1
|
Tian J, Zhang J, Li X. Synthesis of urchin-like NiCo 2S 4 electrode materials based on a two-step hydrothermal method for high-capacitance supercapacitors. RSC Adv 2024; 14:9587-9593. [PMID: 38516162 PMCID: PMC10956648 DOI: 10.1039/d4ra00361f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Transition metal sulfides have been considered as promising electrode materials for future super-capacitors due to their spinel structures and environmentally friendly properties. Among these materials, NiCo2S4 compounds exhibit high theoretical specific capacity but poor cycling performance. To address this issue, we synthesize several NiCo2S4 urchin balls. The NCS-1.5 nanospheres demonstrate a specific capacitance of 1352.2 F g-1 at a current density of 1 A g-1, and maintain high specific capacity after 10 000 charge-discharge cycles. An asymmetric capacitor assembled with the NCS-1.5 sample as the cathode and activated carbon as the anode achieve an energy density of 45.5 W h kg-1 at 2025 W kg-1. The urchin-like nanospheres also facilitate the combination with other materials, providing potential insights for the synthesis of supercapacitor electrode materials.
Collapse
Affiliation(s)
- Jingyu Tian
- College of Chemical and Chemistry, Harbin Normal University Harbin 150025 P. R. China
| | - Jingjia Zhang
- College of Chemical and Chemistry, Harbin Normal University Harbin 150025 P. R. China
| | - Xiaofeng Li
- College of Chemical and Chemistry, Harbin Normal University Harbin 150025 P. R. China
| |
Collapse
|
2
|
Arbi HM, Koyyada G, Anil Kumar Y, Kumar Kulurumotlakatla D, Kim JH, Moniruzzaman M, Alzahmi S, Obaidat IM. Hierarchically Developed Ni(OH) 2@MgCo 2O 4 Nanosheet Composites for Boosting Supercapacitor Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13081414. [PMID: 37110999 PMCID: PMC10147020 DOI: 10.3390/nano13081414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 06/01/2023]
Abstract
MgCo2O4 nanomaterial is thought to be a promising candidate for renewable energy storage and conversions. Nevertheless, the poor stability performances and small specific areas of transition-metal oxides remain a challenge for supercapacitor (SC) device applications. In this study, sheet-like Ni(OH)2@MgCo2O4 composites were hierarchically developed on nickel foam (NF) using the facile hydrothermal process with calcination technology, under carbonization reactions. The combination of the carbon-amorphous layer and porous Ni(OH)2 nanoparticles was anticipated to enhance the stability performances and energy kinetics. The Ni(OH)2@MgCo2O4 nanosheet composite achieved a superior specific capacitance of 1287 F g-1 at a current value of 1 A g-1, which is higher than that of pure Ni(OH)2 nanoparticles and MgCo2O4 nanoflake samples. At a current density of 5 A g-1, the Ni(OH)2@MgCo2O4 nanosheet composite delivered an outstanding cycling stability of 85.6%, which it retained over 3500 long cycles with an excellent rate of capacity of 74.5% at 20 A g-1. These outcomes indicate that such a Ni(OH)2@MgCo2O4 nanosheet composite is a good contender as a novel battery-type electrode material for high-performance SCs.
Collapse
Affiliation(s)
- Hammad Mueen Arbi
- Department of Physics, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ganesh Koyyada
- Department of Chemical Engineering, Yeungnam University, 214-1, Daehak-ro 280, Gyeongsan 712-749, Republic of Korea
| | - Yedluri Anil Kumar
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Dasha Kumar Kulurumotlakatla
- Graduate School of Convergence Science, Pusan Nationfivel University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Jae Hong Kim
- Department of Chemical Engineering, Yeungnam University, 214-1, Daehak-ro 280, Gyeongsan 712-749, Republic of Korea
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea
| | - Salem Alzahmi
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ihab M. Obaidat
- Department of Physics, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
3
|
Li J, Li J, Shao M, Yan Y, Li R. MOF-Derived Ultrathin NiCo-S Nanosheet Hybrid Array Electrodes Prepared on Nickel Foam for High-Performance Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1229. [PMID: 37049322 PMCID: PMC10097345 DOI: 10.3390/nano13071229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
At present, binary bimetallic sulfides are widely studied in supercapacitors due to their high conductivity and excellent specific capacitance (SC). In this article, NiCo-S nanostructured hybrid electrode materials were prepared on nickel foam (NF) by using a binary metal-organic skeleton as the sacrificial template via a two-step hydrothermal method. Comparative analysis was carried out with Ni-S and Co-S in situ on NF to verify the excellent electrochemical performance of bimetallic sulfide as an electrode material for supercapacitors. NiCo-S/NF exhibited an SC of 2081 F∙g-1 at 1 A∙g-1, significantly superior to Ni-S/NF (1520.8 F∙g-1 at 1 A∙g-1) and Co-S/NF (1427 F∙g-1 at 1 A∙g-1). In addition, the material demonstrated better rate performance and cycle stability, with a specific capacity retention rate of 58% at 10 A∙g-1 than at 1 A∙g-1, and 75.7% of capacity was retained after 5000 cycles. The hybrid supercapacitor assembled by NiCo-S//AC exhibited a high energy density of 25.58 Wh∙kg-1 at a power density of 400 W∙kg-1.
Collapse
|
4
|
Design strategy for high-performance bifunctional electrode materials with heterogeneous structures formed by hydrothermal sulfur etching. J Colloid Interface Sci 2023; 633:608-618. [PMID: 36470140 DOI: 10.1016/j.jcis.2022.11.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022]
Abstract
The synthesis of efficient, stable, and green multifunctional electrode materials is a long-standing challenge for modern society in the field of energy storage and conversion. To this end, we successfully synthesized five bimetallic precursor materials with excellent performance by hydrothermal reaction with the assistance of a high concentration of polyvinylpyrrolidone (PVP), and then, sulfide etched the lamellar precursor materials among them to obtain the one-dimensional heterostructured samples. Benefiting from the synergistic effect of the bimetal and the continuous electron/ion transport structure, the samples displayed excellent bifunctional activity in supercapacitor and oxygen evolution reaction (OER). Regarding supercapacitors, the exceptional performance of 2817.2 F g-1 at 1 A g-1 was demonstrated, while the asymmetric supercapacitors made showed an extraordinary energy density of 150.2 Wh kg-1 at a power density of 618.5 W kg-1 and outstanding cycling performance (94.74% capacity retention after 20,000 cycles at 10 A g-1). Simultaneously, a wearable flexible electrode that can be wrapped around a finger was coated on a carbon cloth and was found to light up a 0.5-m-long strip of light. Moreover, it exhibited an ultralow oxygen reduction overpotential of 249 mV at 10 mA cm-2. Hence, our work provides a facile strategy to modulate the synthesis of heterogeneous structured sulfides with a continuous electron/ion transport pathway, which possesses excellent oxygen reduction electrocatalytic performance while meeting superior supercapacitor performance. Such work provides an effective approach for the construction of multifunctional electrochemical energy materials.
