. Biomater Sci 2019; 7:733-749. [DOI: 10.1039/c8bm01470a] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Up-to-date review and perspective on injectable macroscale biomaterials for local cancer immunotherapy.
Collapse
Affiliation(s)
- Kewen Lei
- Institute of Materials Science & Engineering
- École polytechnique fédérale de Lausanne (EPFL)
- Lausanne
- Switzerland
| | - Li Tang
- Institute of Materials Science & Engineering
- École polytechnique fédérale de Lausanne (EPFL)
- Lausanne
- Switzerland
- Institute of Bioengineering
| |
Collapse
|
37
|
Correia CR, Reis RL, Mano JF. Design Principles and Multifunctionality in Cell Encapsulation Systems for Tissue Regeneration. Adv Healthc Mater 2018; 7:e1701444. [PMID: 30102458 DOI: 10.1002/adhm.201701444] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/16/2018] [Indexed: 12/12/2022]
Abstract
Cell encapsulation systems are being increasingly applied as multifunctional strategies to regenerate tissues. Lessons afforded with encapsulation systems aiming to treat endocrine diseases seem to be highly valuable for the tissue engineering and regenerative medicine (TERM) systems of today, in which tissue regeneration and biomaterial integration are key components. Innumerous multifunctional systems for cell compartmentalization are being proposed to meet the specific needs required in the TERM field. Herein is reviewed the variable geometries proposed to produce cell encapsulation strategies toward tissue regeneration, including spherical and fiber-shaped systems, and other complex shapes and arrangements that better mimic the highly hierarchical organization of native tissues. The application of such principles in the TERM field brings new possibilities for the development of highly complex systems, which holds tremendous promise for tissue regeneration. The complex systems aim to recreate adequate environmental signals found in native tissue (in particular during the regenerative process) to control the cellular outcome, and conferring multifunctional properties, namely the incorporation of bioactive molecules and the ability to create smart and adaptative systems in response to different stimuli. The new multifunctional properties of such systems that are being employed to fulfill the requirements of the TERM field are also discussed.
Collapse
Affiliation(s)
- Clara R. Correia
- 3B's Research Group – Biomaterials, Biodegradables, and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group – Biomaterials, Biodegradables, and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - João F. Mano
- 3B's Research Group – Biomaterials, Biodegradables, and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
38
|
Patel M, Park S, Lee HJ, Jeong B. Polypeptide Thermogels as Three-Dimensional Scaffolds for Cells. Tissue Eng Regen Med 2018; 15:521-530. [PMID: 30603576 PMCID: PMC6171707 DOI: 10.1007/s13770-018-0148-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Thermogel is an aqueous solution that exhibits a sol-to-gel transition as the temperature increases. Stem cells, growth factors, and differentiating factors can be incorporated in situ in the matrix during the sol-to-gel transition, leading to the formation of a three-dimensional (3D) cell-culture scaffold. METHODS The uses of thermogelling polypeptides, such as collagen, Matrigel™, elastin-like polypeptides, and synthetic polypeptides, as 3D scaffolds of cells, are summarized in this paper. RESULTS The timely supply of growth factors to the cells, cell survival, and metabolite removal is to be insured in the cell culture matrix. Various growth factors were incorporated in the matrix during the sol-to-gel transition of the thermogelling polypeptide aqueous solutions, and preferential differentiation of the incorporated stem cells into specific target cells were investigated. In addition, modulus of the matrix was controlled by post-crosslinking reactions of thermogels or employing composite systems. Chemical functional groups as well as biological factors were selected appropriately for targeted differentiation of the incorporated stem cells. CONCLUSION In addition to all the advantages of thermogels including mild conditions for cell-incorporation and controlled supplies of the growth factors, polypeptide thermogels provide neutral pH environments to the cells during the degradation of the gel. Polypeptide thermogels as an injectable scaffold can be a promising system for their eventual in vivo applications in stem cell therapy.
