1
|
Khirbat A, Nahor O, Marina Barbier S, Levitsky A, Martín J, Frey G, Stingelin N. Understanding Organic Photovoltaic Materials Using Simple Thermal Analysis Methodologies. Annu Rev Phys Chem 2024; 75:421-435. [PMID: 38424492 DOI: 10.1146/annurev-physchem-070723-035427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Large strides have been made in designing an ever-increasing set of modern organic materials of high functionality and thus, often, of high complexity, including semiconducting polymers, organic ferroelectrics, light-emitting small molecules, and beyond. Here, we review how broadly applied thermal analysis methodologies, especially differential scanning calorimetry, can be utilized to provide unique information on the assembly and solid-state structure of this extensive class of materials, as well as the phase behavior of intrinsically intricate multicomponent systems. Indeed, highly relevant insights can be gained that are useful, e.g., for further materials-discovery activities and the establishment of reliable processing protocols, in particular if combined with X-ray diffraction techniques, spectroscopic tools, and scanning electron microscopy enabled by vapor-phase infiltration staining. We, hence, illustrate that insights far richer than simple melting point- and glass-transition identification can be obtained with differential scanning calorimetry, rendering it a critical methodology to understand complex matter, including functional macromolecules and blends.
Collapse
Affiliation(s)
- Aditi Khirbat
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA;
| | - Oded Nahor
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | | | - Artem Levitsky
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jaime Martín
- POLYMAT, University of the Basque Country (UPV/EHU), San Sebastián, Spain
- Investigación Aplicada a Las Tecnologías Navales e Industriales, Campus Industrial de Ferrol, Universidade da Coruña, Ferrol, Spain
| | - Gitti Frey
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Natalie Stingelin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA;
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Su LY, Huang HH, Tsai CE, Hou CH, Shyue JJ, Lu CH, Pao CW, Yu MH, Wang L, Chueh CC. Improving Thermal and Photostability of Polymer Solar Cells by Robust Interface Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107834. [PMID: 35532078 DOI: 10.1002/smll.202107834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/03/2022] [Indexed: 06/14/2023]
Abstract
As the power conversion efficiency (PCE) of organic photovoltaics (OPVs) approaches 19%, increasing research attention is being paid to enhancing the device's long-term stability. In this study, a robust interface engineering of graphene oxide nanosheets (GNS) is expounded on improving the thermal and photostability of non-fullerene bulk-heterojunction (NFA BHJ) OPVs to a practical level. Three distinct GNSs (GNS, N-doped GNS (N-GNS), and N,S-doped GNS (NS-GNS)) synthesized through a pyrolysis method are applied as the ZnO modifier in inverted OPVs. The results reveal that the GNS modification introduces passivation and dipole effects to enable better energy-level alignment and to facilitate charge transfer across the ZnO/BHJ interface. Besides, it optimizes the BHJ morphology of the photoactive layer, and the N,S doping of GNS further enhances the interaction with the photoactive components to enable a more idea BHJ morphology. Consequently, the NS-GNS device delivers enhanced performance from 14.5% (control device) to 16.5%. Moreover, the thermally/chemically stable GNS is shown to stabilize the morphology of the ZnO electron transport layer (ETL) and to endow the BHJ morphology of the photoactive layer grown atop with a more stable thermodynamic property. This largely reduces the microstructure changes and the associated charge recombination in the BHJ layer under constant thermal/light stresses. Finally, the NS-GNS device is demonstrated to exhibit an impressive T80 lifetime (time at which PCE of the device decays to 80% of the initial PCE) of 2712 h under a constant thermal condition at 65 °C in a glovebox and an outstanding photostability with a T80 lifetime of 2000 h under constant AM1.5G 1-sun illumination in an N2 -controlled environment.