Collapse
|
5
|
Wang Y, Li X, Huang Z, Wang H, Chen Z, Zhang J, Zheng X, Deng Y, Hu W. Amorphous Mo-doped NiS 0.5 Se 0.5 Nanosheets@Crystalline NiS 0.5 Se 0.5 Nanorods for High Current-density Electrocatalytic Water Splitting in Neutral Media. Angew Chem Int Ed Engl 2023; 62:e202215256. [PMID: 36461715 DOI: 10.1002/anie.202215256] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
It is vitally important to develop highly active, robust and low-cost transition metal-based electrocatalysts for overall water splitting in neutral solution especially at large current density. In this work, amorphous Mo-doped NiS0.5 Se0.5 nanosheets@crystalline NiS0.5 Se0.5 nanorods (Am-Mo-NiS0.5 Se0.5 ) was synthesized using a facil one-step strategy. In phosphate buffer saline solution, the Am-Mo-NiS0.5 Se0.5 shows tiny overpotentials of 48 and 209 mV for hydrogen evolution reaction (HER), 238 and 514 mV for oxygen evolution reaction (OER) at 10 and 1000 mA cm-2 , respectively. Moreover, Am-Mo-NiS0.5 Se0.5 delivers excellent stability for at least 300 h without obvious degradation. Theoretical calculations revealed that the Ni sites in the defect-rich amorphous structure of Am-Mo-NiS0.5 Se0.5 owns higher electron state density and strengthened the binding energy of H2 O, which will optimize H adsorption/desorption energy barriers and reduce the adsorption energy of OER determining step.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Xiaopeng Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin, 300384, China
| | - Zhong Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Information and Communication Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Haozhi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Zelin Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Xuerong Zheng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Yida Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China.,School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
6
|
Anil Kumar Y, Yadav AA, Al-Asbahi BA, Kang SW, Moniruzzaman M. Sulfur Nanoparticle-Decorated Nickel Cobalt Sulfide Hetero-Nanostructures with Enhanced Energy Storage for High-Performance Supercapacitors. Molecules 2022; 27:7458. [PMID: 36364283 PMCID: PMC9658846 DOI: 10.3390/molecules27217458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 02/04/2024] Open
Abstract
Transition-metal sulfides exaggerate higher theoretical capacities and were considered a type of prospective nanomaterials for energy storage; their inherent weaker conductivities and lower electrochemical active sites limited the commercial applications of the electrodes. The sheet-like nickel cobalt sulfide nanoparticles with richer sulfur vacancies were fabricated by a two-step hydrothermal technique. The sheet-like nanoparticles self-combination by ultrathin nanoparticles brought active electrodes entirely contacted with the electrolytes, benefiting ion diffusion and charges/discharges. Nevertheless, defect engineers of sulfur vacancy at the atomic level raise the intrinsic conductivities and improve the active sites for energy storage functions. As a result, the gained sulfur-deficient NiCo2S4 nanosheets consist of good specific capacitances of 971 F g-1 at 2 A g-1 and an excellent cycle span, retaining 88.7% of the initial capacitance over 3500 cyclings. Moreover, the values of capacitance results exhibited that the fulfilling characteristic of the sample was a combination of the hydrothermal procedure and the surface capacitances behavior. This novel investigation proposes a new perspective to importantly improve the electrochemical performances of the electrode by the absolute engineering of defects and morphologies in the supercapacitor field.
Collapse
Affiliation(s)
- Yedluri Anil Kumar
- Department of Physics, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Anuja A. Yadav
- Department of Automotive Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk-do, Korea
| | - Bandar Ali Al-Asbahi
- Department of Physics & Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Seok-Won Kang
- Department of Automotive Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk-do, Korea
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Gyeonggi-do, Korea
| |
Collapse
|
7
|
Electro-Chemical Degradation of Norfloxacin Using a PbO2-NF Anode Prepared by the Electrodeposition of PbO2 onto the Substrate of Nickel Foam. Catalysts 2022. [DOI: 10.3390/catal12111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A novel three-dimensional network nickel foam/PbO2 combination electrode (PbO2-NF) with high electrochemical degradation efficiency to norfloxacin was successfully fabricated through the electrodeposition of PbO2 on the substrate of nickel foam. The characterization of an PbO2-NF electrode, including surface morphology, elemental components, electrochemical performance, and stability was performed. In electrochemical oxidation tests, the removal efficiency of norfloxacin (initial concentration for 50 mg/L) on PbO2-NF reached 88.64% within 60 min of electrolysis, whereas that of pure nickel foam was only 30%. In the presence of PbO2-NF, the optimum current density, solution pH, electrode spacing for norfloxacin degradation were 30 mA/cm2, 11, and 3 cm, respectively. The electric energy consumption for 80% norfloxacin was approximately 5 Wh/L. Therefore, these results provide a new anode to improve the removal of norfloxacin in the wastewater with high efficiency and low energy consumption.
Collapse
|
8
|
Hussain I, Lamiel C, Sahoo S, Javed MS, Ahmad M, Chen X, Gu S, Qin N, Assiri MA, Zhang K. Animal- and Human-Inspired Nanostructures as Supercapacitor Electrode Materials: A Review. NANO-MICRO LETTERS 2022; 14:199. [PMID: 36201062 PMCID: PMC9537411 DOI: 10.1007/s40820-022-00944-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/31/2022] [Indexed: 05/13/2023]
Abstract
Human civilization has been relentlessly inspired by the nurturing lessons; nature is teaching us. From birds to airplanes and bullet trains, nature gave us a lot of perspective in aiding the progress and development of countless industries, inventions, transportation, and many more. Not only that nature inspired us in such technological advances but also, nature stimulated the advancement of micro- and nanostructures. Nature-inspired nanoarchitectures have been considered a favorable structure in electrode materials for a wide range of applications. It offers various positive attributes, especially in energy storage applications, such as the formation of hierarchical two-dimensional and three-dimensional interconnected networked structures that benefit the electrodes in terms of high surface area, high porosity and rich surface textural features, and eventually, delivering high capacity and outstanding overall material stability. In this review, we comprehensively assessed and compiled the recent advances in various nature-inspired based on animal- and human-inspired nanostructures used for supercapacitors. This comprehensive review will help researchers to accommodate nature-inspired nanostructures in industrializing energy storage and many other applications.