Collapse
Affiliation(s)
- Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| | - Sohee Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| |
Collapse
|
39
|
Luan J, Zhang Z, Shen W, Chen Y, Yang X, Chen X, Yu L, Sun J, Ding J. Thermogel Loaded with Low-Dose Paclitaxel as a Facile Coating to Alleviate Periprosthetic Fibrous Capsule Formation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30235-30246. [PMID: 30102023 DOI: 10.1021/acsami.8b13548] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Medical-grade silicones as implants have been utilized for decades. However, the postoperative complications, such as capsular formation and contracture, have not yet been fully controlled and resolved. The aim of the present study is to elucidate whether the capsular formation can be alleviated by local and sustained delivery of low-dose paclitaxel (PTX) during the critical phase after the insertion of silicone implants. A biocompatible and thermogelling poly(lactic acid- co-glycolic acid)- b-poly(ethylene glycol)- b-poly(lactic acid- co-glycolic acid) triblock copolymer was synthesized by us. The micelles formed by the amphiphilic polymers in water could act as a reservoir for the solubilization of PTX, a very hydrophobic drug. The concentrated polymer aqueous solution containing PTX exhibited a sol-gel transition upon heating and formed a thermogel depot at body temperature. In vitro release tests demonstrated that the entrapped microgram-level PTX displayed a sustained release manner up to 57 days without a significant initial burst effect. Customized silicone implants coated with the PTX-loaded thermogels at various drug concentrations were inserted into the pockets of the subpanniculus carnosus plane of rats. The histological observations performed 1 month postoperation showed that the sustained release of PTX with an appropriate dose significantly reduced the peri-implant capsule thickness, production and deposition of collagen, and expression of contracture-mediating factors compared with bare silicone implants. More importantly, such an optimum dose had an excellent repeatability for the suppression of the capsular formation. Therefore, this study provides a strategic foothold regarding the sustained release of low-dose PTX to alleviate fibrotic capsule formation after implantation, and the microgram-level PTX-loaded thermogel holds great potential as an "all-purpose antifibrosis coating" for veiling the surfaces of various implantable medical devices.
Collapse
Affiliation(s)
- Jiabin Luan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Zheng Zhang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital , Fudan University , Shanghai 200011 , China
| | - Wenjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Yipei Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiaowei Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiaobin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Jian Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
- Department of Breast Surgery, Obstetrics and Gynecology Hospital , Fudan University , Shanghai 200011 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
40
|
Wang D, Yang X, Liu Q, Yu L, Ding J. Enzymatically cross-linked hydrogels based on a linear poly(ethylene glycol) analogue for controlled protein release and 3D cell culture. J Mater Chem B 2018; 6:6067-6079. [PMID: 32254817 DOI: 10.1039/c8tb01949e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Injectable and enzyme-mediated cross-linked hydrogels are promising biomedical materials. However, although poly(ethylene glycol) (PEG) is a popular basic component of synthetic hydrogels, only a few PEG-based enzymatically cross-linked hydrogels have been developed based on branched PEG. Compared with branched PEG, linear PEGs with different molecular weights are readily available and low-cost, while the poor capacity for post-polymerization modifications of linear PEG limited its application on a greater scale. Herein, a linear PEG-based analogue functionalized with multiple phenolic hydroxyl moieties, PEGDA-DTT-HPA, was designed and synthesized via Michael-type polyaddition combined with Steglich esterification. Environmentally friendly hydrogels composed of PEGDA-DTT-HPA were facilely formed under the catalysis of horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H2O2). The gelation time and mechanical strengths of hydrogels were found to be adjusted independently by altering the concentrations of HRP and H2O2, respectively. The hydrogels were further demonstrated as protein drug and cell carriers using bovine serum albumin (BSA) and lentivirus-mediated LifeAct-EGFP overexpressed human mesenchymal stem cells (hMSCs-LifeAct-EGFP), respectively. The BSA-loaded hydrogel systems exhibited a sustained drug release over 3 weeks; the encapsulated hMSCs showed good viability over all time points assessed. Consequently, the current study opens new avenues for the design of PEG-based injectable hydrogels and the PEGDA-DTT-HPA hydrogel has great potential for applications in drug delivery, 3D cell culture and tissue regeneration.