Collapse
Affiliation(s)
- Li-Yun Su
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsin-Hsiang Huang
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Department of Material Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chang-En Tsai
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Cheng-Hung Hou
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jing-Jong Shyue
- Department of Material Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chien-Hao Lu
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chun-Wei Pao
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsuan Yu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Leeyih Wang
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
3
|
Gurney RS, Lidzey DG, Wang T. A review of non-fullerene polymer solar cells: from device physics to morphology control. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:036601. [PMID: 30731432 DOI: 10.1088/1361-6633/ab0530] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The rise in power conversion efficiency of organic photovoltaic (OPV) devices over the last few years has been driven by the emergence of new organic semiconductors and the growing understanding of morphological control at both the molecular and aggregation scales. Non-fullerene OPVs adopting p-type conjugated polymers as the donor and n-type small molecules as the acceptor have exhibited steady progress, outperforming PCBM-based solar cells and reaching efficiencies of over 15% in 2019. This review starts with a refreshed discussion of charge separation, recombination, and V OC loss in non-fullerene OPVs, followed by a review of work undertaken to develop favorable molecular configurations required for high device performance. We summarize several key approaches that have been employed to tune the nanoscale morphology in non-fullerene photovoltaic blends, comparing them (where appropriate) to their PCBM-based counterparts. In particular, we discuss issues ranging from materials chemistry to solution processing and post-treatments, showing how this can lead to enhanced photovoltaic properties. Particular attention is given to the control of molecular configuration through solution processing, which can have a pronounced impact on the structure of the solid-state photoactive layer. Key challenges, including green solvent processing, stability and lifetime, burn-in, and thickness-dependence in non-fullerene OPVs are briefly discussed.
Collapse
Affiliation(s)
- Robert S Gurney
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | | | | |
Collapse
|
4
|
Suzuki M, Yamaguchi Y, Uchinaga K, Takahira K, Quinton C, Yamamoto S, Nagami N, Furukawa M, Nakayama KI, Yamada H. A photochemical layer-by-layer solution process for preparing organic semiconducting thin films having the right material at the right place. Chem Sci 2018; 9:6614-6621. [PMID: 30310593 PMCID: PMC6115635 DOI: 10.1039/c8sc01799a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/16/2018] [Indexed: 11/21/2022] Open
Abstract
A mild and versatile solution process enables the controlled preparation of multicomponent organic small-molecule thin films.
The synergistic action of properly integrated semiconducting materials can bring about sophisticated electronic processes and functions. However, it is often a great challenge to achieve optimal performance in organic devices because of the limited control over the distribution of different materials in active layers. Here, we employ a unique photoreaction-based layer-by-layer solution process for preparing ternary organic photovoltaic layers. This process is applicable to a variety of compounds from wide-band-gap small molecules to narrow-band-gap π-extended systems, and enables the preparation of multicomponent organic semiconducting thin films having the right compound at the right place. The resulting ternary photovoltaic devices afford high internal quantum efficiencies, leading to an approximately two times higher power-conversion efficiency as compared to the corresponding binary bulk-heterojunction system. This work opens up new possibilities in designing materials and active layers for solution-processed organic electronic devices.
Collapse
Affiliation(s)
- Mitsuharu Suzuki
- Division of Materials Science , Graduate School of Science and Technology , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan . ;
| | - Yuji Yamaguchi
- Department of Organic Device Engineering , Yamagata University , Yonezawa , Yamagata 992-8510 , Japan
| | - Kensuke Uchinaga
- Division of Materials Science , Graduate School of Science and Technology , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan . ;
| | - Katsuya Takahira
- Department of Organic Device Engineering , Yamagata University , Yonezawa , Yamagata 992-8510 , Japan
| | - Cassandre Quinton
- Division of Materials Science , Graduate School of Science and Technology , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan . ;
| | - Shinpei Yamamoto
- Division of Materials Science , Graduate School of Science and Technology , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan . ;
| | - Naoto Nagami
- Division of Materials Science , Graduate School of Science and Technology , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan . ;
| | - Mari Furukawa
- Division of Materials Science , Graduate School of Science and Technology , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan . ;
| | - Ken-Ichi Nakayama
- Department of Organic Device Engineering , Yamagata University , Yonezawa , Yamagata 992-8510 , Japan.,Department of Material and Life Science , Division of Advanced Science and Biotechnology , Graduate School of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan, E-mail:
| | - Hiroko Yamada
- Division of Materials Science , Graduate School of Science and Technology , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan . ;
| |
Collapse
|
5
|
Pfeifer S, Pokuri BSS, Du P, Ganapathysubramanian B. Process optimization for microstructure-dependent properties in thin film organic electronics. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.md.2018.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|