Collapse
Affiliation(s)
- Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Charmaine Lamiel
- Department of Chemical Engineering, University of Wyoming, Laramie, WY, 82071, USA
| | - Sumanta Sahoo
- Department of Chemistry, Madanapalle Institute of Technology and Science, Madanapalle, Andhra Pradesh, 517325, India
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Muhammad Ahmad
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Xi Chen
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Shuai Gu
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Ning Qin
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China.
| |
Collapse
|
9
|
Sulfur-deficient flower-like zinc cobalt sulfide microspheres as an advanced electrode material for high-performance supercapacitors. J Colloid Interface Sci 2022; 628:631-641. [DOI: 10.1016/j.jcis.2022.07.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 01/17/2023]
|
10
|
Tian ZF, Zeng HY, Lv SB, Long YW, Xu S, Li HB, Zou KM. Construction of NiCoZnS materials with controllable morphology for high-performance supercapacitors. NANOTECHNOLOGY 2022; 33:245703. [PMID: 34891144 DOI: 10.1088/1361-6528/ac4210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/09/2021] [Indexed: 06/13/2023]
Abstract
A facile two-step hydrothermal approach with post-sulfurization treatment was put forward to construct the mixed transition metal sulfide (NiCoZnS) with a high electrochemical performance. The different morphologies of NiCoZnS materials were successfully fabricated by adjusted the Ni/Co molar ratio of the NiCoZn(OH)F precursor. Moreover, thein situphase transformation from the NiCoZn(OH)F phase to Zn0.76Co0.24S and NiCo2S4phases and lattice defects via the S2-ion-exchange were determined by x-ray diffractometer, transmission electron microscopy and x-ray photoelectron spectroscopy techniques, which improved electric conductivity and interfacial active sites of the NiCoZnS, and so promoted the reaction kinetics. Significantly, the urchin-like NiCoZnS1/1prepared at the Ni/Co molar ratio of 1.0 exhibited promising electrochemical performances with high capacitance and excellent cycling stability. Furthermore, the asymmetric device (NiCoZnS//AC) using NiCoZnS1/1as the positive electrode had excellent supercapacitor performances with an energy density of 57.8 Wh·kg-1at a power density of 750 W·kg-1as well as a long cycle life (79.2% capacity retention after 10 000 cycles), indicating the potential application in high-performance supercapacitors.
Collapse
Affiliation(s)
- Zi-Feng Tian
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Hong-Yan Zeng
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Shi-Bing Lv
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Yi-Wen Long
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Sheng Xu
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Hao-Bo Li
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Kai-Min Zou
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| |
Collapse
|
11
|
Detergent-free micelle-assisted synthesis of carbon-containing hexagonal CuS nanostructures for efficient supercapacitor electrode materials. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Li W, Zhao H, Li H, Wang R. Fe doped NiS nanosheet arrays grown on carbon fiber paper for a highly efficient electrocatalytic oxygen evolution reaction. NANOSCALE ADVANCES 2022; 4:1220-1226. [PMID: 36131760 PMCID: PMC9418912 DOI: 10.1039/d2na00004k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/14/2022] [Indexed: 05/04/2023]
Abstract
Developing efficient and low-cost non-noble metal catalysts for the oxygen evolution reaction (OER) is important for hydrogen production through water electrolysis. Herein, Fe doped NiS nanosheets directly grown on conductive carbon fiber paper (Fe-NiS@CFP) were fabricated through a two-step hydrothermal process. The microstructure, interface and electronic states of the prepared sample were modulated by Fe doping, exhibiting small internal and interface charge-transfer resistance. Benefiting from these factors, Fe-NiS@CFP shows superior electrocatalytic performance with an overpotential of 275 mV at 100 mA cm-2 and maintains the activity for at least 50 h as a working electrode for the OER. This work may provide insights into the design and fabrication of non-noble metal sulfide electrocatalysts.
Collapse
Affiliation(s)
- Wenrui Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 China
| | - Haofei Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 China
| | - Hao Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
13
|
Tang Y, Guo W, Zou R. Nickel-based bimetallic battery-type materials for asymmetric supercapacitors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214242] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Chen Y, Liu Q. Synthesis and Regeneration of Ni-Phyllosilicate Catalysts Using a Versatile Double-Accelerator Method: A Comprehensive Study. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yaqi Chen
- Key Laboratory of Low Carbon Energy and Chemical Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qing Liu
- Key Laboratory of Low Carbon Energy and Chemical Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
15
|
Wang F, Liu X, Duan G, Yang H, Cheong JY, Lee J, Ahn J, Zhang Q, He S, Han J, Zhao Y, Kim ID, Jiang S. Wood-Derived, Conductivity and Hierarchical Pore Integrated Thick Electrode Enabling High Areal/Volumetric Energy Density for Hybrid Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102532. [PMID: 34302441 DOI: 10.1002/smll.202102532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 06/13/2023]
Abstract
For the proliferation of the supercapacitor technology, it is essential to attain superior areal and volumetric performance. Nevertheless, maintaining stable areal/volumetric capacitance and rate capability, especially for thick electrodes, remains a fundamental challenge. Here, for the first time, a rationally designed porous monolithic electrode is reported with high thickness of 800 µm (46.74 mg cm-2 , with high areal mass loading of NiCo2 S4 6.9 mg cm-2 ) in which redox-active Ag nanoparticles and NiCo2 S4 nanosheets are sequentially decorated on highly conductive wood-derived carbon (WC) substrates. The hierarchically assembled WC@Ag@NiCo2 S4 electrode exhibits outstanding areal capacitance of 6.09 F cm-2 and long-term stability of 84.5% up to 10 000 cycles, as well as exceptional rate capability at 50 mA cm-2 . The asymmetric cell with an anode of WC@Ag and a cathode of WC@Ag@NiCo2 S4 delivers areal/volumetric energy density of 0.59 mWh cm-2 /3.93 mWh cm-3 , which is much-improved performance compared to those of most reported thick electrodes at the same scale. Theoretical calculations verify that the enhanced performance could be attributed to the decreased adsorption energy of OH- and the down-shifted d-band of Ag atoms, which can accelerate the electron transport and ion transfer.
Collapse
Affiliation(s)
- Feng Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaolin Liu
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Haoqi Yang
- College of Material Science and Engineering, Jilin University, Changchun, 130022, China
| | - Jun Young Cheong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiyoung Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Qian Zhang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Shuijian He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jingquan Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Zhao
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
- The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
16
|
Qi F, Li H, Yang F, Sun Z. Core-shell coaxially structured NiCo 2S 4@TiO 2nanorod arrays as advanced electrode for solid-state asymmetric supercapacitors. NANOTECHNOLOGY 2021; 32:295705. [PMID: 33836514 DOI: 10.1088/1361-6528/abf693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
An integrated electrode of core-shell coaxially structured NiCo2S4@TiO2nanorod arrays/carbon cloth (NiCo2S4@TiO2@CC) have been fabricated, via a two-step hydrothermal method. Comprehensive structural and compositional analyzes are performed to understand the effects of the NiCo2S4shell on the TiO2core. Such core-shell arrays structure can significantly provide abundant electroactive sites for redox reactions, convenient ion transport paths, and favorable structure stability. The NiCo2S4@TiO2@CC electrode represents a splendid specific capacitance (650 F g-1at 1 A g-1) and enhanced cycling stability (capacitance retention of 97% over 10 000 cycles at 5 A g-1). Additionally, the assembled NiCo2S4@TiO2@CC//CNT@CC solid-state asymmetric supercapacitors exhibit a maximal energy density of 0.6 mWh cm-3at 32.4 W cm-3, and topping cycling stability (85% capacitance retention after 5000 cycles at 5 mA cm-2). The results demonstrate that the well-designed NiCo2S4@TiO2@CC presented in this work are applicable for the development of electrode materials in energy storage devices.