Collapse
Affiliation(s)
- Danni Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | | | | | | | | |
Collapse
|
41
|
Zhou X, Su X, Tan Z, Zhou C. Synthesis of triblock amphiphilic copolypeptides with excellent antibacterial activity. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Zhou X, Li Z. Advances and Biomedical Applications of Polypeptide Hydrogels Derived from α-Amino Acid N-Carboxyanhydride (NCA) Polymerizations. Adv Healthc Mater 2018; 7:e1800020. [PMID: 29869375 DOI: 10.1002/adhm.201800020] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Indexed: 02/06/2023]
Abstract
Polypeptide hydrogels, having the ability to mimic certain properties of natural, native extracellular matrix components, are being actively designed and described for various applications in the construction of tissue engineering scaffolds, living cell encapsulation, and drug delivery systems. Compared to conventional hydrogels, polypeptide hydrogels possess biocompatibility, biodegradability, bioactivity, functional diversity, and structural advantage based on the unique secondary structures (α-helix and β-sheet). Furthermore, the progresses in functional N-carboxyanhydride polymerization combined with advanced orthogonal conjugation techniques significantly promote the development of the polypeptide materials. This progress report focuses on the recent advances in designing and engineering polypeptide hydrogels obtained from ring opening polymerization, highlighting the precise manipulation of their properties for biomedical applications.
Collapse
Affiliation(s)
- Xianfeng Zhou
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department; School of Polymer Science and Engineering; Qingdao University of Science and Technology; Qingdao 266042 China
- Department of Polymer Science; University of Akron; Akron OH 44325 USA
| | - Zhibo Li
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department; School of Polymer Science and Engineering; Qingdao University of Science and Technology; Qingdao 266042 China
| |
Collapse
|
43
|
Zhang Y, Zhang J, Chang F, Xu W, Ding J. Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 88:79-87. [DOI: 10.1016/j.msec.2018.02.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/07/2018] [Accepted: 02/28/2018] [Indexed: 01/07/2023]
|
44
|
Liu H, Cheng Y, Chen J, Chang F, Wang J, Ding J, Chen X. Component effect of stem cell-loaded thermosensitive polypeptide hydrogels on cartilage repair. Acta Biomater 2018; 73:103-111. [PMID: 29684624 DOI: 10.1016/j.actbio.2018.04.035] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/28/2018] [Accepted: 04/19/2018] [Indexed: 12/18/2022]
Abstract
Biophysical properties of the desired biomimetic scaffolds, such as porosity and elasticity, have been proven associated with the efficacy of cartilage regeneration. In this work, the copolymers of poly(l-alanine)-block-poly(ethylene glycol)-block-poly(l-alanine) (PA-PEG-PA) and poly(l-alanine-co-l-phenylalanine)-block-poly(ethylene glycol)-block-poly(l-alanine-co-l-phenylalanine) (PAF-PEG-PAF) with different ratios of alanine to phenylalanine were synthesized. The introduction of a hydrophobic amino acid, i.e., phenylalanine, into polyalanine-based thermosensitive hydrogel led to the enhanced gelation behaviors and upregulated mechanical properties. Moreover, the increase of phenylalanine content resulted in the enlarged pore size and enhanced mechanical strength of PAF-PEG-PAF thermogel, followed by the regeneration of hyaline-like cartilage with reduced fibrous tissue formation in vivo. The findings indicated the great potential of thermosensitive polypeptide hydrogels in cartilage tissue engineering. STATEMENT OF SIGNIFICANCE Articular cartilage defect has limited self-repair ability due to the lack of blood supply and innervation, which may lead to knee osteoarthritis afterwards. Injectable hydrogels are demonstrated possessing outstanding properties as biomimetic scaffolds in cartilage tissue engineering, while the effect of biophysical properties on the efficacy of cartilage regeneration has not been revealed. Herein, the poly(ethylene glycol)-polypeptide triblock copolymers with different ratios of alanine to phenylalanine were synthesized. The sol-to-gel transition temperature and the critical gelation concentration decreased as the increased amount of phenylalanine unit, resulting in the enlarged pore size and enhanced mechanical strength. These features lead to better regeneration of hyaline-like cartilage with reduced fibrous tissue formation, indicating great potential of thermosensitive polypeptide hydrogels for efficient cartilage repair.