Collapse
Affiliation(s)
- Fangya Qi
- Materials and Energy School, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, People's Republic of China
| | - Han Li
- Key Laboratory Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, People's Republic of China
| | - Fan Yang
- Materials and Energy School, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, People's Republic of China
| | - Zhipeng Sun
- Materials and Energy School, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, People's Republic of China
- Key Laboratory Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, People's Republic of China
| |
Collapse
|
17
|
Chen J, Gu M, Liu S, Sheng T, Zhang X. Iron Doped in the Subsurface of CuS Nanosheets by Interionic Redox: Highly Efficient Electrocatalysts toward the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16210-16217. [PMID: 33819032 DOI: 10.1021/acsami.0c21822] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Modifying the electronic structure of electrocatalysts by metal doping is favorable to their electrocatalytic activity. Herein, by a facile one-pot redox process of Fe(III) and Cu(I), Fe(II) was successfully doped into the subsurface of CuS nanosheets (NSs) for the first time to obtain a novel electrocatalyst (Fesub-CuS NSs) that possesses not only subtle lattice defects but also an atomic-level coupled nanointerface, greatly enhancing the oxygen evolution reaction (OER) performances. Meanwhile, Fe(II) and Fe(III) coexisting in Fesub-CuS nanosheets are favorable to OER through valence regulation. As expected, by simultaneously controlling the abovementioned three factors to optimize Fesub-CuS nanosheets, they display a lower overpotential of 252 mV at a current density of 20 mA cm-2 for OER, better than 389 mV for pristine CuS nanosheets. This discovery furnishes low-cost and efficient Cu-based electrocatalysts by metal doping. Density functional theory (DFT) calculations further verify that Fesub-CuS(100) is thermodynamically stable and is more active for OER. This research provides a strategy for the atomic-scale engineering of nanocatalysts and also sheds light on the design of novel and efficient electrocatalysts.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Mingzheng Gu
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Shoujie Liu
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Tian Sheng
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Xiaojun Zhang
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|
18
|
Ahmed S, Mohamed SG, Attia SY, Barakat YF, Shoeib M, Tantawy N. High electrochemical energy-storage performance promoted by SnSe nanorods anchored on rGO nanosheets. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115063] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Phonsuksawang P, Khajondetchairit P, Ngamchuea K, Butburee T, Sattayaporn S, Chanlek N, Suthirakun S, Siritanon T. Enhancing performance of NiCo2S4/Ni3S2 supercapacitor electrode by Mn doping. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137634] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Xu Y, Sumboja A, Groves A, Ashton T, Zong Y, Darr JA. Enhancing bifunctional catalytic activity of cobalt-nickel sulfide spinel nanocatalysts through transition metal doping and its application in secondary zinc-air batteries. RSC Adv 2020; 10:41871-41882. [PMID: 35516532 PMCID: PMC9057847 DOI: 10.1039/d0ra08363a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/10/2020] [Indexed: 11/21/2022] Open
Abstract
Developing large-scale and high-performance OER (oxygen evolution reaction) and ORR (oxygen reduction reaction) catalysts have been a challenge for commercializing secondary zinc-air batteries. In this work, transition metal-doped cobalt-nickel sulfide spinels are directly produced via a continuous hydrothermal flow synthesis (CHFS) approach. The nanosized cobalt-nickel sulfides are doped with Ag, Fe, Mn, Cr, V, and Ti and evaluated as bifunctional OER and ORR catalyst for Zn-air battery application. Among the doped spinel catalysts, Mn-doped cobalt-nickel sulfides (Ni1.29Co1.49Mn0.22S4) exhibit the most promising OER and ORR performance, showing an ORR onset potential of 0.9 V vs. RHE and an OER overpotential of 348 mV measured at 10 mA cm-2, which is attributed to their high surface area, electronic structure of the dopant species, and the synergistic coupling of the dopant species with the active host cations. The dopant ions primarily alter the host cation composition, with the Mn(iii) cation linked to the introduction of active sites by its favourable electronic structure. A power density of 75 mW cm-2 is achieved at a current density of 140 mA cm-2 for the zinc-air battery using the manganese-doped catalyst, a 12% improvement over the undoped cobalt-nickel sulfide and superior to that of the battery with a commercial RuO2 catalyst.
Collapse
Affiliation(s)
- Yijie Xu
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
- Institute of Materials Research and Engineering (IMRE), ASTAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis #08-03 138634 Singapore
| | - Afriyanti Sumboja
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung Jl. Ganesha 10 Bandung 40132 Indonesia
| | - Alexandra Groves
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Thomas Ashton
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Yun Zong
- Institute of Materials Research and Engineering (IMRE), ASTAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis #08-03 138634 Singapore
| | - Jawwad A Darr
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
21
|
Yu K, Wang J, Wang X, Li Y, Liang C. Zinc–cobalt bimetallic sulfide anchored on the surface of reduced graphene oxide used as anode for lithium ion battery. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Zhao G, Chen Y, Sun P, Hao S, Wang X, Qu G, Xing Y, Xu X. Design of nickel cobalt molybdate regulated by boronizing for high-performance supercapacitor applications. NANOSCALE 2020; 12:17849-17857. [PMID: 32839808 DOI: 10.1039/d0nr05377e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nickel-cobalt-based molybdates have been intensively investigated because of their high theoretical specific capacitance and multifarious oxidation states. Here, we have successfully synthesized hierarchical structures (Ni3B/Ni(BO2)2@NixCoyMoO4) by boronizing NixCoyMoO4 nanosheets on flexible carbon cloth substrates. Benefitting from the synergistic effect among Ni3B, Ni(BO2)2 and NixCoyMoO4 in hybrid architectures, the electrode material possesses higher capacity of 394.7 mA h g-1 at 1 A g-1 and a good rate performance (309.5 mA h g-1 maintained at 20 A g-1). Then, a hybrid supercapacitor assembled with Ni3B/Ni(BO2)2@NixCoyMoO4 and activated carbon as the positive and the negative electrode, displays a high specific capacitance of 370.7 F g-1 at 1 A g-1 (210 F g-1 at 10 A g-1), a high voltage of 1.7 V, and a high energy density of 131.8 W h kg-1 at the power density of 800 W kg-1 (still 74.7 W h kg-1 maintained at 8000 W kg-1). This study widens the research scope of boronizing pseudocapacitance materials and reveals a high application potential of Ni3B/Ni(BO2)2@NixCoyMoO4 for energy storage devices in the future.
Collapse
Affiliation(s)
- Gang Zhao
- Laboratory of Functional Micro-nano Materials and Devices, School of Physics and Technology, University of Jinan, Jinan 250022, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu X, Li Q, Zhang X, Jiang Y. Hybrid structured CoNi 2S 4/Ni 3S 2 nanowires with multifunctional performance for hybrid capacitor electrodes and overall water splitting. RSC Adv 2020; 10:33428-33435. [PMID: 35515029 PMCID: PMC9056663 DOI: 10.1039/d0ra05544a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/10/2020] [Indexed: 11/21/2022] Open
Abstract
Rational design of electrode materials plays a significant role in potential applications such as energy storage and conversion. In this work, CoNi2S4/Ni3S2 nanowires grown on Ni foam were synthesized through a facile hydrothermal approach, revealing a large capacitance of 997.2 F g−1 and cycling stability with 80.3% capacitance retention after 5000 cycles. The device was prepared using CoNi2S4/Ni3S2//AC as the positive electrode and active carbon as the negative electrode, and delivered an energy density of 0.4 mW h cm−3 at a power density of 3.99 mW cm−3 and an excellent cycle life with 79.2% capacitance retention after 10 000 cycles. In addition, the hybrid CoNi2S4/Ni3S2 nanowires demonstrate excellent OER performance with low overpotential of 360 mV at 30 mA cm−2 and overpotential of 173.8 mV at −10 mA cm−2 for the HER, a cell voltage of 1.43 V, and excellent cycle stability. Rational design of electrode materials plays a significant role in potential applications such as energy storage and conversion.![]()
Collapse
Affiliation(s)
- Xiaoyun Liu
- School of Science, Shenyang Ligong University Shenyang 110159 P. R. China
| | - Qian Li
- School of Science, Shenyang Ligong University Shenyang 110159 P. R. China
| | - Xin Zhang
- School of Automobile and Transportation, Shenyang Ligong University Shenyang 110159 P. R. China
| | - Yueqiu Jiang
- Department of Development and Planning, Shenyang Ligong University Shenyang 110159 P. R. China
| |
Collapse
|
24
|
Li HB, Xiao GF, Zeng HY, Cao XJ, Zou KM, Xu S. Supercapacitor based on the CuCo2S4@NiCoAl hydrotalcite array on Ni foam with high-performance. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136500] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Li H, Xuan H, Guan Y, Zhang G, Wang R, Liang X, Xie Z, Han P, Wu Y. Preparation and characterization of three-dimensional Mn–Mo–S composites on rGO/Ni foam for battery-supercapacitor electrode with high-performance. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Effects of Fe doping on enhancing electrochemical properties of NiCo2S4 supercapacitor electrode. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135939] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Fabrication of dual-hollow heterostructure of Ni 2CoS 4 sphere and nanotubes as advanced electrode for high-performance flexible all-solid-state supercapacitors. J Colloid Interface Sci 2020; 564:313-321. [PMID: 31918199 DOI: 10.1016/j.jcis.2019.12.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022]
Abstract
High-energy-density and flexible supercapacitors have shown numerous application potential in modern portable electronics. However, the relatively low specific capacity, poor rate retentions, and limited durability have hindered their implement. Herein, a novel hierarchical dual-hollow electrode, composed of a hollow Ni2CoS4 sphere and outer hollow Ni2CoS4 nanotubes (Ni2CoS4HS-HTs), is elaborately constructed. The Ni2CoS4HS-HT-5 exhibits a high specific capacity of 817.5 C g-1 at a current density of 1 A g-1 with remarkable rate retention of 75.3% at 50 A g-1. In an all-solid-state asymmetric supercapacitor of Ni2CoS4HS-HT-5//CAC, a high capacitance of 1511.5 mF cm-2 at 5 mA cm-2 is obtained with an exceptional energy density of 13.6 mWh cm-3 at a power density of 92.6 mW cm-3. In addition, the capacity retention reaches 96% over 2000 cycles at 20 mA cm-3, implying the outstanding durability. The flexibility and mechanical stability are demonstrated by the intact electrochemical performances under different bending angles. As a proof-of-concept, two Ni2CoS4HS-HT-5//CACs in series could successfully illuminate 31 LED indicators for more than 8 mins. These fascinating electrochemical performances benefit from the novel electrode structure and depict great potential for modern energy storage applications.
Collapse
|
28
|
Han Y, Sun S, Cui W, Deng J. Multidimensional structure of CoNi 2S 4 materials: structural regulation promoted electrochemical performance in a supercapacitor. RSC Adv 2020; 10:7541-7550. [PMID: 35492182 PMCID: PMC9049838 DOI: 10.1039/c9ra10961g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/10/2020] [Indexed: 11/21/2022] Open
Abstract
Multidimensional architectures of CoNi2S4 electrode materials are rationally designed by engineering the surface structure toward that of high-performance supercapacitors. The fabrication of a special morphology is highly dependent on the synergistic effect between the guidance of Co-Ni precursor arrays and a subsequent sulfidation process. The unparalleled CoNi2S4 electrode materials (NS-3) deliver a significantly enhanced specific capacitance (3784.6 F g-1 at 3 A g-1), accompanied by an extraordinary rate capability (2932.3 F g-1 at 20 A g-1) and excellent cycling life. The outstanding supercapacitor performance stated above stems from the advantages of a multidimensional structure generated by crosslinking 2D microsheets/1D nanowires/2D ultrathin nanosheets; this structure supplies additional efficient active sites and a large contact area at the electrode-electrolyte interface, providing faster transport kinetics for electrons and ions. For practical applications, asymmetric devices based on an NS-3 positive electrode and active carbon negative electrode exhibit a high energy density of 38.5 W h kg-1 accompanied by a power density of 374.9 W kg-1 (22 W h kg-1 at 7615.4 W kg-1). The above results indicate that the design of multidimensional Co-Ni-S materials is an effective strategy to achieve a high-performance supercapacitor.
Collapse
Affiliation(s)
- Yue Han
- College of Science, Tianjin University of Technology Tianjin 300384 China
| | - Shishuai Sun
- College of Science, Tianjin University of Technology Tianjin 300384 China
| | - Wen Cui
- College of Physics and Materials Science, Tianjin Normal University Tianjin 300387 China
| | - Jiachun Deng
- College of Science, Tianjin University of Technology Tianjin 300384 China
| |
Collapse
|
29
|
Chen X, Yang L, Huang Y, Ge S, Zhang H, Cui Y, Huang A, Xiao Z. Fabrication of a Hierarchical Ni(OH) 2 @Ni 3 S 2 /Ni Foam Electrode from a Prussian Blue Analogue-Based Composite with Enhanced Electrochemical Capacitive and Electrocatalytic Properties. Chemistry 2020; 26:1111-1116. [PMID: 31709690 DOI: 10.1002/chem.201904324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Indexed: 11/09/2022]
Abstract
Developing high-efficiency, cost-effective, and durable electrodes is significant for electrochemical capacitors and electrocatalysis. Herein, a 3D bifunctional electrode consisting of nickel hydroxide nanosheets@nickel sulfide nanocubes arrays on Ni foam (Ni(OH)2 @Ni3 S2 /NF) obtained from a Prussian blue analogue-based precursor is reported. The 3D higher-order porous structure and synergistic effect of different compositions endow the electrode with large specific surface area, facile ion/electron transport path, and improved conductivity. As a result, the Ni(OH)2 @Ni3 S2 /NF electrode exhibits a high specific capacity of 211 mA h g-1 at a current density of 1 A g-1 and 73 % capacity retention after 5000 cycles at 5 A g-1 . Moreover, the Ni(OH)2 @Ni3 S2 /NF electrode has superior electrocatalytic activity for the hydrogen evolution reaction with low overpotentials of 140 and 210 mV at current densities of 10 and 100 mA cm-2 , respectively. The synthetic strategy for the unique higher-order porous structure can be extended to fabricate other composite materials for energy storage and conversion.