Collapse
Affiliation(s)
- He Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yilong Cheng
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jinjin Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Fei Chang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Jincheng Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| |
Collapse
|
45
|
Whang CH, Lee HK, Kundu S, Murthy SN, Jo S. Pluronic-based dual-stimuli sensitive polymers capable of thermal gelation and pH-dependent degradation for in situ biomedical application. J Appl Polym Sci 2018; 135. [PMID: 30319143 DOI: 10.1002/app.46552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thermo-sensitive hydrogels are considered ideal for applications in the biomedical fields for their biocompatibility, flexibility, tissue-like water content, and reversible gelation property. By adjusting sufficient hydrophilic-hydrophobic balance in block copolymer structure, thermogel's critical gelation temperature can be modified to be near the physiological temperature, which makes it an appealing candidate for in situ gel depot. In this study, we report successful syntheses of novel multiple block copolymer compounds, denoted as dual-stimuli sensitive polymers (DSSPs), by copolymerizing Pluronic® P104 (7,100 Da) and 2,2-bis(aminoethoxy)propane (BAP) using diisocyanate linkers, L-lysine ethyl ester diisocyanate (DSSP-1) and 1,6-hexamethylene diisocyanate (DSSP-2). Through effective elongation of polymer chain lengths (DSSP-1: 41,760 Da, DSSP-2: 41,230 Da), Pluronic® P104's reversible thermal gelation properties were enhanced, as demonstrated by lowered critical gelation temperatures (DSSP-1: 36°C, DSSP-2: 38.7°C; 15 wt.%) that is near the physiological temperature. Furthermore, integration of acid-labile BAP allowed rapid pH-dependent degradation of the polymer, which was displayed by gel permeation chromatography (GPC) and release profiles of nile red and irinotecan from polymeric micelles and gels, respectively.
Collapse
Affiliation(s)
- Chang-Hee Whang
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Faser Hall, University, MS 38677
| | - Hyung Kyung Lee
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Faser Hall, University, MS 38677
| | - Santanu Kundu
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS, 39759
| | - S Narasimha Murthy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Faser Hall, University, MS 38677
| | - Seongbong Jo
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Faser Hall, University, MS 38677
| |
Collapse
|
46
|
Wang X, Young DJ, Wu YL, Loh XJ. Thermogelling 3D Systems towards Stem Cell-Based Tissue Regeneration Therapies. Molecules 2018; 23:E553. [PMID: 29498651 PMCID: PMC6017244 DOI: 10.3390/molecules23030553] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 02/08/2023] Open
Abstract
Stem cell culturing and differentiation is a very important research direction for tissue engineering. Thermogels are well suited for encapsulating cells because of their non-biotoxic nature and mild sol-gel transition as temperature increases. In particular, thermogels provide a 3D growth environment for stem cell growth, which is more similar to the extracellular matrix than flat substrates, so thermogels as a medium can overcome many of the cell abnormalities caused by 2D cell growth. In this review, we summarize the applications of thermogels in cell and stem cell culture in recent years. We also elaborate on the methods to induce stem cell differentiation by using thermogel-based 3D scaffolds. In particular, thermogels, encapsulating specific differentiation-inducing factor and having specific structures and moduli, can induce the differentiation into the desired tissue cells. Three dimensional thermogel scaffolds that control the growth and differentiation of cells will undoubtedly have a bright future in regenerative medicine.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - David James Young
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore 4558, Queensland, Australia.