Collapse
Affiliation(s)
- Xiaojuan Chen
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing, 100191, P.R. China.,Beijing Academy of Quantum Information Sciences, Beijing, 100193, P.R. China
| | - Longkun Yang
- School of Physics, Capital Normal University, Beijing, 100048, P.R. China
| | - Yunxia Huang
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Shuaipeng Ge
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Hao Zhang
- Institute of Frontier Science and Technology Innovation, Beihang University, Beijing, 100191, P.R. China
| | - Yimin Cui
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Anping Huang
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Zhisong Xiao
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing, 100191, P.R. China.,Beijing Academy of Quantum Information Sciences, Beijing, 100193, P.R. China
| |
Collapse
|
30
|
Li Z, Ma K, Mi H, Ji C, Li Z, Guo F, He S, Wang C, Xu M, Pang H. Solid‐State Hybrid Supercapacitor Assembled from a Heterostructured Co−Ni Battery‐like Cathode and Supercapacitor‐Type Highly Disordered Carbon Nanosheets. ChemElectroChem 2020. [DOI: 10.1002/celc.201901800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhan Li
- School of Chemistry and Chemical EngineeringXinjiang University Urumqi 830046 P. R. China
| | - Kongjun Ma
- School of Chemistry and Chemical EngineeringXinjiang University Urumqi 830046 P. R. China
| | - Hongyu Mi
- School of Chemistry and Chemical EngineeringXinjiang University Urumqi 830046 P. R. China
| | - Chenchen Ji
- School of Chemistry and Chemical EngineeringXinjiang University Urumqi 830046 P. R. China
| | - Zhiwei Li
- School of Chemistry and Chemical EngineeringXinjiang University Urumqi 830046 P. R. China
| | - Fengjiao Guo
- School of Chemistry and Chemical EngineeringXinjiang University Urumqi 830046 P. R. China
| | - Shixue He
- School of Chemistry and Chemical EngineeringXinjiang University Urumqi 830046 P. R. China
| | - Conghui Wang
- School of Materials Science and EngineeringNankai University Tianjin 300350 P. R. China
| | - Mengjiao Xu
- School of Chemistry and Chemical EngineeringXinjiang University Urumqi 830046 P. R. China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou University Jiangsu 225009 P.R. China
| |
Collapse
|
31
|
Xu Y, Sumboja A, Zong Y, Darr JA. Bifunctionally active nanosized spinel cobalt nickel sulfides for sustainable secondary zinc–air batteries: examining the effects of compositional tuning on OER and ORR activity. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02185j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanosized cobalt nickel sulfides were prepared via a continuous hydrothermal method and evaluated as electrocatalysts, with the catalytic activity being linked to the cationic composition.
Collapse
Affiliation(s)
- Yijie Xu
- Department of Chemistry
- University College London
- London WC1H 0AJ
- UK
- Institute of Materials Research and Engineering (IMRE)
| | - Afriyanti Sumboja
- Material Science and Engineering Research Group
- Faculty of Mechanical and Aerospace Engineering
- Institut Teknologi Bandung
- Bandung 40132
- Indonesia
| | - Yun Zong
- Institute of Materials Research and Engineering (IMRE)
- A*STAR (Agency for Science, Technology and Research)
- Singapore
| | - Jawwad A. Darr
- Department of Chemistry
- University College London
- London WC1H 0AJ
- UK
| |
Collapse
|
32
|
Li Y, Chen X, Cao Y, Zhou W, Chai H. The ultralong cycle life of solid flexible asymmetric supercapacitors based on nickel vanadium sulfide nanospheres. CrystEngComm 2020. [DOI: 10.1039/d0ce00376j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The nickel vanadium sulfide electrodes shows an capacitance of 697.4 C g−1 at current density of 1A g−1. The flexible ACS Ni–V–S–2//rGO gives rise to a remarkable cyclic stability with 100% capacitance retention over 7000 charge–discharge cycles.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Institute of Applied Chemistry
- Xinjiang University
| | - Xin Chen
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Institute of Applied Chemistry
- Xinjiang University
| | - Yali Cao
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Institute of Applied Chemistry
- Xinjiang University
| | - Wanyong Zhou
- College of Chemistry & Chemical Engineering
- Xinjiang University
- Urumqi
- P. R. China
| | - Hui Chai
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Institute of Applied Chemistry
- Xinjiang University
| |
Collapse
|
33
|
Samal R, Mondal S, Gangan AS, Chakraborty B, Rout CS. Comparative electrochemical energy storage performance of cobalt sulfide and cobalt oxide nanosheets: experimental and theoretical insights from density functional theory simulations. Phys Chem Chem Phys 2020; 22:7903-7911. [DOI: 10.1039/c9cp06434f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have investigated the origin of enhanced energy storage performance of Co3S4 as compared to Co3O4 both by supported experimental and density functional theory investigations.
Collapse
Affiliation(s)
- Rutuparna Samal
- Centre for Nano and Material Sciences
- Jain University
- Jain Global Campus
- Ramanagaram
- Bangalore 562112
| | - Soumen Mondal
- School of Basic Sciences
- Indian Institute of Technology
- Bhubaneswar
- India
| | - Abhijeet Sadashiv Gangan
- High Pressure and Synchrotron Radiation Physics Division
- Bhabha Atomic Research Centre
- Trombay
- India
| | - Brahmananda Chakraborty
- High Pressure and Synchrotron Radiation Physics Division
- Bhabha Atomic Research Centre
- Trombay
- India
- Homi Bhabha National Institute
| | - Chandra Sekhar Rout
- Centre for Nano and Material Sciences
- Jain University
- Jain Global Campus
- Ramanagaram
- Bangalore 562112
| |
Collapse
|
34
|
Kumbhar VS, Chodankar NR, Lee K, Kim DH. Insights into the interfacial nanostructuring of NiCo2S4 and their electrochemical activity for ultra-high capacity all-solid-state flexible asymmetric supercapacitors. J Colloid Interface Sci 2019; 557:423-437. [DOI: 10.1016/j.jcis.2019.08.096] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 11/25/2022]
|
35
|
Zhang Y, Cao N, Li M, Szunerits S, Addad A, Roussel P, Boukherroub R. Self-template synthesis of ZnS/Ni3S2 as advanced electrode material for hybrid supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135065] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Liu T, Zheng Y, Zhao W, Cui L, Liu J. Uniform generation of NiCo2S4 with 3D honeycomb-like network structure on carbon cloth as advanced electrode materials for flexible supercapacitors. J Colloid Interface Sci 2019; 556:743-752. [DOI: 10.1016/j.jcis.2019.08.094] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 11/30/2022]
|
37
|
Le K, Gao M, Liu W, Liu J, Wang Z, Wang F, Murugadoss V, Wu S, Ding T, Guo Z. MOF-derived hierarchical core-shell hollow iron-cobalt sulfides nanoarrays on Ni foam with enhanced electrochemical properties for high energy density asymmetric supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134826] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Huang Y, Ge S, Chen X, Xiang Z, Zhang X, Zhang R, Cui Y. Hierarchical FeCo
2
S
4
@FeNi
2
S
4
Core/Shell Nanostructures on Ni Foam for High‐Performance Supercapacitors. Chemistry 2019; 25:14117-14122. [DOI: 10.1002/chem.201902868] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Yunxia Huang
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of EducationDepartment of PhysicsBeihang University Beijing 100191 P. R. China
| | - Shuaipeng Ge
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of EducationDepartment of PhysicsBeihang University Beijing 100191 P. R. China
| | - Xiaojuan Chen
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of EducationDepartment of PhysicsBeihang University Beijing 100191 P. R. China
| | - Zhongcheng Xiang
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of EducationDepartment of PhysicsBeihang University Beijing 100191 P. R. China
| | - Xinran Zhang
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of EducationDepartment of PhysicsBeihang University Beijing 100191 P. R. China
| | - Ruoxuan Zhang
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of EducationDepartment of PhysicsBeihang University Beijing 100191 P. R. China
| | - Yimin Cui
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of EducationDepartment of PhysicsBeihang University Beijing 100191 P. R. China
| |
Collapse
|
39
|
Jang W, Choi WS, Lee YS, Koo HY. NiCo 2S 4 Nanotrees Directly Grown on the Nickel NP-Doped Reduced Graphene Oxides for Efficient Supercapacitors. MATERIALS 2019; 12:ma12182865. [PMID: 31491941 PMCID: PMC6766062 DOI: 10.3390/ma12182865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/26/2019] [Accepted: 09/04/2019] [Indexed: 11/16/2022]
Abstract
In this work, we report a feasible fabrication of NiCo2S4 nanotree-like structures grown from the Ni nanoparticle (NP)-doped reduced graphene oxides (Ni-rGO) by a simple hydrothermal method. It is found that the presence of Ni NPs on the surface of the rGOs initiates growth of the NiCo2S4 nanotree flocks with enhanced interfacial compatibility, providing excellent cyclic stability and rate performance. The resulting NiCo2S4/Ni-rGO nanocomposites exhibit a superior rate performance, demonstrating 91.6% capacity retention even after 10,000 cycles of charge/discharge tests.
Collapse
Affiliation(s)
- Wooree Jang
- Functional Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeonbuk Institute of Advanced Composite Materials, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do 55324, Korea
| | - Won San Choi
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 305-719, Korea
| | - Youn-Sik Lee
- School of Chemical Engineering, Chonbuk National University, Jeon-ju, Jeollabuk-do 54896, Korea.
| | - Hye Young Koo
- Functional Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeonbuk Institute of Advanced Composite Materials, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do 55324, Korea.
| |
Collapse
|
40
|
Chen S, Chandrasekaran S, Cui S, Li Z, Deng G, Deng L. Self-supported NiMoO4@CoMoO4 core/sheath nanowires on conductive substrates for all-solid-state asymmetric supercapacitors. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.05.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Huang W, Zhang A, Liang H, Liu R, Cai J, Cui L, Liu J. Novel fabrication of hollow and spinous NiCo2S4 nanotubes templated by natural silk for all-solid-state asymmetric supercapacitors. J Colloid Interface Sci 2019; 549:140-149. [DOI: 10.1016/j.jcis.2019.04.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 10/27/2022]
|
42
|
Qin W, Li J, Liu X, Zhou N, Wu C, Ding M, Jia C. Formation of needle-like porous CoNi 2S 4-MnOOH for high performance hybrid supercapacitors with high energy density. J Colloid Interface Sci 2019; 554:125-132. [PMID: 31288176 DOI: 10.1016/j.jcis.2019.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/18/2022]
Abstract
Seeking for suitable electrode materials and designing rational porous structures are great challenges for developing high performance supercapacitors. Herein, needle-like porous CoNi2S4-MnOOH (denoted as NCS-MO) were prepared via a simple two steps solvothermal method and used as battery-type electrode of supercapacitor for the first time. Owing to the multiple oxidation states of needle-like porous NCS-MO and the inherent porous structure, the electrode delivers outstanding electrochemical capacitive properties with a high gravimetric specific capacitance of 1267.7 F g-1 at the scan rate of 1 mV s-1. To further assess the practical electrochemical performances, we assembled a hybrid supercapacitor using the as-synthesized porous NCS-MO as cathode and active carbon as anode. The device exhibits excellent performance with a high energy density of 47.1 Wh kg-1 at the power density of 998 W kg-1 in an extended voltage range of 1.6 V and outstanding cycling stability. These results demonstrate that the needle-like porous NCS-MO could be promising potential electrode material for high performance supercapacitor.
Collapse
Affiliation(s)
- Wei Qin
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, People's Republic of China.
| | - Jinliang Li
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xinyue Liu
- Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - Ningfang Zhou
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, People's Republic of China
| | - Chun Wu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, People's Republic of China
| | - Mei Ding
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, People's Republic of China
| | - Chuankun Jia
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
43
|
Hexagonal phase NiS octahedrons co-modified by 0D-, 1D-, and 2D carbon materials for high-performance supercapacitor. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.111] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
NiCo2S4 nanoparticles anchoring on polypyrrole nanotubes for high-performance supercapacitor electrodes. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.076] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Nagaraju G, Sekhar SC, Ramulu B, Yu JS. An Integrated Approach Toward Renewable Energy Storage Using Rechargeable Ag@Ni 0.67 Co 0.33 S-Based Hybrid Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805418. [PMID: 30892809 DOI: 10.1002/smll.201805418] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Self-powered charging systems in conjunction with renewable energy conversion and storage devices have attracted promising attention in recent years. In this work, a prolific approach to design a wind/solar-powered rechargeable high-energy density pouch-type hybrid supercapacitor (HSC) is proposed. The pouch-type HSC is fabricated by engineering nature-inspired nanosliver (nano-Ag) decorated Ni0.67 Co0.33 S forest-like nanostructures on Ni foam (nano-Ag@NCS FNs/Ni foam) as a battery-type electrode and porous activated carbon as a capacitive-type electrode. Initially, the core-shell-like NCS FNs/Ni foam is prepared via a single-step wet-chemical method, followed by a light-induced growth of nano-Ag onto it for enhancing the conductivity of the composite. Utilizing the synergistic effects of forest-like nano-Ag@NCS FNs/Ni foam as a composite electrode, the fabricated device shows a maximum capacitance of 1104.14 mF cm-2 at a current density of 5 mA cm-2 and it stores superior energy and power densities of 0.36 mWh cm-2 and 27.22 mW cm-2 , respectively along with good cycling stability, which are higher than most of previous reports. The high-energy storage capability of HSCs is further connected to wind fans and solar cells to harvest renewable energy. The wind/solar charged HSCs can effectively operate various electronic devices for a long time, enlightening its potency for the development of sustainable energy systems.