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xian Jun Loh
- A*STAR (Agency for Science, Technology and Research), Institute of Materials Science and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| |
Collapse
|
47
|
Zhou X, Su X, Zhou C. Preparation of diblock amphiphilic polypeptide nanoparticles for medical applications. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Patel M, Lee HJ, Park S, Kim Y, Jeong B. Injectable thermogel for 3D culture of stem cells. Biomaterials 2018; 159:91-107. [DOI: 10.1016/j.biomaterials.2018.01.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/22/2017] [Accepted: 01/01/2018] [Indexed: 12/15/2022]
|
49
|
Shen W, Chen X, Luan J, Wang D, Yu L, Ding J. Sustained Codelivery of Cisplatin and Paclitaxel via an Injectable Prodrug Hydrogel for Ovarian Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40031-40046. [PMID: 29131563 DOI: 10.1021/acsami.7b11998] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The sustained release of both the hydrophilic drug and hydrophobic drug from one delivery system remains challenging in pharmaceutics and biomaterials science. The combination of hydrophilic cisplatin and hydrophobic paclitaxel (PTX) exhibits a clinical survival advantage compared with the individual drug therapy against various tumors such as ovarian cancer. In this study, a localized, long-term codelivery system of cisplatin and PTX was developed using an injectable and thermosensitive polymer-platinum(IV) conjugate hydrogel as the carrier. The thermosensitive Bi(mPEG-PLGA)-Pt(IV) (PtGel) conjugate was synthesized via covalently linking two mPEG-PLGA copolymers onto a Pt(IV) prodrug, and its concentrated aqueous solution exhibited a reversible sol-gel transition upon heating. Meanwhile, the core-corona micelles formed by the amphiphilic conjugates in water could serve as a reservoir for the solubilization of PTX, and thus an injectable binary drug-loaded hydrogel formulation was obtained. We also found that the introduction of PTX into the conjugate hydrogel decreased its sol-gel transition temperature and improved its gel strength. In vitro release experiments showed that both of the loaded drugs were released in a sustained manner for as long as 2.5 months, which was the longest combination delivery of these two drugs ever reported. In vitro cellular assays revealed that the dual-drug system exhibited a synergistic anticancer effect against ovarian cancer cells. Finally, using the SKOV-3 ovarian cancer xenograft mouse model, we demonstrated that a single injection of the PTX-loaded conjugate hydrogel system resulted in enhanced anticancer efficacy and significantly reduced the side effects, when compared with the multiple injections of the free drug combination.
Collapse
Affiliation(s)
- Wenjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Xiaobin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Jiabin Luan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Danni Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| |
Collapse
|
50
|
Moon HJ, Lee HJ, Patel M, Park S, Chang SH, Jeong B. Hepatogenic Supported Differentiation of Mesenchymal Stem Cells in a Lactobionic Acid-Conjugated Thermogel. ACS Macro Lett 2017; 6:1305-1309. [PMID: 35650787 DOI: 10.1021/acsmacrolett.7b00802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate the effect of receptor substrate of target cells on stem cell differentiation, lactobionic acid-conjugated poly[(propylene glycol)-b-(ethylene glycol)-b-(propylene glycol)]-poly(l-alanine) (LB-PLX-PA) was synthesized, and then thermogelling systems consisting of LB-PLX-PA and PLX-PA in a ratio of 0/100 (LB-0), 5/95 (LB-5), and 20/80 (LB-20) were constructed as an injectable three-dimensional scaffold toward hepatogenic differentiation of tonsil-derived mesenchymal stem cells (TMSCs). Modulus of LB-0, LB-5, and LB-20 increased to 500-800 Pa at 37 °C (gel) due to the heat induced sol-to-gel transition of the systems during which TMSCs were incorporated into the gel. Based on biomarker expressions and hepatic biofunctions of the differentiated cells, the receptor substrate (LB)-conjugated bioactive thermogel provides compatible microenvironments for the differentiated cells, and thus gives pronounced positive results on the differentiation of the stem cells into target cells during three-dimensional culture, compared with a passive thermogel.
Collapse
Affiliation(s)
- Hyo Jung Moon
- Department of Chemistry and
Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Hyun Jung Lee
- Department of Chemistry and
Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Madhumita Patel
- Department of Chemistry and
Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Sohee Park
- Department of Chemistry and
Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Seo Hee Chang
- Department of Chemistry and
Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and
Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| |
Collapse
|