Collapse
Affiliation(s)
- Goli Nagaraju
- Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Gihung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - S Chandra Sekhar
- Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Gihung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Bhimanaboina Ramulu
- Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Gihung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jae Su Yu
- Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Gihung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| |
Collapse
|
46
|
Govindasamy M, Shanthi S, Elaiyappillai E, Wang SF, Johnson PM, Ikeda H, Hayakawa Y, Ponnusamy S, Muthamizhchelvan C. Fabrication of hierarchical NiCo2S4@CoS2 nanostructures on highly conductive flexible carbon cloth substrate as a hybrid electrode material for supercapacitors with enhanced electrochemical performance. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.051] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
47
|
Cui Y, Zhang J, Jin C, Liu Y, Luo W, Zheng W. Ionic Liquid-Controlled Growth of NiCo 2 S 4 3D Hierarchical Hollow Nanoarrow Arrays on Ni Foam for Superior Performance Binder Free Hybrid Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804318. [PMID: 30556315 DOI: 10.1002/smll.201804318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/23/2018] [Indexed: 05/13/2023]
Abstract
A significant development in the design of a NiCo2 S4 3D hierarchical hollow nanoarrow arrays (HNA)-based supercapacitor binder free electrode assembled by 1D hollow nanoneedles and 2D nanosheets on a Ni foam collector through controlling ionic liquid 1-octyl-3-methylimidazolium chloride ([OMIm]Cl) concentration is reported. The unique NiCo2 S4 -HNA electrode acquires high specific capacity (1297 C g-1 at 1 A g-1 , 2.59 C cm-2 at 2 mA cm-2 ), excellent rate capability (maintaining 73.0% at 20 A g-1 ), and long operational life (maintaining 92.4% after 10 000 cycles at 5 A g-1 ), which are superior to those for 1D hollow nanoneedle arrays (HNN) and 2D porous nanoflake arrays (PNF). The outstanding electrochemical performance is attributed to the novel 3D structure with large specific surface, hollow cores, high porosity as well as stable architecture. In addition, a hybrid supercapacitor applying 3D NiCo2 S4 -HNA as the positive electrode and active carbon as the negative electrode exhibits a high energy density of 42.5 Wh kg-1 at a power density of 2684.2 W kg-1 in an operating voltage of 1.6 V. Robust cycling stability is also expressed with 84.9% retention after repeating 10 000 cycles at 5 A g-1 , implying their great potential in superior-performance supercapacitors.
Collapse
Affiliation(s)
- Yingxue Cui
- Department of Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (MOE), TKL of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jing Zhang
- Department of Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (MOE), TKL of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Cen Jin
- Department of Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (MOE), TKL of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yanxia Liu
- Department of Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (MOE), TKL of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Wenhao Luo
- Department of Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (MOE), TKL of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Wenjun Zheng
- Department of Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (MOE), TKL of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
48
|
Amin BG, Masud J, Nath M. Facile one-pot synthesis of NiCo2Se4-rGO on Ni foam for high performance hybrid supercapacitors. RSC Adv 2019; 9:37939-37946. [PMID: 35541792 PMCID: PMC9075833 DOI: 10.1039/c9ra06439g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/11/2019] [Indexed: 11/21/2022] Open
Abstract
A facile, innovative synthesis for the fabrication of NiCo2Se4-rGO on a Ni foam nanocomposite via a simple hydrothermal reaction is proposed. The as-prepared NiCo2Se4-rGO@Ni foam electrode was tested through pxrd, TEM, SEM, and EDS to characterize the morphology and the purity of the material. The bimetallic electrode exhibited outstanding electrochemical performance with a high specific capacitance of 2038.55 F g−1 at 1 A g−1. NiCo2Se4-rGO@Ni foam exhibits an extensive cycling stability after 1000 cycles by retaining 90% of its initial capacity. A superior energy density of 67.01 W h kg−1 along with a high power density of 903.61 W kg−1 further proved the high performance of this electrode towards hybrid supercapacitors. The excellent electrochemical performance of NiCo2Se4-rGO@Ni foam can be explained through the high electrocatalytic activity of NiCo2Se4 in combination with reduced graphene oxide which increases conductivity and surface area of the electrode. This study proved that NiCo2Se4-rGO@Ni foam can be utilized as a high energy density-high power density electrode in energy storage applications. A hybrid supercapacitor comprising a NiCo2Se4-rGO composite has been fabricated on Ni foam and shows high energy and power density and superior flexibility.![]()
Collapse
Affiliation(s)
| | - Jahangir Masud
- Department of Chemistry
- Missouri University of Science and Technology
- USA
| | - Manashi Nath
- Department of Chemistry
- Missouri University of Science and Technology
- USA
| |
Collapse
|
49
|
Zou W, Guo W, Liu X, Luo Y, Ye Q, Xu X, Wang F. Anion Exchange of Ni-Co Layered Double Hydroxide (LDH) Nanoarrays for a High-Capacitance Supercapacitor Electrode: A Comparison of Alkali Anion Exchange and Sulfuration. Chemistry 2018; 24:19309-19316. [PMID: 30326158 DOI: 10.1002/chem.201804218] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/30/2018] [Indexed: 11/11/2022]
Abstract
A facile and new anion exchange process is presented, which involves the conversion of NiCo-CO3 layered double hydroxide (LDH) nanosheet arrays in an alkaline solution. The anion exchange between CO3 2- and OH- results in the construction of a reservoir for OH- anions, and the decoration of thin nanoflakes on the surface of nanosheets effectively enlarges the surface area of NiCo LDH nanoarrays. The capacitance of the as-soaked NiCo LDH nanoarrays electrode increases from 1.78 F cm-2 (684 F g-1 ) to 6.22 F cm-2 (2391 F g-1 ) at 2 mA cm-2 after soaking for 12 h. Moreover, the soaked NiCo-OH LDH electrode exhibits an enhanced rate capacity, high coulombic efficiency, and good cycling stability compared with the Ni-Co-S nanosheet electrode synthesized through a hydrothermal sulfuration process. The as-assembled all-solid-state NiCo LDH//active carbon asymmetric supercapacitor shows a maximum energy density of 83.4 W h kg-1 at a power density of 1066 W kg-1 .
Collapse
Affiliation(s)
- Wenru Zou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P.R. China
| | - Wenxin Guo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P.R. China
| | - Xinyi Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P.R. China
| | - Yunli Luo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P.R. China
| | - Qinglan Ye
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P.R. China
| | - Xuetang Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P.R. China
| | - Fan Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P.R. China.,Collaborative Innovation Center of Sustainable Energy Materials, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning, P.R. China
| |
Collapse
|
50
|
Xie T, Gai Y, Shang Y, Ma C, Su L, Liu J, Gong L. Self‐Supporting CuCo
2
S
4
Microspheres for High‐Performance Flexible Asymmetric Solid‐State Supercapacitors. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800676] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Tian Xie
- Qingdao Agricultural University No. 700 Changcheng Road, Chengyang District Qingdao City Shandong Province China
| | - Yansong Gai
- Qingdao Agricultural University No. 700 Changcheng Road, Chengyang District Qingdao City Shandong Province China
| | - Yuanyuan Shang
- Qingdao Agricultural University No. 700 Changcheng Road, Chengyang District Qingdao City Shandong Province China
| | - Chuanli Ma
- Qingdao Agricultural University No. 700 Changcheng Road, Chengyang District Qingdao City Shandong Province China
| | - Linghao Su
- Qingdao Agricultural University No. 700 Changcheng Road, Chengyang District Qingdao City Shandong Province China
| | - Jing Liu
- Qingdao Agricultural University No. 700 Changcheng Road, Chengyang District Qingdao City Shandong Province China
| | - Liangyu Gong
- Qingdao Agricultural University No. 700 Changcheng Road, Chengyang District Qingdao City Shandong Province China
| |
Collapse
|